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Accurate prediction of tunnel squeezing, one of the commongeological hazards
during tunnel construction, is of great significance for ensuring construction
safety and reducing economic losses. To achieve precise prediction of tunnel
squeezing, this study constructed six reliablemachine learning (ML) classification
models for this purpose, including Support Vector Machine (SVM), Random
Forest (RF), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), Light
Gradient Boosting Machine (LGBM), and K-Nearest Neighbors (KNN). The
parameters of these 6 ML models were optimized using the Whale Optimization
Algorithm (WOA) in conjunction with five-fold cross-validation. A total of 305
tunnel squeezing sample data were collected to train and test the models.
KNN and Synthetic Minority Over-sampling Technique (SMOTE) methods were
employed to handle the missing and imbalanced data sets. An input feature
system for tunnel squeezing prediction was established, comprising tunnel
burial depth (H), tunnel diameter (D), strength-to-stress ratio (SSR), and support
stiffness (K). The XGBoost model optimized withWOA demonstrated the highest
prediction accuracy of 0.9681. The SHAP method was utilized to interpret the
XGBoost model, indicating that the contribution rank of the input features to
tunnel squeezing prediction was SSR > K > D > H, with average SHAP values
of 2.93, 1.49, 0.82, and 0.69, respectively. The XGBoost model was applied to
predict tunnel squeezing in 10 sections of the Qinghai Huzhu Beishan Tunnel.
The prediction results were highly consistent with the actual outcomes.

KEYWORDS

tunnel squeezing prediction, machine learning, whale optimization algorithm, model
interpretation, missing dataset

1 Introduction

As a crucial component of modern infrastructure construction, the safety and stability
of tunnel engineering are directly related to the safety of human lives and properties
as well as the harmonious development of society. Nowadays, tunnel engineering is
gradually advancing towards deeper levels, encountering increasingly complex geological
conditions and environments. When tunnels traverse weak rock strata and lack
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sufficient support strength, they are prone to compressive
deformation under high in-situ stress, leading to significant delays
in construction schedules and, in more severe cases, potentially
causing accidents involving loss of life (Hoek and Marinos, 2000;
Mikaeil et al., 2019; Zhu et al., 2019). The squeezing behavior of
surrounding rock can be described as large deformations that
vary over time during tunnel excavation. Its essence is related
to creep resulting from exceeding the ultimate shear stress, and
it often occurs around tunnels subjected to high in-situ stresses
(Dwivedi et al., 2013; Jain and Rao, 2022; Singh et al., 2007).
Therefore, conducting in-depth research on tunnel squeezing
prediction methods and improving their accuracy and timeliness
are of great significance for ensuring the safe construction and
long-term operation of tunnel engineering.

Since the 1990s, tunnel squeezing prediction has been
extensively studied, and scholars have proposed various methods
for predicting tunnel squeezing, including empirical methods,
semi-empirical methods, and theoretical methods (Aydan et al.,
1993; Ghiasi et al., 2012; Hoek, 2001; Panthi, 2013; Singh et al.,
1992). Traditional estimation methods based on empirical and
semi-empirical approaches include the stress ratio method, burial
depth method, and deformation method. Among them, the stress
ratio method encompasses ratios such as the ratio of surrounding
rock strength to in-situ stress and the ratio of uniaxial compressive
strength to in-situ stress (Aydan et al., 1993; Martin et al., 2011).
The burial depth method determines the occurrence of squeezing
based on the correlation between the burial depth of the tunnel
and the quality of the surrounding rock (Goel et al., 1995). The
deformationmethod assesses the degree of squeezing by establishing
a functional relationship between the relative deformation of the
tunnel and its influencing factors (Dwivedi et al., 2013). In this
method, the evaluation criteria proposed by Hoek have been
widely accepted (Hoek and Marinos, 2000).

With the continuous development and advancement of
computer technology, ML techniques have garnered significant
attention in the field of tunnel construction due to their potential in
data processing and pattern recognition. Ye et al. (2022) proposed
a back propagation neural network based on time series (TS-
BPNN) to realize soil settlement prediction during the subway
tunnel construction. Zhou et al. (2023) developed an XGBoost
model optimized with golden-sine seagull optimization to predict
the maximum surface settlement induced by shield tunneling.
Guo et al. (2024) combined the principal component analysis
(PCA) and deep belief network (DBN) to achieve performance
prediction of hard rock cantilever road header. An et al. (2024)
developed 7 ML models for tunnel convergence prediction in drill-
and-blast tunnels and conducted model explanation using SHapley
Additive exPlanations (SHAP). Zhao et al. (2024) introduced a ML-
based method for analyzing real-time TBM excavation data from
a major water conservation project, which revealed the dynamic
relationships between construction parameters and surrounding
rock grades, there by offering an innovative prediction model based
on a personalized scoring mechanism. In the domain of tunnel
squeezing prediction, ML methods have also been extensively
employed and have demonstrated considerable potential. Feng
and Jimenez (2015) proposed a Bayesian classifier for predicting
squeezing. Zhang et al. (2020) employed a classifier that integrates
seven algorithms, including Back Propagation Neural Network

(BPNN), Support Vector Machine (SVM), and Decision Tree
(DT), among others, to predict tunnel squeezing.Chen et al. (2020)
introduced a ML-based framework to probabilistically predict the
squeezing intensity and to dynamically update the prediction during
tunnel construction. Bo et al. (2023) introduced an ensemble ML
model that integrates four different ML classification models, which
achieved a prediction accuracy of 98% on the test set. Fathipour-
Azar (2022) employed six different ML models to predict squeezing
conditions in rock tunnels. However, there are still limitations.
Firstly, there is a lack of consideration involving data oversampling to
deal with data imbalance. Secondly, the effort to further interpretate
the ML model is very limited.

Inspired by the successful application of ML models in
tunnel construction-related prediction tasks (An et al., 2024;
Bo et al., 2023; Fathipour-Azar, 2022), this paper adopts six
different ML models to conduct tunnel squeezing prediction,
namely SVM,DT, RF, XGBoost, LightGBM (LGBM), and k-Nearest-
Neighbors (KNN). Hyperparameters optimization is significant for
MLmodels to yield accurate prediction. Traditional hyperparameter
optimization methods, such as random search and grid search,
have certain limitations in terms of optimization efficiency and
effectiveness, particularly when faced with complex models and
extensive search spaces, where their efficiency significantly declines.
To overcome this limitation, this work employs the Whale
Optimization Algorithm (WOA) for hyperparameter optimization
of the ML models, aiming to enhance their performance.

When dealing with tunnel engineering data, samples often
exhibit varying degrees of missingness due to factors such as
data sensitivity, technical difficulties in the collection process, and
various physical and logical constraints during transmission. This
can further lead to ML models failing to capture changes in critical
geological, structural, or construction parameters, thereby affecting
the predictive capability of the models (Aristiawati et al., 2019;
Beretta and Santaniello, 2016; Huang et al., 2020). To address these
issues, this paper adopts the k-nearest-neighbor (KNN) imputation
method to fill in missing data and the Synthetic Minority Over-
sampling Technique (SMOTE) to handle imbalanced datasets.

The objective of this study is to identify the optimal tunnel
squeezing prediction model by comparing and analyzing the
performance of 6 ML models, aiming to provide a high-precision
decision-making tool for tunnel design and construction. Following
this, the research focuses on the explanation of the best-performance
ML model. The scientific contributions of this paper can be
summarized as follows: (1) The adoption of the KNN method to
impute missing data and the utilization of SMOTE techniques to
handle imbalanced datasets; (2) The construction of 6 ML models
for tunnel squeezing prediction with WOA for hyperparameter
optimization; (3)The employment of the SHAPmethod to interpret
the optimalMLmodel, thereby revealing the important contribution
of input features.

The remaining of this paper is organized as follows: Section 2
briefly introduces the principles of six classifiers (SVM, RF, DT,
XGB, LGBM, KNN), WOA, and SHAP. Section 3 elaborated on
the database and the preprocessing techniques. Section 4 presents
the construction and analysis of the 6 ML models optimized using
the WOA. Furthermore, the input feature contributions of the
best-performing WOA-XGBoost model are analyzed using the
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SHAP method. Section 5 concludes this study and suggests the
future work.

2 Methods

2.1 Machine learning algorithms

2.1.1 SVM
Support Vector Machine (SVM) is a supervised learning model

rooted in statistical learning theory, widely employed in both
classification and regression analysis tasks. Its core concept revolves
around identifying a hyperplane in the feature space that separates
samples of different classes while maximizing the margin (or gap)
between the two classes, thereby enhancing the generalization ability
of the classifier. Support Vector Regression (SVM) represents an
extension of SVM to regression problems, inheriting the core ideas
from SVM in classification and applying them to the prediction
of continuous values (Li et al., 2023). The objective of SVM is
to minimize both the complexity of the hyperplane (achieved by
controlling the norm of the weight vector) and the prediction error
(controlled by the ε-insensitive loss function), thereby identifying
a regression model with good generalization ability. For nonlinear
problems, the fitting equation established by the SVMmodel can be
expressed as Equation 1 (Li and Mei, 2023):

f(z) = wvφ(z) + b (1)

where wv represents a vector of weights, φ(z) describes a function
that generates a mapping from the input values to a higher
dimensional space, b represents the model error, also known
as the bias.

2.1.2 DT
In the field of data science and ML, the Decision Tree has long

occupied a pivotal position as a powerful and intuitive method for
classification and regression. By simulating the logical reasoning
steps in human decision-making processes, DT presents the process
of data classification or prediction in a tree-like structure, enabling
the analysis and modeling of complex datasets. In classification
tasks, internal nodes represent test conditions for feature attributes,
which are used to select the best way to split the data; while leaf
nodes store the final class labels, indicating the category to which
the samples are assigned (Liang et al., 2024). The construction
process of a decision tree typically involves two key steps: feature
selection and tree pruning. Feature selection aims to select the
optimal feature for splitting at each step to maximize the accuracy
of classification or regression while reducing model complexity.
Common feature selection criteria include information gain (used in
the ID3 algorithm), gain ratio (used in the C4.5 algorithm), andGini
impurity (used in the CART algorithm). Among them, minimizing
Gini impurity can reduce uncertainty. In a decision tree with K
classes, if the probability of a sample belonging to the kth class is PK ,
the Gini coefficient for this probability distribution can be calculated
as Equation 2 (Wang et al., 2024):

Gini(p) =
K

∑
K=1

pK(1− pK) = 1−
K

∑
K=1

p2K (2)

where Gini(p) represents the Gini coefficient, p represents the
probabilities of different classes, and K represents the number
of classes.

2.1.3 RF
Random Forest is an ensemble learning algorithm composed

of multiple DT models. It improves the prediction accuracy and
stability of a single decision tree by constructing multiple decision
trees and outputting the average or mode of their prediction results.
Since its introduction, the RF algorithm has been widely applied in
data mining, ML, and various scientific fields due to its excellent
performance. Ensemble learning improves the overall prediction
performance by combining the prediction results of multiple base
learners (in this case, decision trees). The randomness in the RF
algorithm manifests in two aspects: firstly, the randomness of data
sampling, where each decision tree is trained using a random subset
of the original data (usually achieved through bootstrap sampling,
also known as the Bagging method); secondly, the randomness of
feature selection, where instead of selecting all features for optimal
partitioning, a random subset of features is chosen to find the best
split point during the construction of the decision tree.

2.1.4 XGBoost
XGBoost (eXtreme Gradient Boosting) is an optimized

distributed gradient boosting library designed to implement
efficient, flexible, and portable ML algorithms. Its core idea is
based on the Gradient Boosting Decision Tree (GBDT) framework,
which constructs a strong learner by integrating multiple weak
learners to gradually approximate the true objective function
(Chen and Guestrin, 2016). In contrast to traditional GBDT,
which only expands the objective function to the first-order Taylor
approximation, XGBoost retains more information about the
objective function by solving the second-order derivative, thereby
enabling a more precise approximation of the extreme point of the
loss function. This improvement not only enhances the predictive
accuracy of the model but also accelerates the convergence speed.
Furthermore, XGBoost incorporates regularization terms into the
objective function, including L2 regularization on the weights of
leaf nodes, to control the complexity of the model and prevent
overfitting (Dong et al., 2020).

In terms of tree construction strategy, XGBoost employs a
greedy algorithm combined with pre-pruning techniques. For each
tree, XGBoost attempts to split every leaf node, evaluating whether
to proceed with the split by calculating the gain before and after the
split. The split is only performed if the gain after the split exceeds
a predefined threshold, ensuring the rationality and efficiency
of the tree structure. To further enhance efficiency, XGBoost
implements optimization strategies such as feature parallelism
and candidate quantile splits. The objective function of XGBoost
consists of two parts: the training loss and the regularization term.
The specific functional expressions are represented as Equations
3–4 (Dong et al., 2020):

Obj(Θ) = L(Θ) +Ω(Θ) (3)

Ω(Θ) = γT+ 1
2
λ

T

∑
i=1

ω2
i (4)
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WhereΘ represents themodel parameters; L is the loss function;
Ω is the regularization term; T represents the number of leaf nodes
in the tree; ωi is the weight of the ith leaf node, which controls the
complexity of the tree; and λ is the L2 regularization coefficient for
the weights; Both γ and λ are penalty coefficients.

2.1.5 LGBM
The Light Gradient Boosting Machine is an efficient and

powerful ML algorithm, especially suitable for handling large-
scale datasets and high-dimensional feature spaces. Proposed by
Guolin Ke et al., in 2017, this algorithm aims to tackle the
challenges of traditional GBDT, including low training efficiency
and high memory consumption in big data scenarios. The
core principle of LGBM is based on the gradient boosting
framework, which iteratively constructs multiple weak learners
and combines them into a strong learner to progressively enhance
the model’s predictive capabilities. Compared to traditional GBDT
algorithms, LGB introduces several optimizations and innovations
in multiple aspects.

LGBM employs a histogram-based decision tree algorithm,
which discretizes continuous floating-point feature values into
several integers and constructs histograms with a width of bins.
The histogram algorithm not only decreases memory usage
but also notably accelerates training speed by reducing the
computational load of feature values. Additionally, LGBM employs
two key techniques:Gradient-basedOne-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB). GOSS reduces computational
complexity by sampling data instances with high gradients, while
EFB further enhances model efficiency and accuracy by bundling
exclusive features to reduce feature dimensionality. By expanding the
objective formula of the LGBMalgorithmusingTaylor’s formula and
traversing all leaf nodeswith the accumulation of n samples, the final
objective function of the LGBMmodel can be derived as Equations
5–9 (Chen et al., 2023):

Obj(t) =
S

∑
j=1
[Giwi +

1
2
(Hj + λ)w2

j ] (5)

Gj =∑
i∈Ij

gi (6)

gi = ∂ ̂yi(t−1)l(yi, ̂yi
(t−1)) (7)

Hj =∑
i∈Ij

hi (8)

hi = ∂2 ̂yi(t−1)l(yi, ̂yi
(t−1)) (9)

where yi represents target value, i represents projected value, Ij
denotes the set of samples in leaf node j, S represents the number
of leaf nodes, w represents weight of the blade.

2.1.6 KNN
KNN, as a simple yet powerful non-parametric method for

classification and regression, has long been an integral part of
data science research and applications. The core idea of the
KNN algorithm is based on the naive assumption that ‘birds
of a feather flock together’, meaning the class or value of a
sample can be predicted by the classes or values of its K
nearest neighbors. Specifically, in classification tasks, the KNN

algorithm first calculates the distances between the sample to be
classified and all samples in the training set using Equation 10;
(Huang et al., 2024; Wang et al., 2022).

Dist(TS,S)√
n

∑
i=1
(TSi − Si)

2 (10)

where TS represents the coordinates of the test sample, S denotes
the coordinates of the K nearest samples, and Dist represents the
distance between the test sample and each of the K nearest samples.
Subsequently, the K samples closest in distance are selected as
neighbors. Finally, based on the class labels of these K neighbors,
the class or value of the sample to be classified is predicted through
strategies such as majority voting (for classification problems) or
averaging (for regression problems).

2.2 Whale Optimization Algorithm

The Whale Optimization Algorithm is a novel swarm
intelligence optimization search method based on the hunting
behavior of humpback whales in nature, first proposed
by scholars such as Mirjalili from Griffith University in
Australia in 2016 (Mirjalili and Lewis, 2016). The algorithm seeks
to find the optimal solution to optimization problems by simulating
the self-organization and adaptability of whale pods. The core idea
of the WOA algorithm stems from the unique hunting strategy of
humpback whales. This hunting behavior is abstracted into three
main actions: encircling prey, spiral bubble-net attacking prey, and
searching prey randomly. The specific steps are as follows:

2.2.1 Enclosing the prey
The whale pod updates its position based on the location of

the current best candidate solution (target prey) through a specific
formula, attempting to converge towards the optimal solution. This
behavior is represented by Equations 11, 12:

D = |C ×X∗(t) −X(t)| (11)

X(t+ 1) = X∗(t) −A×D (12)

where t represents the current iteration number, A and C are
coefficient vectors, X

∗
(t) is the position vector of the currently

obtained best solution, X(t) is the position vector, If a better
solution is found,X

∗
(t) should be updated during each iteration.The

calculation formulas for the vectorsA and C are as Equations 13, 14:

A = 2a× r1 − a (13)

C = 2r2 (14)

During the iteration process, a linearly decreases from 2 to 0; r1
and r2 are random vectors within the range [0, 1].

2.2.2 Spiral attack (bubble net attack)
This strategy simulates the spiral bubble-blowing process of

humpback whales by establishing a spiral equation to mimic the
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FIGURE 1
Flowchart of the WOA algorithm.

TABLE 1 Statistical characteristics of features.

H Q D SSR K Target

Total
number

305 164 304 234 247 305

Missing
number

0 141 1 71 58 0

Average 350.34 1.66 11.27 0.39 778.10 0.77

Standard
deviation

208.59 7.74 51.59 0.67 641.40 0.42

Minimum 34.00 0.00 0.60 0.00 2.53 0.00

25% 200.00 0.02 5.40 0.12 26.20 1.00

50% 300.00 0.08 8.70 0.25 919.82 1.00

75% 500.00 0.80 11.00 0.39 1239.62 1.00

Maximum 1110.00 93.50 906.00 8.61 1979.56 1.00

whales’ helical motion, enabling a more precise approach towards
prey. The specific formula is as Equations 15, 16:

X(t+ 1) = D′ × ebl × cos (2πl+) +X∗(t) (15)

D′ = |X∗(t) −X(t)| (16)

where D′ represents the distance between the current search
individual and the current optimal solution; B denotes the spiral
shape parameter; I is a randomly generated number with a uniform
distribution within the range [−1,1]. Since there are two predation
behaviors during the approach to the prey, the WOA selects
between bubble-net predation and shrinking encirclement based on
a probability p. The position update formula is as Equation 17:

X(t+ 1) =
{
{
{

X∗(t) −A×D

D′ × ebl × cos (2πl) +X∗(t)
(17)

where p represents the probability of the predation mechanism,
which is a random number within the range [0,1]. As the number of
iterations t increases, the parameters A and the convergence factor
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TABLE 2 Feature description.

Parameter Unit Categories Calculation method

tunnel depth (H) m input —

rock tunneling quality index (Q) - input Q = RQD
Jn

g Jr
Ja
g Jw
SRF

tunnel diameter (D) m input D = √4A/π

strength stress ratio (SSR) — input SSR = σcm
γH

support stiffness (K) GPa output Kc =
Ec[R

2−(R−tc)
2]

(1+vc)[(1+2vc)R2+(R−tc)
2]

Ksb = p
R
u

1
Kb
= scsl

R
[ 4l
πdb2Eb
+Qld]

K = Kc +Ksb +Kb

Notes: RQD—Rock quality indicators,Jn-number of joint sets, Jr-joint roughness coefficient,Ja-joint alteration degree, Jw-joint water reduction factor, SRF-stress reduction factor, D-tunnel
diameter (or equivalent diameter), A-cross-sectional area of non-circular tunnels (the number of D in the dataset constructed in this study is 304, with 1 missing), σcm-rock mass strength,
γ-rock mass unit weight, K c-concrete lining stiffness, K sb-steel arch stiffness, Kb-bolt stiffness, Ec-elastic modulus of concrete, vc-Poisson’s ratio of concrete, R-tunnel radius, tc-shotcrete
thickness, p-radial support pressure, u-radial deformation, sc-circumferential spacing of bolts, sl-radial spacing of bolts, db-bolt diameter, Qld-load-displacement constant.

a gradually decrease. If ∣A∣<1, then the whales gradually converge
around the current optimal solution, which in the WOA signifies
the local search phase.

2.2.3 Random search
To maintain the algorithm’s global search capability and avoid

getting trapped in local optima, the algorithm also incorporates a
random search mechanism. When certain conditions are met, the
whale randomly selects a new search direction for exploration, as
shown in Equations 18, 19.

D″ = |C×Xrand(t) −X(t)| (18)

X(t+ 1) = Xrand(t) −A×D (19)

where D″ represents the distance between the current search
individual and a randomly selected individual, Xrand(t) represents
the location of the current random individual.

The standard WOA relies heavily on the coefficient vector A
to select the path for searching prey and utilizes a probability p
to determine the final predation mechanism. The computational
flowchart of the standard WOA is depicted in Figure 1:

2.3 SHAP

SHAP is a method rooted in the Shapley value theory from
game theory, aimed at providing interpretability for the prediction
outcomes of ML models. Originally proposed by Lundberg and
Lee (2017) in 2017. Its core idea is to decompose the model’s
prediction result into the specific contributions of individual input
features, thereby quantifying the impact of each feature on the
prediction outcome. The theoretical foundation of SHAP lies in the
Shapley value, which calculates the marginal contribution of each
player across all possible coalition combinations and determines
their fair share through a weighted average approach, achieving
equitable distribution. The computational formula for the Shapley

value is as Equation 20:

ϕi = ∑
S⊆N{i}
 
|S|!(n− 1− |S|)!

n!
[ fx(S∪ {i}) − fx(S)] (20)

where ϕi denotes the contribution of the ith eigenvalue,N represents
the set of all features, Sdenotes a subset of the given predictive
features, fx(S∪ {i}) denotes the result of themodel containing the ith
feature, fx(S) denotes the result of the model without the ith feature.
Finally, SHAP generates an interpretable model through additive
feature imputation, which is defined as a linear summation of the
input variables.

3 Dataset

3.1 Description of the data

Based on existing research findings, this study integrates a total
of 305 sample data points sourced from nine different countries
(China, India, Nepal, Venezuela, Austria, Greece, Bhutan, Japan,
and Turkey), constructing a novel dataset. (Bo et al., 2023; Feng
and Jimenez, 2015; Jimenez and Recio, 2011). Within this dataset,
squeezing cases constitute the majority, totaling 235 samples, while
non-squeezing cases account for 70 samples. Table 1 provides a
detailed overview of the statistical characteristics of the dataset.

The database encompasses five key parameters that influence
tunnel squeezing (Aydan et al., 1993; Goel et al., 1995; Hoek and
Marinos, 2000). Including tunnel burial depth (H), tunnel diameter
(D), support stiffness (K), rock excavation quality index (Q), and
strength-to-stress ratio (SSR). The calculation of These parameters
are expressed as equations, as listed in Table 2.

Tunnel burial depth (H): The depth of a tunnel significantly
influences the stress state of its surrounding strata. As depth
increases, geo-stresses, particularly vertical stresses, gradually
intensify, potentially leading to higher compression deformation
in the tunnel’s surrounding rock. Consequently, tunnel depth is a
crucial factor that must be considered when assessing the risk of
squeezing.
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FIGURE 2
Distribution of missing values in the database.

Tunnel diameter (D): The diameter of a tunnel directly
determines the volume of rock to be removed during excavation and
the exposed area of surrounding rock post-excavation, making it a
vital parameter in assessing the likelihood of squeezing phenomena.
A larger tunnel diameter implies greater excavation disturbance and
a larger exposed area of surrounding rock, thereby elevating the risks
of rock instability and compression deformation.

Support stiffness (K): The stiffness of support structures (such
as linings and rockbolts) plays a crucial role in the stability of
tunnel surrounding rock and is key to controlling tunnel squeezing
deformation. Appropriate support stiffness can effectively resist the
squeezing deformation of surrounding rock, maintaining the shape
and dimensions of the tunnel. However, excessively high support
stiffness may lead to an overly intense interaction between the

support structures and surrounding rock, potentially exacerbating
squeezing phenomena.

Rock excavation quality index (Q): The Q-value, an index
comprehensively reflecting the drill ability and integrity of rock,
is widely used in the classification of surrounding rock in tunnel
engineering. A higher Q-value indicates harder and more intact
rock, which possesses greater resistance to squeezing. Consequently,
theQ-value serves as an important reference for assessing the risk of
squeezing in tunnel surrounding rock.

Strength-to-stress ratio (SSR): SSR refers to the ratio of the
uniaxial compressive strength of rock to the maximum principal
stress, reflecting the resistance of rock to failure under geo-stress. A
lower SSR indicates relatively lower rock strength, rendering it prone
to damage and squeezing deformation under higher geo-stresses.
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FIGURE 3
Flowchart for predicting tunnel squeezing using ML.

Therefore, SSR is a critical parameter for assessing the stability of
tunnel surrounding rock and the risk of squeezing.

It should be noted that, due to the high costs and risks associated
with underground engineering, collecting complete tunnel data is
challenging, and some samples in the database have one or more
missing values. As illustrated in Figure 2, the number of missing
values of Q, D, SSR and K are 141, 1, 71 and 58, respectively.
In this research, the sample data were collected from engineering
cases and relevant literature, and the absence of data is unrelated
to the values of other features. In other words, the data missing
mechanism in the dataset is characterized as Missing Completely
at Random (MCAR).

3.2 Data imputation

The impact of missing training sample data onmodel prediction
performance is multifaceted, particularly in classification problems.
When the class labels for certain observations are missing, the
model fails to correctly learn the features and class information
of these samples during training, leading to prediction results that
may be biased towards other existing classes. This decreases the
overall prediction accuracy and subsequently reduces the model’s
generalization ability. Commonly used methods for handling
incomplete datasets include missing value imputation and deletion
of missing samples. Performing a simple deletion of missing data
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FIGURE 4
Correlation analysis.

in a dataset can lead to the loss of valuable information contained
within the missing samples. Considering the widely adoption of
KNN algorithm in imputation tasks (An et al., 2024; Bo et al.,
2023), it is employed in this study to fill in the missing data, thereby
preserving the valid information within the absent samples.

3.3 Synthetic Minority Oversampling
Technique (SMOTE)

In the domain of data science and ML, the problem of class
imbalance is a prevalent challenge that significantly impacts
the performance and generalization ability of classification
models. To effectively address this issue, Nitesh Chawla et al.
proposed the Synthetic Minority Over-sampling Technique
(SMOTE) in 2002. This technique balances the dataset by
synthetically generating new minority class samples, thereby
enhancing the model’s ability to recognize the minority class.
The SMOTE algorithm represents a significant improvement
over traditional random over-sampling methods, which simply
duplicate minority class samples to increase their quantity.
However, this approach can lead to overfitting as the training
set contains a large number of duplicated samples. In contrast,
SMOTE increases the diversity of the dataset by synthesizing
new, diverse minority class samples, thereby avoiding the issue of
overfitting. The SMOTE algorithm randomly selects a minority
class sample as the base sample. In the feature space, using
Euclidean distance as the metric, it calculates the distance from
this base sample to all minority class samples and identifies its k

nearest neighbors. For each base sample, based on its k nearest
neighbors, SMOTE randomly selects one or more of these neighbor
samples. It then randomly selects a point along the line segment
connecting these two samples to serve as the newly synthesized
sample. Specifically, the formula for generating a new sample is
as shown in Equation 21:

NewSample =MinoritySample+ λ× (NeighborSample−MinoritySample)
(21)

where λ is a random number between 0 and 1, used for random
interpolation along the line segment connecting the base sample and
the neighbor sample. Depending on the degree of data imbalance
and the preset sampling ratio, the above steps are repeated until
a sufficient number of minority class samples are synthesized
to achieve data balance. The primary advantage of the SMOTE
algorithm lies in its ability to generate new, diverse minority class
samples, effectively mitigating the class imbalance problem and
enhancing the performance of classification models. Furthermore,
by synthesizing samples, the model is able to learn more about
the feature combinations of the minority class, strengthening its
generalization ability.

4 Tunnel squeezing prediction model

This paper constructs 6 ML models and compares their
performance in predicting tunnel squeezing, aiming to identify the
best-performing model for accurately predicting tunnel squeezing
and providing reference and guidance for safe tunnel construction
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FIGURE 5
Prediction results of six models on the test set: (A) SVM; (B) RF; (C) DT; (D) XGBoost; (E) LGBM; (F) KNN.

and timely decision-making.The process of MLmodel construction
and performance analysis is illustrated in Figure 3. This study
primarily encompasses three stages: data preprocessing, model
training and testing, result analysis, and model interpretation.
Specifically, the first stage involves preprocessing the collected data,

establishing the feature system, filling missing data, addressing class
imbalance issue in the database using SMOTE, and feature system
update. The second stage involves constructing 6 ML models for
training and testing, with model optimization performed using the
WOA. In the third stage, the prediction results of the 6 ML models
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TABLE 4 The WOA parameters achieving the best hyperparameters of
the 6 ML models.

Model SVM RF DT XGBoost LGBM KNN

Population 10 50 10 50 200 150

Iterations 100

TABLE 5 Confusion matrix parameter significance.

Confusion matrix Predicted value

True False

Real value
True TP FN

False FP TN

TABLE 6 Model performance prediction metrics.

Criteria Calculation

Accuracy ACC = TP+TN
TP+TN+FP+FN

Precision P = TP
TP+FP

Recall R = TP
TP+FN

F1 F1 = 2
P⋅R
P+R

Kappa Kappa = 2(TP×TN−FP×FN)
(TP+FP)×(FP+TN)+(TP+FN)×(FN+TN)

Mcc MCC = TP×TN−FP×FN
(TP+FP)(FP+TN)(TP+FN)(FN+TN)

are analyzed to determine the best-performingmodel, and the SHAP
is employed for model explanation.

4.1 Data preprocessing

In this study, five parameters including H, Q, D, SSR, and K
were initially selected to construct the dataset for training the ML
models. The missing data in the dataset was imputed using KNN,
and the SMOTE was applied for data over-sampling to address
the issue of class imbalance (Dablain et al., 2023; Fernández et al.,
2018; Fix and Hodges, 1989; Mahdevari et al., 2012). In the KNN
imputation process, the parameter K was set to be 15, and in the
SMOTE over-sampling process, the parameter K was also set as
15. After preparing the database, an initial analysis of the database
were conducted by calculating the Pearson correlation coefficient
of the database. The Pearson correlation coefficient plot serves to
visualize the linear correlation between two variables, with values
ranging from −1 to 1. A value of −1 indicates a perfect negative
correlation, 1 indicates a perfect positive correlation, and 0 indicates
no correlation.

In statistical analysis, a correlation coefficient with an absolute
value exceeding 0.6 is generally indicative of a strong linear
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FIGURE 6
Prediction results of six models on the test set: (A) SVM; (B) RF; (C) DT; (D) XGBoost; (E) LGBM; (F) KNN (1 indicates squeezing and 0 indicates
non-squeezing).

relationship between two variables. As depicted in Figure 4, the
correlation coefficient between variables Q and SSR is 0.86, which
substantiates a high degree of correlation between them. Conversely,
the absolute values of the correlation coefficients for the remaining
features are all below 0.45, suggesting that these variables exhibit
relatively low intercorrelations. To mitigate data redundancy, which
can inflate the computational burden onMLmodels, it is prudent to
eliminate features that demonstrate high correlation. Given that the

variableQ has 141 missing values, a higher count than that of SSR, it
is deemed appropriate to exclude Q from the set of input features.
Consequently, the revised input feature system comprises four
variables: H, D, SSR, and K. This streamlined feature set is expected
to enhance the efficiency and predictive accuracy of the ML models
employed in the analysis. Further, the dataset, post-imputation
and over-sampling, underwent standardization. Subsequently, it was
randomly split into a training set and a test set at an 8:2 ratio.
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TABLE 7 Comprehensive performance table for ML model prediction.

SVM RF DT XGB LGBM KNN

F1 0.9136 0.9487 0.9367 0.9610 0.9487 0.9367

Accuracy 0.9255 0.9574 0.9468 0.9681 0.9574 0.9468

Precision 0.9024 0.9737 0.9487 1 0.9737 0.9487

Recall 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250

Kappa 0.8482 0.9124 0.8908 0.9341 0.9124 0.8908

Mcc 0.8484 0.9133 0.8911 0.9361 0.9133 0.8911

Accumulated
value

5.3631 5.6305 5.5391 5.7243 5.6305 5.5391

4.2 Model construction and optimization

Six different ML algorithms were employed to construct
classification prediction models, and the WOA was utilized to
optimize the hyperparameters of these ML models. The whale
population sizes were set to 5, 10, 50, 100, 150, and 200,
respectively, with 100 iterations for each optimization process. To
avoid overfitting, 5-fold cross-validationwas adopted on the training
set during the optimization. Figure 5 illustrates the optimization
curves of the 6 ML models with varying population sizes. As
depicted in Figure 5, among the configured population sizes, the
optimal population sizes for maximizing the average 5-fold cross-
validation accuracy on the training set were 10, 50, 10, 50, 200, and
150, respectively, for SVM, RF, DT, XGBoost, LGBM, and KNN.The
corresponding average accuracies achieved were 93.55%, 95.94%,
95.78%, 97.87%, 97.87%, and 93.61%. Therefore, to achieve optimal
hyperparameter optimization using the WOA for SVM, RF, DT,
XGBoost, LGBM, and KNN models, the population sizes should
be set to 10, 50, 10, 50, 200, and 150, respectively. The optimized
hyperparameters resulting from this process are presented in Table 3
and the corresponding WOA parameters that yielded the optimal
hyperparameters are listed in Table 4.

4.3 Analysis of prediction results

To comprehensively evaluate and compare the predictive
performance of various ML models, this study conducted a
comparative analysis of the prediction performance of the SVM, RF,
DT, XGBoost, LGBM, and KNN models optimized by the WOA on
the test set. This was done to validate and compare the predictive
capabilities of each model.

Confusionmatrix, also known as an errormatrix or contingency
table, is a widely utilized visualization tool in ML, particularly in
the realm of supervised learning. In the context of evaluating image
accuracy, the confusion matrix plays a pivotal role. It primarily
serves to compare the discrepancies between the output results
of a classification algorithm and the actual observed values. By
presenting the classification accuracy in an intuitive and structured
matrix format, the confusion matrix accurately showcases the

precision of the classification outcomes. The specific form of a
confusion matrix is outlined in Table 5 as follows:

Specifically, True Positives (TP) refer to instances that are
correctly predicted as belonging to the positive class and indeed are
positive. True Negatives (TN) involve instances that are predicted to
belong to the negative class and indeed are negative. False Positives
(FP) occur when instances are incorrectly predicted as belonging to
the positive class, whereas they are actually negative. Lastly, False
Negatives (FN) arise when instances are predicted to belong to the
negative class, but they are actually positive. The calculation of the
four index is shown in Table 6.

The prediction results of the six machine learning models on
the test set are illustrated in Figure 6. For the 54 non-squeezing
samples, the SVM model made four prediction error among the
non-squeezing samples, while the KNN model and DT each made
2 prediction errors. The RF model and LGBM model yielded 1
prediction error each, and both the XGBoost model accurately
predicted all the non-squeezing samples in the test set. On the other
hand, for the 41 squeezing samples, all models incurred 3 prediction
errors each. In summary, the XGBoost model demonstrated the
highest prediction accuracy on the test set.

The comprehensive prediction performance of the six models
established in this study on the test set is presented in Table 7. The
prediction accuracies of the SVM, RF, DT, XGBoost, LGBM, and
KNN models on the test set are 0.9255, 0.9574, 0.9468, 0.9681,
0.9574, and 0.9468, respectively. The cumulative values of the six
performance indicators are 5.3631, 5.6305, 5.5391, 5.7243, 5.6305,
and 5.5391, respectively. The WOA-XGBoost model exhibited the
highest prediction accuracy, closely followed by LGBM and RF. The
ranking of the prediction performance among the 6 ML models is
XGBoost > LGBM = RF > KNN = DT > SVM.

The ROC curve is plotted with the False Positive Rate (FPR)
on the x-axis and the True Positive Rate (TPR, also known as the
sensitivity or recall) on the y-axis. An ideal classifier would be
located at the top-left corner of the ROC space (TPR=1, FPR=0),
while a classifier that performs at the level of randomguessingwould
follow the diagonal line. The Area Under the Curve (AUC) of the
ROC curve is a crucial metric for evaluating the overall performance
of a model, with higher AUC values indicating stronger ability to
distinguish between positive and negative classes. The ROC curves
of the 4 ML models are shown in Figure 7. Among the six models,
the ROC curve of the WOA-XGBoost model is the closest to the
top-left corner of the ROC space, with an AUC of 0.993, which is
higher than the AUCs of the other fivemodels.This suggests that the
WOA-XGBoost model exhibits superior prediction performance on
the test set compared to the other five models.

4.4 Comparative analysis with related
studies

TheMLperformance of related studies is summarized inTable 8.
The accuracy is taken as the standard for comparison. The WOA-
XGBoost model established in this study demonstrates higher
accuracy compared to most of the related studies, indicating that
the WOA-XGBoost model is as reliable as the ML models in the
previous studies.
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FIGURE 7
ROC curve of ML model on the test set.

TABLE 8 Summary of tunnel squeezing prediction performance of related studies.

Literature Model Input Accuracy Database size

Jimenez and Recio (2011) LR H, Q 87.1% 62

Shafiei et al. (2012) SVM H, Q 84.1% 198

Dwivedi et al. (2013) Empirical correlation J f, Q, K, σv, a, N, D 94% 63

Feng and Jimenez (2015) BNs H, Q, D, SSR, K 86.65% 166

Sun et al. (2018) Mulit-SVM H, Q, D, K 88.1% 117

Zhang et al. (2020) BPNN, SVM, DT, KNN, LR, MLR. NB H, Q, D, SSR, K 96% 166

Huang et al. (2022) SVM-BP H, Q, D, K 92.11% 178

Bo et al. (2023) Ensemble model of GBC, ET, Ada and LR H, Q, D, SSR, K 98.0% 166

Geng et al. (2023) EWM-BO-XGBoost SSR, [BQ], D, K 91.7% 139

This study WOA-XGBoost H, D, SSR, K 96.8% 305

Notes: J f: joint factor, Q: rock mass quality, σv: verlical in situ stres, K : support shilnes, a: radius of the tunnel, N : rock mass number, D: equivalendiameter of tunnel, H: buried depth, SSR:
strength stress ratio, GC: surrounding rock classes based on BQ, system.

4.5 Model interpretation

With the profound application of ML technologies across
numerous domains, the complexity and opacity (or black-box
nature) of these models have become increasingly prominent.
While this inherent complexity significantly enhances predictive
accuracy, the intricate nonlinear relationships between model
inputs and outputs pose a significant challenge for researchers. To

enhance the comprehensibility and trustworthiness of these models,
conducting detailed explainability analyses becomes crucial. In this
study, we specifically adopted the SHAP framework to conduct
a global interpretability analysis of the WOA-XGBoost model,
which exhibited the most outstanding performance among the six
evaluated models.

Figure 8A illustrates the SHAP values for each data sample and
their impact on the model’s output. Red dots represent features
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FIGURE 8
Interpretation results of WOA-XGBoost model: (A) SHAP value; (B) Mean SHAP value.

of the sample that have a positive contribution to the prediction
result, indicating that an increase in the value of that feature
would enhance the model’s predicted output. Conversely, blue dots
signify features that have a negative contribution to the prediction,
meaning that an increase in their values would decrease the model’s
predicted output. Variables with higher average SHAP values exert
a relatively greater influence on the model’s prediction results.
Figure 8B demonstrates that in the WOA-XGBoost model, the SSR
feature contributes most significantly to the model’s prediction
performance, with an average SHAP value of +2.93. This value
significantly surpasses the average SHAP values of features K,
D, and H (+1.49, +0.82, +0.69). The ranking of the average
SHAP values of the input features clearly indicates the priority
relationship of SSR > K > D > H. It is important to note that
the current conclusions are based on a specific experimental setup,
namely the WOA-XGBoost model prediction analysis with the
optimal hyperparameters. Considering SSR contributes the most
to the output of the XGBoost model, Figure 9 illustrates the
interactions between other input features and their potential impact
on the prediction results of the XGBoost model. Given that the
performance of ML models and the assessment of input feature
importance are highly dependent on model configurations, dataset
characteristics, the generalizability of this feature contribution
ranking should be approached with caution. Therefore, while the
findings of this study are insightful, they should not be absolutized
as a universal rule for feature importance across all prediction
scenarios.

5 Engineering application

5.1 Engineering background

The Huzhu Beishan Extra-Long Tunnel, located in Qinghai
Province, China, has a total length of 11,160 m. It traverses a high-
altitude and complexly varied terrain with an elevation ranging
from 2,815 m to 3,699 m, and the relative elevation difference within
the area is as high as 884 m. Additionally, the maximum burial
depth of the tunnel is approximately 769 m, posing significant
challenges to the stability design, construction difficulty, and safety
control of the tunnel project. Due to geological tectonic processes,
faulted and fractured zones exist within the tunnel site, as shown in
Figure 10.The rock mass in these zones is of extremely poor quality,
prone to disasters such as collapses, water intrusions, and large
deformations. Figure 11 shows the onsite tunnel works. Therefore,
during the tunnel excavation and construction process,MLmethods
were employed to predict the squeezing probability of the tunnel,
ensuring the safety of tunnel construction.

5.2 Squeezing prediction

In this study, the WOA-XGBoost model, which demonstrated
the best predictive performance, was utilized to forecast the
occurrence of squeezing in ten cross-sections of the tunnel’s right
line, including K34+157, K34+160, K35+300, K35+380, K37+180,
K38+480, K39+250, K40+480, K40+500, and K40+520. While the
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FIGURE 9
Interaction analysis of SSR and the other input features: (A) Interaction between SSR and H; (B) Interaction between SSR and D; (C) Interactions
between SSR and K.

FIGURE 10
Location of target tunnel.

values of H and D were obtained from the tunnel design data,
the missing values for SSR, and K were imputed using KNN
interpolation. The prediction results are presented in Table 9. The
probability of squeezing are yielded by the ML model using the
function “predict.proba ()”.

Based on the prediction results, six sections of the tunnel’s
right line, including K34+157, K34+160, K40+480, K38+480,
K40+500, and K40+520, were predicted to experience squeezing,
with respective probabilities of 96.73%, 97.38%, 96.73%, 96.04%,

91.29%, and 91.29%. The remaining four sections (K35+300,
K35+380, K37+180, K39+250) are predicted to be non-squeezing,
with respective probabilities of 3.27%, 3.27%, 3.27%, and 1.64%.
It can be observed that, except for the prediction results of the
K38+480 section which do not match the actual results, the
prediction results of the other sections are consistent with the actual
squeezing conditions. This indicates that the constructed WOA-
XGBoost model possesses high reliability in the task of predicting
squeezing in actual tunnel engineering.
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FIGURE 11
Photographs of onsite tunnel works.

TABLE 9 Predicting results of tunnel squeezing in HUZHU north mountain engineering.

Tunnel miles H D SSR K Actual squeezing
conditions

Predicted squeezing
outcomes

Probability of
squeezing

K34+157 140.9 11 0.916 740.12 Squeezing Squeezing 96.73%

K34+160 137.3 11 0.756 750.19 Squeezing Squeezing 97.38%

K35+300 106.4 11 0.916 694.04 Non-squeezing Non-squeezing 3.27%

K35+380 93.4 11 0.933 694.04 Non-squeezing Non-squeezing 3.27%

K37+180 581.3 11 0.933 671.37 Non-squeezing Non-squeezing 3.27%

K38+480 691.4 11 0.767 753.31 Non-squeezing Squeezing 96.73%

K39+250 453.9 11 0.326 1132.77 Non-squeezing Non-squeezing 1.64%

K40+480 511.9 11 0.188 650.41 Squeezing Squeezing 96.04%

K40+500 519.5 11 0.229 539.32 Squeezing Squeezing 97.29%

K40+520 524.9 11 0.229 475.47 Squeezing Squeezing 97.29%

6 Conclusion

This study constructed six different ML models for tunnel
squeezing prediction and optimized their hyperparameters using
the WOA, resulting in WOA-SVM, WOA-RF, WOA-DT, WOA-
XGB, WOA-LGBM, and WOA-KNN. To address the presence of
missing values in the dataset, data imputation and oversampling
techniques were implemented to enhance the quality of the dataset
and facilitate accurate predictions by the models. Subsequently, the
most prominent model, WOA-XGBoost, was analyzed in depth
using the SHAP framework. The core input features of this model
encompassed critical parameters such as H, D, SSR, and K. To
comprehensively evaluate the predictive performance of themodels,
six performancemetrics, includingACC,F1 Score,Kappa, andMCC,
were employed. Furthermore, the optimizedWOA-XGBoost model
was applied to 10 distinct tunnel section squeezing prediction tasks

to validate its applicability and accuracy in tunnel engineering. The
following conclusions were drawn from this study:

(1) Among the WOA-SVM, WOA-RF, WOA-DT, WOA-XGB,
WOA-LGBM, and WOA-KNN models, the prediction
accuracies on the test set were 0.9255, 0.9574, 0.9468, 0.9681,
0.9574, and 0.9468, respectively. The cumulative values of
the prediction performance evaluation metrics were 5.3631,
5.6305, 5.5391, 5.7243, 5.6305, and 5.5391, respectively. The
WOA-XGBoost model demonstrated superior prediction
accuracy and cumulative performance evaluation metrics
compared to the other five models, exhibiting the best
predictive performance.

(2) The SHAP explanation results revealed that the average SHAP
values for SSR, K, D, and H were 2.93, 1.49, 0.82, and 0.69,
respectively. Among the four input features, SSR had the
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highest importance in influencing the model’s output, with the
order of importance being SSR > K >D > H.

(3) Ten representative tunnel sections from the Hubei Beishan
Tunnel were selected for tunnel squeezing prediction. Except
for the prediction results of the K38+480 section which did
not match the actual results, the prediction results of the other
sections were consistent with the actual squeezing conditions.

This study achieved tunnel squeezing prediction based on an
imbalanced and missing dataset. However, there are still limitations
that need further investigation. Firstly, the binary classification
strategy adopted in this study is not fine enough and has thereby
limited effective guidance for engineering applications. Future
research will consider constructing multi-class classification models
to provide amore detailed classification of tunnel squeezing degrees,
thereby enhancing its guiding role in tunnel engineering. Secondly,
the data sample size and range are limited still, and future work
might collect more samples to expand the dataset to further improve
the applicability and generalization performance of the models.
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