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System Research and Department of Atmospheric, Oceanic and Earth Sciences, George Mason
University, Fairfax, VA, United States

Remobilized volcanic ash from ground deposits can present significant hazards
to human health, infrastructure, and aviation. Modeling of ash remobilization
events is an important tool that can provide information on the timing and
magnitude to assist in planning and response. We investigate how the horizontal
resolution of meteorological data, specifically that of friction velocity provided
by numerical weather prediction (NWP) models, affects the estimated vertical
mass flux and modeled concentrations of volcanic ash. We then apply a
method designed to reduce the influence of the resolution on these quantities.
Resuspension of volcanic ash from a deposit in Iceland has been modeled with
the HYSPLIT atmospheric transport and dispersion model (ATDM) driven by
meteorological fields from the European Center for Medium-Range Weather
Forecasts (ECMWF) ECMWF Reanalysis v5 (ERA5) dataset and the weather
research and forecasting model (WRF) at different resolutions (27 km and 9 km).
We tested several simple emission schemes: one widely used for both volcanic
ash and dust emissions, one operationally used to forecast ash resuspension
in Iceland, and one based on controlled measurements from prepared ash
deposits. Scaling factors for emissions were estimated using a cumulative
distribution function (CDF) matching technique. Friction velocity values varied
significantly across meteorological datasets resulting in considerably different
estimates of onsets and vertical mass flux. It is a common approach to
compensate for these differences by applying a scaling factor and adjusting the
threshold friction velocity. Here, we implement a scheme that utilizes a Weibull
distribution for the friction velocity to reduce the dependence of emission
estimates on meteorological data resolution. We find that all emission schemes
andmeteorological datasets can predict the timing of large resuspension events
and subsequent transport of the resuspended material. Indeed, the coarser
datasets of WRF 27 km and ERA5 perform better than the WRF 9 km in some
respects. The use ofWeibull distribution for friction velocity successfully reduces
the dependence of emission estimates on grid resolution. Similar schemes
have been used successfully for dust emissions. Reducing or eliminating this
dependence is important in order to assess and compare the success of different
emission schemes, threshold friction velocities, and calibration factors.
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1 Introduction

For hazard planning purposes, it is important to determine the
expected frequency of hazardous conditions and concentrations of
ash. Atmospheric transport and dispersion models (ATDMs) are
often used to model concentrations of resuspended materials such
as volcanic ash and mineral dust. ATDMs require meteorological
inputs, such as from a numerical weather prediction (NWP) model,
analysis or reanalysis products, or observations. They also require
information about the initial position and amount of the material
emitted into the atmosphere. To model resuspension with a forward
modeling setup, the ATDM requires information about the location
of source regions and themass of thematerial lifted fromeach source
region as a function of time.

Dust and ash are resuspended by a transfer of momentum from
the atmosphere to the deposit. The amount of material resuspended
depends on both the state of the atmosphere and properties of
the deposit (Kok et al., 2012). Detailed information about deposit
properties such as grain size distribution, soil moisture, and deposit
depth is not often available. Even the horizontal extent of the deposit
may not be clearly known, particularly for fresh deposits of volcanic
ash. Furthermore, deposit properties change over time.

An NWP model supplies information about the atmosphere, in
particular, the friction velocity that characterizes the momentum
flux. However, the spatial and temporal resolutions of the available
data may be fairly coarse, and resuspension depends on very local
conditions. The modeled mass flux of resuspended material has
been shown to be sensitive to the grid resolution of the data
(Ridley et al., 2013; Gueye and Jenkins, 2019; Mingari et al., 2017).
Vertical mass flux from the surface is related to a high power
(generally 3–5) of the friction velocity, and thus, using a mean
value for this quantity over an area will provide an underestimation
of the true value in case of heterogeneity. Different strategies for
reducing the dependence on grid resolution have been developed,
including computing emissions on a high-resolution offline grid
separately (Meng et al., 2021), estimating emissions from albedo
(Chappell et al., 2024), creating a mapping between high- and
low-resolution dust emissions (Leung et al., 2023), reducing the
threshold friction velocity for coarser resolutions (Klose et al., 2021),
and using a distribution for wind speed over the grid square rather
than a single value (Ridley et al., 2013; Zhang et al., 2016; Foroutan
and Pleim, 2017; Menut, 2018; Tai et al., 2021). Here, we implement
a version of the last strategy by utilizing a Weibull distribution for
friction velocity.

The processes that govern the resuspension of volcanic ash
are generally the same as those for mineral dust and sand, and
thus, modeling of resuspended volcanic ash is generally similar to
that of dust, but there are important differences (Langmann, 2013;
Etyemezian et al., 2019; Del Bello et al., 2021). Fewer studies and
measurements of volcanic ash resuspension exist. Measurements
conducted by Etyemezian et al. (2019) suggest that fresh volcanic
ash deposits can be muchmore emissive than dust, although they did
find that the threshold friction velocities are similar (30–40 cm s−1).
Particles in ash deposits can be considerably irregularly shaped than
dust (Dominguez et al., 2020; Del Bello et al., 2021), which may affect
properties such as threshold friction velocities (Del Bello et al., 2021).
Here, we focus onmodeling the resuspension of ash during large-scale
episodic events driven by high wind speeds. These large-scale events

pose hazards to human health as well as possible aviation hazards if
they occur near airports.

We compare simulated concentrations of resuspended volcanic
ash with observations of PM10 at five measurement stations in
Iceland. We use an atmospheric transport and dispersion model,
HYSPLIT, with three sets of NWP products. The measurements
by Leadbetter et al. (2012) are described in Section 2.1. We
then describe the modeling setup in which a matrix describing
source–receptor relationships is created (Section 2.2). This
modeling setup allows for different emission schemes, which are
described in Section 2.3, to be applied quickly.

The emission schemes and a technique for reducing dependence
on meteorological grid resolution are described in Sections 2.3
and 2.4, respectively. A cumulative distribution function (CDF)
matching technique is used to compute calibration or scaling
factors for the emission schemes as well as take into account the
background (Section 2.5). Evaluation of the different simulations is
described in Section 2.6, and results and discussion are presented in
Section 3 and Section 4, respectively.

2 Materials and methods

2.1 Measurements

Measurement data are from the Environment Agency of Iceland,
and the same measurement data were used in Leadbetter et al.
(2012). The data consist of hourly measurements from particulate
matter monitors measuring concentrations of particulates less than
10 μm in diameter (PM10) at five stations. Resuspended particles less
than approximately 20 μm in diameter can remain in the atmosphere
for weeks (Kok et al., 2012).

We focus on the period of 25 May 2010 through 30 June
2010 after the cessation of the eruption of Eyjafjallojökull on 23
May 2010 (Arason et al., 2011). The locations of the measurement
sites are shown in Figure 1. Two urban stations, Grensásvegur and
Hvaleyrarholt, lie a couple of hundred kilometers to the west and
slightly north of the source region. Three stations are located on the
edge of the source region,Hvolsvöllur on the east edge,Heimaland to
the southeast, and Vík to the south. Measurements of PM10 at all the
measurement sites are shown in Figure 2. Letters are used to identify
resuspension events inwhich elevated concentrationswere observed
at one or more of the sites. Seven main resuspension events, A, B, C,
D, E, F, and G, were identified. Five smaller events, q, r, s, t, and u,
at Hvolsvöllur (Figure 2C) are also discussed. Concentrations at the
more distant stations, Hvaleyrarholt and Grensásvegur, were lower
in general, remaining below 2,000 μg m−3. Concentrations closer
to the source sometimes reached above 4,000 μg m−3. These values
are at least two orders of magnitude higher than background values
at the sites and suitable for evaluating our ability to simulate large
episodic events most likely driven by higher wind speeds. Visual
inspection of the time series at Heimaland, Hvaleyrarholt, and
Hvolsvöllur indicates background concentrations on the order of 10
μg m−3. Background values at Grensásvegur are higher, between 10
and 30 μg m−3, and the background values at Vík are approximately
40 μg m−3.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1511847
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Crawford et al. 10.3389/feart.2025.1511847

FIGURE 1
Map of relevant locations in Iceland. Measurements sites are marked as green diamonds. Eyjafjallojökull volcano is shown as the red triangle (63.61o N,
19.06oW). Centers of source locations used for HYSPLIT runs are shown as follows: yellow circles represent grid points from the WRF 9 km dataset,
black stars represent grid points from the WRF 27 km dataset, and blue squares represent grid points from the ERA5 dataset.

2.2 Modeling

HYSPLIT is a Lagrangian transport and dispersion model
developedby theNationalOceanic andAtmosphericAdministration’s
Air Resources Laboratory (NOAA ARL) Draxler and Hess (1997),
Draxler and Hess (1998); Stein et al. (2015). The model is used
operationally at theWashington, Anchorage, Darwin, andWellington
volcanic ash advisory centers (VAACs) formodeling the transport and
dispersionofvolcanicash(Beckettetal.,2024)andisalsousedtomodel
dust resuspension (Draxler et al., 2001; Stein et al., 2010; Ashrafi et al.,
2014; Salmabadi et al., 2023). Gridded fields from a meteorological
model including the wind field, temperature, humidity, precipitation,
and boundary layer height are inputs for the HYSPLIT model. In
this study, we use three different meteorological datasets that are
described in Section 2.2.1 as model inputs.

2.2.1 NWP modeling
Below, we discuss the meteorological datasets we use in the

study and compare with previous studies on regional volcanic ash
resuspension that have utilized meteorological fields with various
resolutions: 12-kmweather research forecasting (WRF) (Folch et al.,
2014), 8-kmWRF (Mingari et al., 2020), 2-kmWRF (Mingari et al.,
2017), and a 12-km limited area version of the NWP model
from the UK Met Office (Leadbetter et al., 2012; Beckett et al.,
2017). These resolutions refer to the horizontal grid spacing of the
respective models.

2.2.1.1 ERA5
Data from the European Center for Medium-Range

Weather Forecasts (ECMWF) ERA5 global atmospheric
reanalysis (Hersbach et al., 2020) were obtained from
Copernicus Climate Change and Atmospheric Monitoring Services
(2018) and used as input in the HYSPLIT. The dataset has 0.3o

latitude–longitude resolution and performs hourly analysis. We used
theoutput onpressure levels, ofwhich there are 37, ranging from1,000
to 1 hPa. Spacing is 25 hPa between 1,000 and 750 hPa and between
250 and 100 hPa. Spacing is 50 hPa between 750 and 250 hPa. Above
100 hPa, the spacing varies. At high latitude, the grid squares are
rectangular, approximately 33 km× 14 km. The grid points in the
region considered for possible emissions are shown in Figure 1.

2.2.1.2 WRF
The WRF model (Skamarock et al., 2008) version 3.5.1 was

run for May through July of 2010 with horizontal resolutions of
27 km (WRF 27 km), 9 km (WRF 9 km), and 3 km (WRF 3 km).
In the vertical resolution, there are 34 pressure-sigma levels, with
the highest resolution observed near the surface and model top.
The upper boundary of the model is at 100 hPa pressure level. The
thickness of the lowest layer is approximately 16 m, and there are
20 layers below 850 hPa. The global forecast system (GFS) is used
for the model’s initial and outermost lateral boundary conditions.
The model is run with the MM5 similarity theory surface layer
scheme to compute surface exchange coefficients for heat, moisture,
and momentum (Fairall et al., 2003); the Noah land surface model
to calculate surface water and energy fluxes (Chen and Dudhia,
2001); the UW planetary boundary layer scheme to compute
vertical sub-grid scale fluxes due to eddy transports (Bretherton
and Park, 2009); the rapid radiative transfer model for general
circulation models (RRTMGs) longwave and shortwave radiation
schemes (Iacono et al., 2008); the WRF single-moment 3-class
microphysics scheme to predict water vapor, cloud water/ice, and
rain/snow concentrations (Hong et al., 2004); and the Grell–Freitas
cumulus parameterization to estimate sub-grid-scale updrafts and
downdrafts associated with convection and shallow clouds using an
ensemble approach that is scale-dependent to allow for a smooth
transition as the horizontal resolution increases (Grell and Freitas,
2013). Observational and analysis nudging is employed in the
WRF simulations. WRF output fields consist of hourly averages.
Since WRF data are on a conformal grid, the grid is close to
square. Grid points in the region considered for possible emissions
are shown in Figure 1.The 3-km grid points are not shown, but there
are nine of them for every 9-kmWRF grid point.

2.2.2 HYSPLIT model setup
HYSPLIT model runs were performed, which released one unit

of mass for each particle size from every source location every
hour from May 22 to 30 June 2010. To reduce the computational
time, the runs were only performed for source points in which
the friction velocity was greater than 20 cm s−1 for WRF 27 km
and ERA5 and 30 cm s−1 for WRF 9 km, and precipitation was
less than 0.01 mm h−1 during that hour, as determined from the

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1511847
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Crawford et al. 10.3389/feart.2025.1511847

FIGURE 2
Measured and simulated levels of PM10 at each location (a) Vik, (b) Heimaland, (c) Hvollvollur, (d) Hvaleyrarholt, (e) Grensasvegur. Letters on the x-axis
(with varying y-axis positions) mark times of elevated PM10 levels measured at one or more locations. Emissions were calculated using Equation 4, with
u∗t = 0.30 m s−1 for the ERA5 dataset and 0.40 m s−1 for both WRF datasets. Station-specific scaling factors were applied.

meteorological dataset. This was done because resuspension is
suppressed during precipitation events. We do not investigate the
threshold friction velocities below 20 cm s−1 as this quantity has
generally been measured or calculated to be above the mentioned
value (Folch et al., 2014; Beckett et al., 2017; Etyemezian et al., 2019;
Mingari et al., 2020; Del Bello et al., 2021).

Sample input files to HYSPLIT are provided in Supplementary
 Material and provide complete information on the model setup.
HYSPLIT was run in the three-dimensional computational particle

mode with a variable time step calculated by the model according
to the maximum wind speed and grid spacing. Vertical velocities
from the meteorological datasets were used to calculate the
vertical motion.

As measurements consist of PM10, particle diameters of 1, 5,
10, and 20 μm were modeled. Here, we focus mostly on the 5
μm size. The 1 and 5 μm particles were given a density 2.5 g cc−1,
while the 20 μm particles had a density of 2.2 g cc−1 (Bonadonna
and Phillips, 2003; Beckett et al., 2016). In HYSPLIT, the particle
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diameter, density, and shape are used to calculate a settling velocity.
Here, the Ganser (1993) and Dare (2015) formulation was used to
calculate the settling velocity. All particles were given a shape factor
of 1. At an air density of 1.2 kg m−3, the settling velocities are 7.6×
10−5, 1.9× 10−3, 7.6× 10−3, and 2.6× 10−2 m s−1, respectively. As
volcanic ash particles are known to have highly irregular shapes,
computational particles may be physical particles with a particular
fall velocity rather than diameter and density.

The output concentration grid used for each run has a vertical
resolution of 50 m and a horizontal resolution of 0.2× 0.2o. A
database of friction velocity, precipitation, and 10-m wind speed at
each source point at each hour was created from the NWP outputs.
Concentrations for each measurement station are extracted from
each of the HYSPLIT output files in unit mass per meter cubed.
A matrix, T, is constructed, in which the values, Tij, are modeled
concentrations (in unit mass per volume) for which each source, i,
contributes to each measurement, j. The source is specified by the
particle size, location of release, and time of release. Additionally,
each source has a friction velocity and 10-m wind speed associated
with it. The matrix is then multiplied by an emissions vector, E⃗,
to obtain a modeled concentration vector, M⃗, with values for the
forecast concentrations at each measurement location and time.

Mj =∑
i
EiTij.

Theemission vectors are calculated fromone of the relationships
described in Section 2.3. As discussed previously, Figure 1 shows the
center of the source locations, which coincides with the center of the
NWP grid cells. The computational particles were released from an
area of the size of the grid cell centered on the grid cells.

One advantage of this setup is that once all the model runs are
completed, different formulations for determining the emissions can
be applied relatively quickly without running the HYSPLIT again.
Although many HYSPLIT runs are needed, the individual runs are
short, and they can be run in parallel. However, computational time
does increase significantly at higher resolution. Here, we only use
the WRF 27 km and WRF 9 km resolutions to drive HYSPLIT and
leave the use ofWRF 3 km for future work.The use of theWRF 3 km
resolution for determining emissions is described in Section 2.4.

2.3 Emission estimates

Friction velocity is defined as the product of density and shear
stress. The NWP model provides a friction velocity, u∗, which
represents the shear stress over or themomentumflux to the surface.
In a neutral atmosphere, the relationship between the wind speed
and friction velocity is described by the law of the wall.

u (z) =
u∗
kv

ln z
z0
, (1)

where u(z) is the wind speed at height z, z0 is the aerodynamic
roughness (the height at which wind speed is 0 m s−1), and kv is
von Karman’s constant ∼0.4. The friction velocity is widely used
in emission schemes for resuspended dust and volcanic ash as
it represents the transfer of momentum from the atmosphere to
the surface.

We consider four simple relationships between emission flux, s,
in units of kg m−2 s−1 and friction velocity in units of m s−1.

s = {
c2(u∗ − u∗t)

3 u∗ ≥ u∗t
0 u∗ < u∗t

. (2)

Equation 2 is used by Beckett et al. (2017) and Hammond and
Beckett (2019) with the factor c2 = 1× 10−3 kg s2 m−5 computed
by the comparison of model output with simulations. The same
equation with a different scaling factor is used by Leadbetter et al.
(2012). Note that Leadbetter et al. (2012) and Beckett et al.
(2017) compute a source strength with units of mass per unit
time, which we have converted to a flux by dividing by the
approximate area of their emissions, 1× 106 m−3. It is used for daily
forecasting of ash resuspension events in Iceland provided by theUK
Met Office (Hammond and Beckett, 2019).

s = {
c3u

4
∗ u∗ ≥ u∗t

0 u∗ < u∗t
. (3)

Equation 3 was formulated in Westphal et al. (1987) with c3 =
1× 10−5 kg s3 m−6 and has been used successfully for estimation of
ash resuspension since (Folch et al., 2014).

s = {
c4u

a
∗

0 u∗ < u∗t
. (4)

Etyemezian et al. (2019) determined c4 and a in Equation 4 by
fitting to measurements of s performed at different values of u∗.
They provided different estimates of c4 and a for ash sampled from
different deposits and different humidity conditions. Here, we use
values of a = 5.53 and c4 = 1.349× 10−3 kg s4.53 m7.53, which are the
values determined for ash from Mount St. Helens at 50% humidity.
For the different ash types and humidities Etyemezian et al. (2019)
tested, the exponents ranged from 3.94 to 5.53. As Equation 3
already tests an exponent of 4, and we apply our own scaling as
described in Section 2.5, we do not explicitly consider the other
relationships in Etyemezian et al. (2019).

s =
{{
{{
{

ksρair
g

u3∗(1−(
u∗t
u∗
)
2
) u∗ > u∗t

0 u∗ < u∗t
. (5)

This formulation is from Marticorena and Bergametti (1995)
and has been used extensively for dust and ash (Draxler et al., 2001;
Folch et al., 2014; Mingari et al., 2020). ks is a soil texture coefficient,
which is set to 5.4× 10−4 m−1 here (Gillette et al., 1997; Folch et al.,
2014). ρair is the density of air, which is set to 1.225 kg m

−3 here, and
g is the acceleration due to gravity (9.8 m s−2).

The above relationships encompass a range of common
functional forms of the emission dependence on u∗ and friction
velocity, u∗t. The threshold friction velocity, u∗t, is the friction
velocity below which not enough momentum is available for
resuspension to occur. Here and in many simulations, u∗t is treated
as a constant value. Leadbetter et al. (2012) and Beckett et al. (2017)
used 45 and 40 cm s−1, respectively.

Etyemezian et al. (2019) measured u∗t to be between 0.33
and 0.43 m s−1 for a range of relative humidities and ash
obtained from two different deposits. Meanwhile, Del Bello et al.
(2021) measured u∗t between 0.19 and 0.38 m s−1 for a deposit
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in Japan and between 0.13 and 0.19 m s−1 for a deposit in
Argentina. The low values obtained for the deposit in Argentina
were attributed to highly irregular particle shape. Wind tunnel
measurements by Del Bello et al. (2018) show that high relative
humidity can increase u∗t by up to a factor of 2. However, this effect
is dependent on properties of the deposit and is non-linear, with
significant changes occurring only at high relative humidity levels.

Friction velocity can bemore realistically treated as a function of
deposit properties. For instance, Folch et al. (2014) andMingari et al.
(2020) implement a scheme in which u∗t is a function of particle size
distribution of the deposit, soil moisture, and other soil properties.
InMingari et al. (2020), the temporal variation of u∗t estimated from
a relation defined in Fécan et al. (1999) is quite large due to modeled
changes in soil moisture, and it varies from less than 40 to up to
80 cm s−1. Such an estimation relies on an estimate of the volumetric
soil moisture obtained from a meteorological model, which may
not be accurate for a fresh volcanic ash deposit, and the maximum
amount of water that can be absorbed by the material,w′, which can
vary from approximately 0% for sand to 30% for clay. It is unknown
what range of values may be valid for ash, although some studies use
a value of 10% (Folch et al., 2014; Mingari et al., 2020).

While we investigate and discuss the effect of changing u∗t,
here, it is treated as a constant within the emission schemes.
As noted in Section 2.2, we turn off emissions when precipitation
exceeds 0.01 mm h−1, which can be interpreted as increasing u∗t to
a very high value. We would not expect other deposit properties to
change significantly during the study period.

2.4 Accounting for horizontal resolution of
the NWP model in the emission scheme

It is well known that many dust emission algorithms are
dependent on grid resolution (Ridley et al., 2013; Meng et al., 2021;
Leung et al., 2023). One way of reducing this dependence is to utilize
a distribution for variables such as wind or friction velocity in the
equation for emission flux.

s =
N

∑
i
P(u∗i)F(u∗i)du∗, (6)

where Fu∗ is a relationship between emission flux and friction
velocity, such as described in Equations 2-5. P(u∗) is the distribution
of u∗ over the grid square. N and du∗ are chosen appropriately to
approximate the integral. Here, we use du∗ = 1 cm s−1. The Weibull
distribution given by Equation 7 is often used forwind speed and has
been used formomentumflux aswell (Ridley et al., 2013; Klose et al.,
2014; Zhang et al., 2016; Menut, 2018; Tai et al., 2021).

P (u∗;k,λ) =
{
{
{

k
λ
(
u∗
λ

k−1
)e−(x/λ)

k
u∗ > u∗t

0 u∗ < u∗t
, (7)

k = (
̄u∗

σu∗
)
1.086
, (8)

λ =
ū∗

Γ (1+ 1/k)
, (9)

where k and λ are the shape and scale parameters of the distribution,
respectively. The goal is to use only information from the coarse

dataset to estimate emissions using Equations 6 and 7. To do
this, we take friction velocity from the coarse dataset, u∗c, as an
adequate approximation to ̄u∗ in Equation 8. The variability in
friction velocity in the WRF 3-km dataset is then used to estimate
the relationship given in Equation 10 between u∗c and σu∗ , as
described below. Finally, k and λ are calculated from the u∗c ≈ ū∗
using Equations 8–10.

For each grid box in theWRF 27 km dataset, there are 81 values
from the WRF 3 km, and similarly for the WRF 9-km dataset,
there are nine values. Figure 3a shows the standard deviation of the
friction velocities in the fine resolution WRF 3-km dataset, σu∗ ,
versus the friction velocity of the coarse datasetWRF27 km,u∗c.The
relationship between u∗c and σu∗ can be approximated by a linear fit
to the data, as given in Equation 10.

The same process is followed for the WRF 9 km and ERA5
datasets, as shown in the Supplementary Material. The relationship
between u∗c and σu∗ for the ERA5 is close enough to that
found for the WRF 27 km dataset that we simply use the same
relationship for both.

σu∗ ≈ {
0.332u∗c + 5.13 WRF 27 km
0.206u∗c + 1.72 WRF 9 km

. (10)

Figure 3b shows the histogram of the mean of the 81WRF 3-km
friction velocities vs. the friction velocity of the WRF 27 km, which
we use to check our assumption that u∗c ≈ ū∗. Although there is a
lot of scatter, a linear fit is close to the 1:1 line, and the two quantities
are correlated. This indicates that the value of u∗ in the coarse grid
is an acceptable approximation to the mean.

Figure 3c shows the histogram of shape parameters obtained
from fitting a Weibull distribution to the WRF 3 km data vs. u∗c
and provides comparison to k calculated from Equations 10, 8. The
fits to the WRF 3-km data were performed with the Python SciPy
module (Virtanen et al., 2020) using the weibull_min.fit function.
The red line shows a linear fit to the pointsmaking up the histogram,
while the black dotted line shows k values computed from u∗c and
Equations 8, 10. Using these equations produces shape parameters
between approximately 1.8 and 2.7 for u∗ between 20 and 80 cm s−1

for WRF 27 km, which roughly agrees with the results from fitting a
Weibull distribution to the WRF 3 km data.

Following the same procedure for the WRF 9 km data produces
shape parameters between approximately 4 and 5 for u∗ between 20
and 140 cm s−1, which also agrees with results from the fitting.

Larger values of the shape parameter indicate a distribution
with a narrower peak, so it makes sense that the shape parameter
value will increase as the grid resolution becomes finer, and there
is less variation in u∗ over the grid square (Menut, 2018). The
shape parameter value is also lower for lower friction velocity, which
usually correspond to lower wind speeds, which tend to have more
variability.

Figure 4 shows examples of Weibull distributions for a time
period for the 15 WRF 27- km source locations. As seen from the
large scatter in Figure 3a, u∗c is often different from the mean of the
sub-grid values. At this particular time period, u∗c is often smaller
than ̄u∗. There may be ways to reduce the scatter in the relationship
between the two, which can be investigated in future work.

Figure 4 also illustrates the uncertainty in estimating the
distribution and parameters from a relatively small sample size.
To check the suitability of the Weibull distribution, we used a
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FIGURE 3
(a) Histogram of standard deviation of the WRF 3 km friction velocities vs. the friction velocity of the WRF 27 km. The red line is a linear fit to the data
(Equation 10). The slope is 0.332 with standard error 0.009, the intercept is 5.13 with standard error 0.31, and the Pearson correlation coefficient (PCC)
= 0.456. (b) Histogram of the mean of the WRF 3 km friction velocities vs. friction velocity of the WRF 27 km. The red line is a linear fit to the data with
slope 0.822 and standard error 0.015; the intercept is 9.5 with standard error 0.4, and PCC = 0.56. The black dotted line is the 1:1 line. (c) Histogram of
the shape parameter calculated from each fit of a Weibull distribution to the 81 WRF 3 km friction velocities at each location and hour. The red line is a
linear fit to the points with slope of −0.001 with standard error 0.001, intercept of 2.53 with standard error of 0.04, and PCC = −0.01. The black line is k
calculated using the fit to the standard deviation given in Equation 10 and Equation 8. Color bars show the number of counts in each bin, and the color
is on a log scale. The linear fits are calculated with the Python SciPy module (Virtanen et al., 2020) linregress function. The function returns a slope,
intercept, PCC, and standard error for the slope and intercept.

fitting program called distfit (Taskesen, 2020) to rank how well
10 different distributions fit the data according to the residual
sum of squares (RSS) and found that Weibull performed the best
overall (see Supplementary Material).

Our method here differs from similar work mainly in two
respects. First, it uses a distribution for u∗ rather than wind speed.
Second, it looks at regional transport of volcanic ash and uses
generally higher-resolution datasets, while most previous studies
focus on the global transport of dust. Ridley et al. (2013) usedGEOS-
Chem at 4o × 5o and 2o × 2.5o resolution with higher-resolution
winds at 0.25o × 0.3125o resolution to calculate the shape parameter
of the Weibull functions. Zhang et al. (2016) used CAM5 at
1.9o × 2.5o horizontal resolution to study global dust emissions.
A 15-km ECMWF analysis and some regional WRF 3-km runs
are used for comparison. Tai et al. (2021) used the GEOS-Chem
global chemical transport model on a 2o × 2.5o resolution grid
and the MERRA reanalysis dataset at 0.333o × 0.666o resolution for
downscaling. Menut (2018) used WRF and CHIMERE with 60-km
resolution. They do not use a finer grid resolution to estimate the
shape parameter but instead rely on a relationship between the shape
parameter and the mean velocity.

2.5 Computing the scaling factor

It is a generally accepted practice to compute a scaling
or calibration factor for the emission scheme by comparing
simulated concentrations with observations, although the methods
to do so vary (Leadbetter et al., 2012; Folch et al., 2014;
Beckett et al., 2017; Mingari et al., 2020).

To compute the scaling factors,ϕ, we use cumulative distribution
function, CDF, and matching (Reichle and Koster, 2004; Piani et al.,
2010; Gudmundsson L. et al., 2012; Belitz and Stackelberg, 2021;
Crawford et al., 2022), which transforms forecast values so that their
CDF more closely matches that of the observations. Figure 5 shows
an example of the CDF matching at two measurement sites. The

modeled and observed values are sorted from greatest to least and
then paired. A linear fit is applied to the difference between the pairs
as a function of the forecast value, as shown in Figures 5a, b. Then,
the forecast values are transformed according to Equation 11.

c′ = (1−ϕ)c− α, (11)

where c is the original value and c′ is the transformed value. 1−ϕ
and α are the slope and intercept of the fit, respectively. Figures 5c, d
compare the CDF of the observations, the original forecast values,
and the transformed values. Figures 5e, f compare the time series
of observations and transformed values, respectively. The technique
reduces bias by transforming the forecast, so the area of the forecast
time series curve above the observations matches the area below it.
One advantage of this method is that it is not affected by incorrect
predictions of the timing of the peaks.

The intercept can be interpreted as the background value of
the observations when it is negative. The intercept only correctly
represents the background when the forecast correctly captures the
magnitude, duration, and number of peaks. If the simulation over-
forecasts the peaks, then the background value will be shifted lower
or even to a negative value (positive intercept), which is not physical.
If the simulation under-forecasts the peaks, then the background
value will be shifted higher.

Figures 5a, c, e show a case when the intercept is negative, which
is most often the case. Figures 5b, d, f show a case when the intercept
is positive. Subtracting the positive intercept then leads to negative
concentrations at some times, which is not physical. An additional
step could be taken to then adjust those to 0.

Here, we calculateϕ for each observation site and use themedian
of those values for calculating the total mass resuspended. This
allows for different background values at the different sites. An
alternative method is to subtract the background estimated at each
site from the observations and then calculate the scaling factor using
CDF matching on the whole dataset. However, we found that in
cases where the scaling factors could be quite different, this was too
sensitive to the outliers.
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FIGURE 4
Each plot represents one source location in the WRF 27 km dataset and the source points in the WRF 3 km dataset which are within the WRF 27 km grid
square on 01 June 2010 the time 00:00 UTC. The blue bars are the normalized histogram of WRF 3 km friction velocities. The black line is a Weibull
distribution fit to the histogram. The red dotted line is a Weibull distribution computed from the friction velocity of the WRF 27 km dataset being used
as an approximation for the mean and Equations 10, 8 to calculate the shape, k. The mean and shape of the distributions are given in the top right
corner, with the first set of numbers belonging to the red dotted curve and the second set belonging to the solid black curve.

2.6 Evaluation

We compute statistics, root-mean-square error (RMSE), and
Pearson correlation coefficient (PCC) using the forecasts adjusted
individually at each station. We do not report a traditional measure
of bias because it is near zero in all cases due to the use of CDF
matching. This method of computing the statistics gives a best-
case scenario.

We provide the ratio of the highest scaling factor to the
lowest and indicate it by α. If α is 1, that means that the scaling
factor computed at all stations was the same. The larger α is, the
larger the bias (as well as RMSE) would be if using simulated
values calculated with only one scaling value for the emissions. As
discussed in Section 2.5, bias can also be inferred from values of the
intercept that are not reasonable background values. For instance, a
positive intercept indicates high bias, while a negative intercept that
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FIGURE 5
Examples of the CDF matching procedure at two stations, Hvolsvöllur (a, c, and e) and Heimaland (b, d, and f). The examples use the 27 km WRF
dataset and Equation 3 for emissions with u∗t = 0.4 m s−1. Figures (a) and (b) show the linear fit to the differences between the paired data. Figures (c)
and (d) show the CDF for the observations, forecast CDF, and transformed forecast CDF. Figures (e) and (f) show the transformed modeled
concentrations (thick cyan line) compared with the observations (thin black line). Note that in (f), modeled values that were previously 0 were shifted to
−11.6 and are not shown due to the log scale.

is larger than a reasonable background value indicates low bias. The
total amount of the material emitted is calculated using the median
scaling factor ϕm.

3 Results

3.1 Emission estimates and friction velocity

Figure 6 shows the joint histograms of friction velocity and
10 m wind speed, as well as the relationship between u∗ and
wind speed given by Equation 1 for different zo. In the WRF
datasets, the highest friction velocities are not associated with
the highest wind speeds, but rather with higher roughness
values. Additionally, in the ERA5 dataset, zo is between 0.05
and 5 cm, while in the WRF datasets, it is between 0.05
and 50 cm.

The time series of u∗ values for the different datasets show very
similar temporal variation, with peak values generally coinciding
with identified emission episodes (Supplementary Figure S9 in
Supplementary Material). However, the peak values are quite
different with values between 40 and 70 cm s−1 for ERA5, 50 and
80 cm s−1 for WRF 27 km, and 80 and 140 cm s−1 for WRF 9 km.
Given the power law relationship between u∗ and emission flux,
this naturally leads to emission estimates that have similar temporal

variation but quite different strengths, as shown in Figure 7. This
figure also shows the effect of using a Weibull distribution for
u∗. Peak values of emissions tend to increase significantly and are
in better agreement with the 3-km WRF. The range of emission
values also increases because when u∗ < u∗t, the portion of the
distribution above u∗ still produces some emissions. This leads to
better agreement with the 3-km WRF during the time periods of
low emissions as well.

The WRF 9 km and WRF 3 km data already agree fairly well,
especially at the peaks, even without using a PDF for u∗, indicating
that the 9 km horizontal resolution may be sufficient for this time
period and area.

Figure 8 is the same as Figure 7, except sources with
precipitation greater than 0.01 mm h−1 have been removed. As
may be expected, accounting for precipitation has a large effect.
Emissions are suppressed significantly during a couple of time
periods, which are indicated by the shaded regions.

3.2 Modeled concentrations

Figure 2 shows modeled concentrations compared to
observations at all five measurement sites. An example using each
meteorological dataset is shown. Changing the emission scheme or
threshold friction velocity tends to only change the magnitudes of
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FIGURE 6
Two-dimensional histograms of u∗ and wind speed for all source points for (a) ERA5, (b) WRF 27 km, (c) WRF 9 km, (d) WRF 3 km. The solid
lines show Equation 1 with zo = 0.05 cm (black dashed line on the right), 5 cm (blue solid line), 10 cm (green dash-dot line), and 50 cm (cyan dashed
line on the far left).

the peaks somewhat. Qualitatively, episodes A, B, and C seem to be
captured best by ERA5.

Episode A is predicted only by ERA5. Episode B is predicted at
Vík by ERA5 andWRF 27 km, with the simulated arrival time being
approximately 9 h too early. At Heimaland andHvolsvöllur, all three
datasets predict episode B, with theWRF datasets showing the peak
to be large and sharp at Hvolsvöllur and ERA5 being closer.

Episode D is captured fairly well by all three meteorological
datasets, with the WRF 27 km arguably reproducing the timing and
duration of the peak the best.

At higher u∗t thresholds that do not utilize the PDF, these peaks
are not seen. The WRF 9-km dataset also performs fairly well for q
through u at Hvolsvöllur, but it does produce peaks during this time
period at the other sites as well. In particular, the main reason for
the poor performance ofWRF 9 km at Vík is a large peak that occurs
between episodes r and s. The WRF 27 km produces peaks that are
too large as well as peaks at the other sites.

Episode E is quite mixed. The WRF 27 km seems to perform
the best. It shows a small peak at approximately 100 μg m−3 around
episode E at Vík, which is hard to see on the linear scale plot. It
slightly overestimates concentrations at Heimaland, but it gets both
the magnitude and timing correct at Hvolsvöllur, Hvaleyrarholt,
and Grensásvegur. ERA5 and WRF 9 km datasets also show peaks
for episode E at all stations, except Vík, but the timing and/or
magnitudes are not quite in agreement.

Figure 9 provides the values described in Section 2.6 for
the three meteorological datasets using different emission
schemes and u∗t. Figure 10 is the same but uses distributions for
u∗ as in Equation 6.

The three different meteorological datasets are shown in the
order from themost coarse on the left to the least coarse on the right.

Results for the different functional forms are shown with different
values of u∗t increasing from left to right. All results are for utilizing
only the 5μm diameter particle size. A discussion of how changing
the particle size affects the results is provided in the following text.

Simulations using theWRF 27 km and ERA5 data produced the
lowest values of α, while simulations usingWRF 9 kmdata produced
the highest values of α. For the 9 kmWRF, Hvolsvöllur consistently
had the lowest ϕ, followed by Vík, Hvaleyrarholt, Heimaland, and
Grensásvegur. For the 27-kmWRF,Hvaleyrarholt andGrensásvegur
tended to have the largest scaling factor. Higher scaling factors being
estimated at the more distal stations indicates a possible problem
with transport processes, which could be related to deposition,
vertical mixing, and errors in mean winds. Folch et al. (2014) also
found that simulated concentrations are underestimated at stations
far from emission points and overestimated at closer stations.

Given a meteorological dataset, scaling factors were lowest for
Equation 4 and highest for Equation 2. This may be expected as the
scaling in Equation 2 was already computed with a similar method
as given here, while Equation 4 is from point measurements of
prepared bare ash samples. And thus, the scaling factormust account
for adjustments such as drag partition (King et al., 2005).

The scaling factor tends to increase as u∗t is increased. As might
be expected, this relationship ismore pronounced for Equations 2, 5,
in which the excess friction velocity u∗ − u∗t is utilized. It is also
more pronounced when the distribution is not used for u∗ and in
meteorological datasets in which the range of u∗ is smaller.

Figure 11 compares the scaled emission flux as a function of
u∗ for the different emission schemes, threshold friction velocities,
meteorological inputs, and use of distribution for u∗.The similarities
between the emission fluxes for the same meteorological inputs
help explain why the performance is quite similar for the different
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FIGURE 7
Time series of the total mass resuspended as predicted by Equation 4 with u∗t = 30 cm s−1. Each plot shows emissions calculated using u∗ from the
WRF 3 km dataset in blue circles and dotted lines. The other lines indicate emissions calculated as indicated. (a) ERA5 using u∗ and Weibull distribution
for u∗ with shape parameter k = 1.5 (dark black line) and shape from Equations 8, 10 (dotted black line). (b) WRF 27 km using u∗ and Weibull distribution
for u∗ using shape from Equations 8, 10. (c) WRF 9 km data using u∗ and Weibull distribution using shape from Equation 10. The shaded area marks
periods when emissions are noticeably suppressed by precipitation, as shown in Figure 8.

emission schemes. It is also evident why the estimates using WRF
inputs, particularly the WRF 9 km, are insensitive to changes in
the u∗t. For WRF 9 km, the emission fluxes cover almost three
orders of magnitude between u∗ = 40 and 140 cm s−1. The higher
emissions dominate for the events that we are evaluating, and
it does not matter much if the lower emissions are included or
not. The measurements we are using are not sensitive to the low
emissions. For the WRF 9 km data, results using u∗t = 30 through
50 cm s−1 are almost identical, and real differences are not seen
until u∗t close to 100 cm s−1 is used, at which point simulation
performance degrades.

On the other hand, estimates using ERA5 are quite sensitive
to u∗t due to the reduced range of u∗ values. Reducing the u∗t

value as in Klose et al. (2021) can be a valid strategy for coarser
datasets. However, using the distribution for u∗ may be preferable.

The total mass suspended was estimated to be approximately
0.075 Tg for ERA5, between 0.05 TG and 0.075 TG for WRF
27 km, and approximately 0.11 Tg for WRF 9 km. The different
scaling factors tend to preserve the total mass resuspended.
According to Gudmundsson et al. (2012), the total amount of
airborne tephra produced by the eruption was 270× 106m3, with
140× 106m3 (density of 1,400 kg m−3) depositing in Iceland. The
deposit amounts would thus amount to approximately 200 TG.

Given an emission equation, scaling factors were highest for
ERA5 and lowest for WRF 9 km. This is related to the range of
u∗ values in the datasets that are lowest for ERA5 and highest
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FIGURE 8
Same as Figure 7, except sources with precipitation greater than 0.01 mm h−1 have been removed. (a) ERA5 compared to WRF 3 km, (b) WRF 27 km
compared to WRF 3 km, (c) WRF 9 km compared to WRF 3 km. The shaded area marks periods when emissions are noticeably suppressed by
precipitation, as compared with Figure 7.

for WRF 9 km. Using a Weibull distribution for u∗ decreased this
difference in scaling factors across the different meteorological
datasets significantly. The scaling factors for WRF 9 km and WRF
27 km went from being close to an order of magnitude different
to being on order of the same magnitude for the Grensásvegur,
Heimaland, and Hvolsvöllur stations.

Figures 12, 13 illustrate the effect of using the distribution for
u∗ on the time series of concentrations. These figures are similar to
Figure 2 but are shown on a log scale. Figure 12 compares results
using ERA5 and Equation 4. Comparison of the red and blue line
shows the effect of increasing the friction velocity threshold without
using a distribution. Meanwhile, comparison of the red and yellow
line shows how using a distribution has a similar effect as lowering
u∗t, which is a strategy used in Klose et al. (2021). Notably, the red

and yellow lines are similar despite having very different threshold
friction velocities. For example, episodes q through u, which only
show peaks at Hvolsvöllur, are best represented by the ERA5 with a
lower u∗t of 20 cm s−1 or a u∗ PDF.

However, using the distribution has advantages over simply
reducing u∗t, such as it also reduces the difference between the
scaling factors. Because of the scaling factors, the magnitude of the
peaks in the plots remains very similar, and differences are difficult
to see on a linear scale plot. Using a log scale as shown here, themost
noticeable differences are the changes in the estimated background
value (intercept from the CDF matching), number of small peaks,
and width of the peaks. Because the range of u∗ in ERA5 is fairly
small, the modest increase in u∗t reduces the number of small peaks
and width of peaks. Figure 13 is almost the same as 12, except the
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FIGURE 9
(A) Scaling factor, ϕ, determined from CDF matching. If values are above 100, the median value is written as text at the top. (B) Ratio, α, of the highest to
lowest scaling factor. If the value is above 10, it is written as text near the top. (C) Intercept from CDF matching. Negative intercept can be interpreted
as an estimated background value. (D) RMSE of simulation data corrected with CDF matching. (E) Pearson correlation coefficient of simulated
concentrations corrected with CDF matching. (F) Total mass emitted in simulation using the median scaling factor from all five stations. Values above
0.150 are written in text near the top. The label on the bottom indicates which equation was used to calculate emissions and u∗t in cm s−1. The
white/yellow area is simulations driven with the ERA5 dataset, the gray area is for simulations driven with the WRF 27 km dataset, and the blue area is
for simulations driven with the WRF 9 km dataset. The shaded regions separate different emission schemes.
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FIGURE 10
Same as Figure 9, except emissions were calculated with a Weibull distribution for u∗, as described in Section 2.4. The same distribution was used for
the ERA5 and WRF 27 km datasets.
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FIGURE 11
Scaled emission flux as a function of friction velocity. The median scaling factor from all five measurement sites was used. Figures (a) and (b) show the
effect of changing u∗t. Figures (c) and (d) show the effect of changing the functional form of the relationship between s and u∗. Figures (b) and (d) use a
Weibull distribution for u∗ with shape,k, calculated from Equations 10 and 8. The ERA5 uses the same equations as WRF 27 km dataset.

red line is now the WRF 9 km with the same u∗t = 40cm
−1 as the

other two lines and using a distribution for u∗. The main point
here is that if the distribution is used for u∗, the results from using
ERA5 andWRF 9 km are much more similar (yellow and red lines).
When the distribution for u∗ is not used, then, ERA5 producesmuch
narrower and fewer peaks than theWRF 9 km dataset with the same
u∗t (yellow and blue lines). Additionally, the scaling factors aremuch
farther apart.

As shown in Figure 10, the only relationship that produces
scaling factors near 1 is Equation 2. A scaling factor near 1 indicates
agreement with the scaling factor determined by Beckett et al.
(2017). Folch et al. (2014) determined a scaling factor of 0.1 for
Equation 3, which is similar to what we see for ERA5 with the
Weibull distribution for u∗ (Figure 10) and for the WRF 27 km
without the distribution (Figure 9).

Negative values of intercept from the CDF matching that agree
with the background indicate that the model is correctly capturing
the amount of mass in the peaks. Positive values of the intercept
from the CDF matching indicate a high bias or over-forecasting of
peaks.We see this only at theHeimaland station formost of theWRF
9-km runs and a few of the WRF 27-km runs. We also see large
negative values of the intercept occurring particularly when u∗t is

too large.This occurs because some peaks have been reduced or even
eliminated entirely, leading the simulation to under-forecast the
peaks.TheCDFmatchingmakes up for this by adding a larger value.

RMSE is significantly lower at the two distal stations,
Grensásvegur and Hvaleyrarholt. It is similar across all simulations,
with the exception that the RMSE for Hvolsvöllur for theWRF 9 km
dataset is significantly higher. PCC also decreases significantly, and
visual inspection confirms that peaks produced by the WRF 9 km
dataset at this station tend to be offset slightly in time. Overall, the
WRF27 kmdataset also produces simulationswith the highest PCC.

Arguably, themost important performancemetric shown here is
α. A value near 1 would indicate that emission fluxes estimated from
all observation sites were in agreement. However, the lowest value
of α achieved was 2 through simulations with both ERA5 and WRF
27 kmdatasets.The simulations usingWRF 9 kmproduced α of 7–8,
which is quite high and seems to be driven mostly by a couple of
large misplaced peaks predicted at Vík and Hvolsvöllur, which drive
ϕ lower and cause lower values for PCC and higher values for RMSE.

We looked at the effect of using different particle sizes along
with the Weibull distribution by repeating the analysis carried out
so far with different particle sizes in place of the 5 μm particles.
As the simple emission schemes we use do not contain any terms
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FIGURE 12
Measured and simulated levels of PM10 at each location (a) Vik, (b) Heimaland, (c) Hvollvollur, (d) Hvaleyrarholt, (e) Grensasvegur. Letters are placed
at the same location on the x-axis (y-axis location may differ) to indicate times at which elevated PM10 levels were measured at one or more
locations. Equation 4 was used to calculate emissions with the ERA5 dataset. Threshold friction velocities are as indicated in the legend. The yellow
lines are results using a Weibull distribution for u∗, as indicated by PDF in the legend. The scaling factors and background computed for each individual
station were used.
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FIGURE 13
Measured and simulated levels of PM10 at each location (a) Vik, (b)
Heimaland, (c) Hvollvollur, (d) Hvaleyrarholt, (e) Grensasvegur. Letters
are placed at the same location on the x-axis (y-axis location may
differ) to indicate times at which elevated PM10 levels were measured
at one or more locations. Equation 4 was used to calculate emissions
with u∗t = 40 cm s−1. The red line shows ERA5 using no distribution.
The blue dashed line shows ERA5 using a distribution for u∗. The
yellow line shows WRF 9 km using a distribution for u∗. The scaling
factors and background computed for each individual
station were used.

dependent on particle size, any differences are due to transport and
deposition. The large particle sizes will tend to remain lower in the
atmosphere and deposit faster due to increased gravitational settling.
Reducing the particle size used to 0.1 μm diameter had very little
effect on any of the results. Increasing the particle size to 20 μm did
affect the results. It decreased α slightly in theWRF9 km simulations
to approximately 6 or 7, but it also increased alpha in the ERA5
and WRF 27 km simulations to approximately 5. Those increases

were driven by a larger increase in ϕ for the distal stations than
for the closer stations, which is probably due to increased settling
and deposition of the larger particles. The pattern and magnitude
of the peaks with the scaling applied remained the same, with some
variations in values.The same trends were seen in the 10 μmparticle
size to a lesser extent. For the WRF 27-km simulations, α was
increased slightly to approximately 3. Plots similar to Figure 10 for
the different particle sizes can be found in Supplementary Material.

4 Discussion

This investigation mainly focused on reducing differences in
estimated emissions due to differences in meteorological grid size.
Utilizing methods to account for meteorological grid resolution
has several advantages. It should allow for better agreement
in scaling factors and optimal threshold friction velocities in
different modeling setups. In many areas, it may allow the use of
coarser meteorological data for operational forecasting purposes
to save on computational resources while not sacrificing much in
forecast quality.

It is also an important component in adapting experimental
measurements on relationships between u∗ and emissions to the
modeling. For instance, we can consider drag partition. While shear
stress exerted by the atmosphere on the land surface is increased by
roughness elements, non-erodible roughness elements also absorb
much of this momentum. They have a sheltering effect on erodible
elements. Thus, u∗t for a landscape with non-erodible elements is
larger than that for a bare landscape with only the erodible elements.
The friction velocity in measurements and field experiments such
as Etyemezian et al. (2019) is for the bare landscape. To estimate
a bare surface u∗ from u∗ supplied by the meteorological model,
a correction factor sometimes referred to as the drag partition
coefficient is used. It can be seen as an estimate of the fraction of
momentum that is transferred to the erodible elements. Much work
has been conducted on methods to calculate the drag partition and
apply it (Marticorena and Bergametti, 1995; MacKinnon et al., 2004;
King et al., 2005; Webb et al., 2020). The application of the drag
partition reduces vertical mass flux by increasing u∗t or reducing
u∗ from the meteorological model. This is important because using
u∗ from the meteorological model in relationships derived from
measurements often results in overestimation of concentrations
of the resuspended material. Even with drag partition being
considered, computed calibration factors are often less than 1
(Mingari et al., 2020; Folch et al., 2014). Although the dependence of
emission estimates on meteorological grid resolution is recognized
as important, the correction is probably often ignored because it is
in the wrong direction, thus increasing estimates of vertical mass
flux and requiring an even smaller calibration factor. Future work
could look at how to apply a drag partition scheme in addition to
this method. Figure 6 illustrates that one can also expect significant
sub-grid scale variability in zo, which is utilized in some schemes to
calculate the drag partition (Marticorena et al., 1997).

Some schemes utilize the model roughness zo to estimate the
drag partition (Marticorena et al., 1997) and may also benefit from
taking into account sub-grid scale variability (Figure 6).

Here, we focused on simulating large remobilization events
and obtaining agreement between emission estimates from 27 km,
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9 km, and 3 km grid resolutions.The peak emissions estimates from
9 km to 3 km resolutions were similar even without the use of
the distribution for u∗, which gives some indication that the 9 km
resolution is adequate for the purpose. The transport was calculated
well by the coarser meteorological grids, indicating that using a
coarser grid (approximately 27 km) with a Weibull distribution for
u∗ could be a good setup for operational forecasting.

Something this investigation hinted at but could not fully
explore was that using a distribution for u∗ may be quite useful
for simulating smaller and more local remobilization events. There
was much better agreement in emissions during times in which
wind speeds were lower and, consequently, emissions were lower
as well. Without using the distribution, the coarser datasets tended
to produce zero emissions during times that the finer datasets
produced low emissions. It was unclear whether this led to better
predictions as the evaluation focused on the large events in which
ash was transported to some distance and the lower emissions were
not relevant. However, other works have indicated the utility of
using distributions for shear stresses when simulating emissions
in weak wind conditions (Klose and Shao, 2012; Klose and
Shao, 2013; Klose et al., 2014). Further work with different datasets
could explore this aspect, including whether it would be useful to
extend it to a finer scale or temporal variations in u∗.

One potential weakness of the approach is the need to determine
the shape parameter, k, of the distribution. It is not practical to
always determine it from a fine resolution model run as we did
here. We did find that the shape parameter determined for the
ERA5 and WRF 27 km datasets was similar, which indicates some
universality. However, we did not investigate whether k determined
here could be applied to other areas or even other time periods in
the same area. However, other approaches such as determining k
from orography variances as in Menut (2018) could be considered.
Such work could also lead to better ways of determining appropriate
modeling resolutions for different areas and times.
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