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Reservoir parameter prediction
technology based on deep
learning and its application in the
Panyu 4 Sag, Pearl river mouth
Bain

Yingwei Li*, Yanhui Zhu, Zhenshen Li, Xiaozhao Zhang and
Guofu Cai

Shenzhen Branch of CNOOC Ltd., Shenzhen, Guangdong, China

The continental deep strata in the Panyu 4 Sag of the Pearl River Mouth
Basin in the South China Sea are characterized by complex lithology and
tight sandstone reservoirs with low porosity and low permeability. Predicting
porosity and lithology in this area has long been a challenge in seismic
reservoir prediction. Traditional methods, which rely on linear mapping based
on well data or probabilistic mapping through multi-attribute fusion, struggle to
capture the complex nonlinear relationships between reservoir parameters and
seismic attributes. To address this issue, this paper proposes a method using
a convolutional neural network for predicting porosity and facies distribution.
Based on rock physics analysis and pre-stack elastic impedance inversion
data, this approach first takes the effective porosity and shale content (VCL)
from well-log interpretation as training targets. It then constructs training
samples by simulating different lithologies and extracting the corresponding
elastic parameters from well-log data. Through optimal evaluation, the model
parameters of the deep learning network are determined, and a nonlinear
mapping relationship between elastic parameters and reservoir parameters,
such as porosity, is established. Finally, the trained deep learning model is
applied to the elastic parameter bodies to obtain predictions of effective porosity
and VCL, thereby achieving a quantitative characterization of high-quality deep
sandstone reservoirs. The application of this method in the deltaic sediments of
the Panyu 4 Sag in the Pearl River Mouth Basin shows that the deep learning-
based predictions of facies distribution and porosity are consistent with well
data and geological understanding. The fractured well, designed on the basis of
the prediction results, achieved significant productivity enhancement following
drilling, thereby demonstrating the efficacy of this method as a reservoir
parameter prediction tool.
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1 Introduction

ThePaleogene continental deep sandstone reservoirs in the Pearl
River Mouth Basin are characterized by significant burial depth,
poor physical properties, and pronounced reservoir heterogeneity.
These tight sandstone reservoirs typically exhibit porosity ranging
from 8% to 14%, permeability between 0.1 and 5 mD, and natural
productivity often below the economic production threshold. In
hydrocarbon exploration and development, sandstone distribution
and porosity are routinely employed for reserve evaluation and
stimulation strategy optimization (Ehsan et al., 2018; Yasin et al.,
2019; Ali et al., 2021; Ashraf et al., 2021). Consequently, the
prediction of reservoir parameters such as porosity and lithofacies
distribution has become a research priority for geophysicists,
petrophysicists, and petroleum engineers (Ehsan et al., 2018;
Ashraf et al., 2019; Radwan, 2020; Vo Thanh et al., 2020; Ashraf et al.,
2021; Kassem et al., 2021; Ullah et al., 2022; Anees et al., 2022).

Seismic inversion serves as a key technology for the
identification of the reservoir’s porosity and lithofacies distribution
(Saussus and Sams, 2012; Sa et al., 2015). The post-stack inversion,
while operationally convenient through direct utilization of
well-log data, frequently compromises the effective information
contained in amplitude versus offset (AVO) responses (Downton,
2005; Gan et al., 2005). In contrast, pre-stack AVO inversion,
grounded in the Zoeppritz equations, employs various algorithms
to derive multiple elastic parameters that quantitatively characterize
lithology and fluid properties in target formations (Sheuey, 1985;
Connolly, 1999; Hampson et al., 2005). Rock physics analysis
as an essential bridge connecting petrophysical parameters (e.g.,
lithofacies and porosity) with reservoir elastic properties (Li et al.,
2007; Yan et al., 2002; Yin et al., 2015; Abdolahi et al., 2022). This
methodology establishes linear functional relationships between
porosity, clay content, and sensitive elastic parameters, thereby
enabling the derivation of critical reservoir parameters. However,
for continental deep formations characterized by substantial spatial
variability and strong heterogeneity, it remains challenging to
identify linearly correlated and effective elastic parameters. The
application of Bayesian statistical principles to convert elastic
parameters into maximum probability volumes of sandstone-shale
distributions and corresponding porosity volumesnecessitates large
sample sizes, resulting in limited accuracy for offshore exploration
with sparse well control (Mavko et al., 1988; Mukerji et al., 2001;
Hu et al., 2017). Alternatively, nonlinear approaches employing
multi-attribute fusion or neural networks exhibit enhanced
prediction accuracy but impose stringent requirements on seismic
attributes (Wu et al., 2008; Zhang et al., 2014). Conventional network
architectures (e.g., Back Propagation (BP) networks (Saffarzadeh
and Shadizadeh 2012; Huang et al., 2016))suffer from structural
simplicity, constrained computational units, and limited learning
capacity, hindering their ability to precisely characterize the complex
nonlinear mapping relationships between seismic attributes and
porosity in tight sandstone reservoirs. Furthermore, operational
instability and significant variability in inversion results restrict
their large-scale implementation.

Recent advancements in machine learning have driven
the widespread adoption of deep learning across domains
including image processing, natural language processing, and
industrial design. Geophysicists have begun integrating deep

learning algorithms with enhanced hidden layers, advanced
architectures, and superior computational efficiency to address
complex geological challenges (Hu Ying et al., 2013). Among these,
Convolutional Neural Networks (CNNs), as a rapidly evolving
artificial neural network paradigm, demonstrate exceptional
capabilities in modeling nonlinear mapping relationships of
complex functions. Their inherent advantages in solving large-scale
nonlinear inversion problems have fostered extensive applications
in geophysics (Gao et al., 2020; Hinton et al., 2006; Liu et al., 2020;
Li et al., 2023).

The study area is located in the Panyu 4 Sag of the Pearl
River Mouth Basin in the South China Sea. Panyu 4 Sag has
been explored for nearly 4 decades for hydrocarbon resources, but
Paleogene Wenchang Formation exploration began only 5 years
ago. To date, significant hydrocarbon discoveries have been made
in the Paleogene Enping and Wenchang formations, highlighting
the exploration potential of these strata. However, multiple drilled
wells reveal that the Wenchang Formation reservoirs exhibit poor
physical properties and strong heterogeneity, with the distribution
of high-quality porouszones remaining unclear. Recent studies
on the Paleogene strata in the Panyu 4 Sag have focused on
geological aspects such as hydrocarbon migration, sedimentary
facies classification, and tectonic evolution. Geophysical research
has predominantly addressed seismic interpretation and post-
stack inversion, with limited attention to porosity estimation and
lithofacies identification.

This study attempts to investigate lithofacies distribution
and porosity estimation in the Paleogene Wenchang Formation
(FM.WC) of the Panyu 4 Sag. Based on rock physical analysis
and pre-stack AVO inversion, we establish a nonlinear mapping
relationship among porosity, VCL, and elastic parameters using
the CNN deep learning model. This approach enables the
conversion of elastic parameters into reservoir characterization
parameters, thereby obtainingmore accurate sandstone distribution
and porosity characterization. Our methodology aims to
facilitate reserve estimation and optimize stimulation strategies
through the prediction of high-porous zones, which will be
helpful for the future oil exploration in the Paleogene strata of
the Panyu 4 Sag.

2 Geological characteristics of the
study area

The Panyu 4 Subsag is located in the southern margin of the
Xijiang Sag within the Zhu I Depression of the Pearl River Mouth
Basin, South China Sea. Its structural framework manifests as a
composite dustpan-shaped subsag characterized by northwestern
overlap and southeastern faulting (Cai et al., 2022). It connects to
the Xijiang Mid-Low Uplift and Xijiang 36 Subsag structural belt
to the north, abuts the Xi’en Low Uplift to the west, and adjoins
the Dongsha Uplift and Panyu Low Uplift to the east and south,
respectively. Inheriting the basin’s tectonic evolution characterized
by “lower faulting and upper depression, terrestrial followed by
marine phases,” its stratigraphic development is dominated by
Cenozoic sequences: the basement comprises Mesozoic granite
overlain by Paleogene Wenchang, Enping, and Zhuhai formations,
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FIGURE 1
Location (A) and stratigraphic column (B) of Panyu 4 Sag in Pearl River Mouth Basin. The highlighted region shows the targeted reservoir
formations and ZOI.

along with Neogene Zhujiang, Hanjiang, and Yuehai formations
(Figure 1) (Ma et al., 2021).

The Paleogene Wenchang Formation features lacustrine-
fluvial depositional systems with high-organic-matter source rocks
exhibiting robust hydrocarbon generation potential. Reservoir
systems primarily occur in transitional marine-terrestrial to marine
sandstones within the Zhuhai, Zhujiang, and Hanjiang formations
(Zhang et al., 2021). Current exploration data indicate that although
over 80% of proven hydrocarbon resources are concentrated in
Neogene strata, research emphasis has shifted to the Paleogene
Wenchang Formation as Neogene structural traps approach
exploration maturity (Peng et al., 2022).

This study focuses on critical blocks along the northern
margin of Panyu 4 Subsag adjacent to the Xijiang Mid-Low
Uplift provenance area. The Zone of Interest (ZOI) contains
hydrocarbon reservoirs within the Wenchang Formation.
Sequence stratigraphic analysis reveals three third-order
sequences developed during the FM. WC depositional period
(Zhang et al., 2022). Wenchang IV Member (FM.WC4) is
characterized by fan-delta facies, hosting thick, box-shaped
sandstone reservoirs with poor physical properties due to significant
burial depth. Wenchang III Member (FM.WC3) consists of
shallow lacustrine mudstones, serving as a regional effective
seal layer. Wenchang II Member (FM.WC2), dominated by
braided river delta facies, contains multiple thin sandstone
layers with relatively favorable reservoir quality, though
notable lateral variations in lithology and sandbody thickness
are observed (Li et al., 2024). The transitional depositional
features between the braided delta front and shore-shallow lake
facies in FM. WC2 create favorable conditions for lithologic
trap development, while the vertical stacking of sandstone-
mudstone sequences establishes effective reservoir-caprock
configurations. This stratigraphic architecture provides critical
geological prerequisites for hydrocarbon accumulation in the
study area.

FIGURE 2
Deep learning network.

3 Data and methods

3.1 Theoretical foundation

Deep learning is a type of multi-layer neural network that
includes three ormore hidden layers, capable of gradually extracting
higher-level features from raw data. Compared to traditional BP
neural networks, deep learning has a stronger ability to simulate
complex nonlinear relationships with higher precision. There are
various mainstream neural network algorithms in deep learning,
with Convolutional Neural Networks (CNNs) being one of the most
representative (Figure 2).

The working principle of CNNs is similar to that of BP neural
networks, where features are extracted layer by layer during forward
propagation, and in backward propagation, the gradient descent
algorithm is used to minimize the loss function error, adjusting
the training parameters to complete the weight update. CNNs
essentially perform a nonlinear mapping from input to output
and do not require precise mathematical expressions. With simple
model training, CNNs can complete complex classification tasks and
exhibit strong “feature learning” capabilities (Di et al., 2021).
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A CNN network typically consists of input layers, convolutional
layers, pooling layers, and fully connected layers. The input layer
serves as the entry point for training data, and the input can be
a one-dimensional, two-dimensional, or three-dimensional vector.
The convolutional layer is the feature mapping layer, where each
feature map consists of multiple neurons, and the input features are
extracted using convolution filters.Themathematical expression for
convolution is as follows Equation 1:

Yk
P = f((∑m∈Rp

Xk−1
p ) × kkmp + bkp) (1)

In the equation: Yk
p and Xk−1

p denote the pth feature map
values at the kth and (k-1)-th layers, respectively; kkmp represents
the convolutional filter weight values; bkp indicates the bias term
for the pth feature map in the kth layer; Rp corresponds to
the number of convolutional filters; f denotes the activation
function, commonly implemented as the Rectified Linear Unit
(ReLU) function (Wang et al., 2022).

The convolutional layer is sequentially connected to a pooling
layer, which performs local averaging and subsampling operations to
achieve feature selection and information filtering, thereby reducing
the dimensionality of feature maps. The mathematical formulation
of the pooling layer is presented below Equation 2:

ykp = P(N
k
ij ∗Y

k−1
p ) (2)

where P is the pooling function.
The fully connected layer typically consists of 1-3 layers and is

responsible for converting the features output by the convolutional
and pooling layers into a one-dimensional featuremap,which is then
mapped to the sample label space for classification.

3.2 Establishing the reservoir parameter
prediction model

The CNN-based reservoir parameter prediction model consists
of fourmain components: data preparation, sample set construction,
model training, and model application.

1. Data preparation: This consists of two parts. First, a suitable
rock physics model is established based on logging data.
Second, pre-stack elastic parameter inversion is performed,
predicting P-wave impedance (PI), S-wave impedance (SI), and
density as low-frequency models, followed by pre-stack AVO
inversion to obtain the elastic parameter volumes.

2. Sample set construction: Constructing the sample set is key
to establishing the deep learning model. The sample set
must be complete, encompassing all data types. In offshore
exploration, due to the sparse distribution of well locations,
random sampling may result in missing rare lithology types.
In this study, elastic parameters predicted by the rock physics
model are selected as sample inputs, which not only clarify
the relationship between reservoir parameters and elastic
parameters but also reduce data randomness, enhancing the
sample set’s rationality.

3. Model training: The elastic parameters predicted by the rock
physics model are used as inputs, and VCL and porosity
are chosen as training targets. By combining the conjugate

gradient method with the steepest descent method, the deep
learning network parameters are optimized, establishing a
nonlinear mapping between elastic parameters and reservoir
parameters.

4. Model application: The trained deep learning model is applied
to the elastic parameter volumes obtained from pre-stack AVO
inversion, predicting VCL and effective porosity to guide well
placement and optimize design.

4 Application case and results

The study area encompasses 300 km2of full-fold 3D seismic
coverage with the following acquisition parameters: streamer length
of 6,000 m, bin dimensions of 12.5 m × 25 m, and 80-fold coverage.
The water depth averages 100 m with minimal variations. Three
wells (Well A, B, and C) are located within the ZOI. Wells A and
C provide comprehensive logging suites including acoustic slowness
(DT) (μs/m), density (DEN) (g/cm3), deep resistivity (LLD)
(ohmm), shallow resistivity (LLS) (ohmm), compensated neutron
porosity (CNL) (%), and gamma ray (GR) (API). Additionally, Well
A contains S-wave slowness (DTS) measurements. Well B, a high-
angle sidetrack of Well A, only offers limited logging data (GR and
DEN) acquired during drilling operations.

In the initial phase, seismic stratigraphic and structural
interpretation identified four key horizons: T80, T82, T83, and the
basement Tg. Reservoir intervals are primarily developed in the FM.
WC 2 (between T80-T82) and FM. WC 4 (between T83-Tg).

4.1 Rock physics modeling

S-wave velocity prediction is the foundation for pre-stack AVO
inversion and petrophysical analysis. Establishing an appropriate
petrophysical model enables the characterization of relationships
among reservoir lithology, physical property parameters, and
elastic parameters, thereby predicting acoustic and shear wave
velocities (Han, 1986; Haas and Dubrule, 1994; Hinton et al.,
2006). In the study area, only Well A within the WC. FM
contains measured shear wave velocity data, which serves as
critical validation for the model. The Wenchang Formation
primarily comprises mudstone, siltstone, sandstone, and minor
carbonaceous mudstone. By applying the Xu-White sand-mudstone
petrophysical model theory, input parameters including mineral
volume fractions, porosity, and fluid saturation were utilized to
predict both acoustic and shear wave velocities. This approach
successfully established the petrophysical framework for the study
area (Mavko et al., 1988; Xu and White, 1995; Xu and White, 1996;
Keys and Xu, 2002; Li et al., 2007).

As shown in Figure 3, the cross-plot results of the three
parameters PI, density, and Vp/Vs) between the model data
and the measured data (logging points) show good consistency,
indicating the reliability of the model. Mudstone has lower PI and
higher Vp/Vs, while sandstone and siltstone exhibit higher PI and
lower Vp/Vs.

Based on prediction data from the rock physical model,
polynomial regression analysis was employed to establish functional
relationships between porosity and PI for sandstone (clay content
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FIGURE 3
Cross plots of PI, Vp/Vs, and Density.

FIGURE 4
A cross plot between the PI and porosity shows a negative slope
trend line.

<35%) and mudstone (clay content ≥35%), respectively (Figure 4).
The analysis reveals a negative correlation between PI and porosity
in sandstone, where high-porosity sandstone exhibits relatively low
PI. With accurate lithological differentiation between sandstone
and mudstone, the sandstone fitting relationship demonstrates a
correlation coefficient of 0.73 and a relative error of 0.18.

4.2 Construction of the deep learning
model

Based on the lithology encountered by drilled wells, logging
data were divided into three rock types: sandstone, mudstone,
and carbonaceous mudstone. Sample points were extracted, with
200 points each for sandstone and mudstone and 30 points for
carbonaceous mudstone, forming a sample set. Effective porosity
and VCL curves, obtained through detailed logging interpretation,
were used as target samples for learning. The selection of

FIGURE 5
Comparison between predicted curves and logging interpreted
curves. Red curves are predicted data, and black curves are logging
interpretations.

input variables needs to have strong correlations with reservoir
parameters. Based on comprehensive rock physics analysis and pre-
stack inversion results, PI and Vp/Vs were selected as input variables
for the training samples.

After extensive testing, the optimal hidden layer and node
numbers were determined, and a nonlinear mapping relationship
between elastic parameters and reservoir parameters was
established. The test results show that when here are four hidden
layers and 12 nodes, the correlation coefficient is the highest, and
the root mean square error is the smallest, indicating the best
prediction performance. The trained deep learning model was
applied to the well section data. In Figure 5, the predicted VCL and
porosity showed very small errors compared to the actual logging
interpretation.

Figure 6 presents a comparative analysis of well-log porosity
predictions derived from the fitting formula method and the CNN
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FIGURE 6
(A) A cross plot of logging interpreted porosity and deep learning model predicted porosity. (B) A cross plot of logging interpreted porosity and deep
learning model predicted porosity.

deep learning model. The results demonstrate that over 90% of the
porosity values predicted by theCNNmodel fall within a ±10% error
margin. In contrast, the fitting formulamethod exhibits significantly
larger prediction errors, exceeding those of the deep learning model
by more than threefold.

4.3 Pre-stack AVO inversion

Seismic data, as the core input for pre-stack inversion, critically
determines inversion accuracy through its quality and fidelity
(Nickel and Sonneland, 1999; Zhang et al., 2013). In the study
area, the primary target zone exhibits two-way travel times
between 2.3–3 s with deep burial depth. The original seismic
data shows notable interbed noise, severe energy attenuation,
and low resolution. To enhance signal-to-noise ratio, broaden
effective frequency bandwidth, and establish high-quality data
foundations for pre-stack inversion and reservoir prediction,
we implemented advanced reprocessing techniques including
Adaptive Deghosting technology and Fault-Controlled velocity
modeling (Shi et al., 2024). An integrated interactive workflow was
established to iteratively optimize seismic processing and inversion
parameter (Liu et al., 2019).

To achieve optimal inversion results, this study conducted over
30 iterations of integrated seismic processing-inversion tests, with
particular focus on the Wenchang Formation sandstone reservoirs.
Through detailed analysis of angle-dependent amplitude responses,
the optimal angle ranges for pre-stack inversion were determined
as 3°–13°, 13°–23°, and 23°–33° based on comprehensive angle
gather testing (Liu et al., 2020).

Wavelet extraction was performed using the optimized
seismic data. By integrating three angle-stacks and conducting
refined well-to-seismic calibration, wavelets were extracted
from the T80-Tg interval. The synthetic seismograms
exhibited strong correlation (≥80%) with actual seismic data
across all angle stacks (Figures 7A–C). A composite wavelet
derived from three key wells was ultimately selected as the
final wavelet (Figure 7D).

For the target interval (2,300–3,000 ms), spectral analysis
revealed low energy below 4 Hz and weak signal between 4–6 Hz. A

low-frequency priormodelwas constructed usingwell data (0–6 Hz)
and seismic velocity trends as constraints. The AVO inversion
employed simulated annealing global optimization to maximize
resolution, yielding high-quality inversion volumes for PI, Vp/Vs,
and density.

The elastic parameters obtained from the inversion were
compared with the measured values (filtered at 60 Hz) for two
wells, and the results showed a high degree of agreement
(Figure 8A). Figure 8B shows the profiles of PI and Vp/Vs
obtained from the inversion. In Well B, the thick sandstone
reservoir at the top of the FM. WC4, with relatively good
physical properties, shows a clear response of high PI and low
Vp/Vs on the inversion profile, while Well C encountered a
clayey sandstone layer with high clay content, and the dry layer
shows low PI and high Vp/Vs. This indicates that the elastic
parameters derived from pre-stack AVO inversion are feasible as
input for predicting effective porosity and clay content in the
study area.

5 Discussion

The trained deep learning model was applied to the elastic
parameter volume in the study area. Figure 9 shows a cross-sectional
view of the prediction results, where the well curves represent the
60 Hz low-pass filtered density-modulated display of corresponding
logging interpretation curves. In Figure 9, the predicted clay content
and porosity generally align with the logging interpretation results,
with minor errors. In the FM. WC 2, Wells A and B are located in
the same sedimentary delta lobe, and the predicted sandstone bodies
are clearly delineated, with porosity ranging from 10% to 14%. Well
C is located at the delta front, where VCL is higher, and porosity
is lower. At the top of the FM. WC4, Well A encountered a dense
dry sandstone layer, while Well B encountered a thick sandstone
layer with good physical properties.The prediction resultsmatch the
drilling findings.

Based on the clay content volume, we delineated the sandstone
bodies within the T80-T82 interval of the FM. WC2, generating
a sandstone time-thickness map. Subsequently, the sandstone
depth-thickness distribution was calculated using average velocity
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FIGURE 7
The well editing windows for the near-angle (A), mid-angle (B), and far-angle (C) substacks display the synthetic seismogram derived from Well (C).
The first panel shows seismic data from well traces. The second panel show synthetics, and third shows the correlation between the seismic and
synthetics. The highlighted region delineates the ZOI. (D) An average wavelet along with amplitude and phase spectrums were made by utilizing the
wavelets of all the studied wells.

FIGURE 8
(A) 1D QC plot of AVO inversion result. Red curves are inverted data extracted along well, and black curves are measured logs with 60 Hz low pass filter
(B) Inverted PI and Vp/Vs section with GR at well location with 60 Hz low pass filter.

conversion. As shown in Figure 10, the predicted sandstone
thickness map (Figures 10A, B) exhibits strong consistency
with regional sedimentary facies interpretations (Figure 10C),
demonstrating the geological rationality of our sandstone
predictions. Current drilling operations have primarily targeted
the margins of braided river delta lobes, where encountered

sand layers are relatively thin. Notably, the central zone within
the polygon demonstrates thickened sandstone accumulations,
representing high-priority exploration targets for future well
placement.

In the upper FM. WC4, thick sandstone packages were
encountered with poor reservoir quality. Integrating predicted
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FIGURE 9
Predicted shale content section with VCL log at well location and porosity section with porosity log at well location.

FIGURE 10
Sand thinkness (A), porosity map of characterized sand bodies (B) and sedimentary facies (C) of FM. WC2.

sandstone thickness and porosity distributions (Figure 11), we
recalculated reserves and conducted economic viability assessments.
This analysis guided the deployment of a horizontal fracturing
well (Well D) within a stable, high-porosity thick sand zone,
achieving significant production enhancement through post-
drilling stimulation.

The study has achieved favorable application results, and we
will promote the application of this methodology throughout
the Wenchang Formation in the Panyu 4 Subsag. For futuret
research, we will further integrate geological research findings
with methods such as seismic forward modeling and sedimentary
facies-controlled inversion to enhance the accuracy of predictive
results.

6 Limitations and conclusion

The CNN deep learning method for reservoir parameter
prediction demonstrates significant advantages in predicting
complex lithologies and porosity.The specific benefits are as follows:

1. The CNN deep learning method uses a deep network
structure with multiple hidden layers, allowing it to extract
effective information from logging data and establish
nonlinear relationships with lithology and porosity. When
applied to pre-stack AVO inversion results, it achieves
higher prediction accuracy compared to traditional linear
and probabilistic mapping methods.
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FIGURE 11
Sand thinkness (A), porosity map of characterized sand bodies (B) and sedimentary facies (C) of the upper FM. WC4.

2. Deep learning has strong nonlinear representation capabilities,
and CNN excel at handling classification problems. As a
result, they performwell in identifying different lithologies and
predicting porosity. The practical application results show that
the prediction errors are small, and the accuracy is high.

However, the method also has some limitations, primarily
relying on the quality of pre-stack AVO inversion results.
Nevertheless, the method has been successfully applied to the
low-porosity, low-permeability sand-mudstone reservoirs of the
Paleogene in the Panyu 4 Sag of the Pearl River Mouth Basin. The
fractured well designed based on the prediction results, achieved
significant productivity improvement after drilling and has been
put into production, proving that this method is suitable for
lithology identification and porosity prediction in low-porosity,
low-permeability sandstone reservoirs.
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