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Introduction: Due to the significant increase in plasticity under conditions
of high temperature and pressure, the existing single brittleness evaluation
methods prove inadequate for accurately characterizing the compressibility of
deep shale in northeastern Sichuan, thereby severely limiting the optimal target
selection and engineering modification in this region.

Methods: The focus of this paper is the deep Jurassic shale in northeastern
Sichuan, studied through triaxial high-temperature and high-pressure tests,
tensile tests, and X-ray diffraction experiments, which examine the mechanical
properties of shale and the factors influencing them. The morphological
characteristics of rock fractures under various loading conditions are analyzed,
providing a standard for assessing brittleness factors and conducting a
comprehensive quantitative evaluation.

Results: The research concludes that the deep lacustrine shale exhibits
traits of high elastic modulus and high Poisson’s ratio, with its brittleness
largely influenced by mineral composition, the development characteristics of
lamination, the degree of lamination development, and the anisotropy of the
rock. Crack patterns have been analyzed to investigate the morphology of rock
fractures. Through a correlation analysis of normalized rock parameters and the
brittleness index derived from stress-strain curves with the fracture breakdown
pressure and extension pressure observed in field fracturing, a comprehensive
evaluation index has been established using the analytic hierarchy process to
reflect the brittleness of deep lacustrine shale.

Discussion: This index serves effectively in characterizing the brittleness features
of deep lacustrine shale, and evaluations suggest that the Liang upper section
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has a relatively high brittleness index and good compressibility, marking it as a
key target layer for future shale gas development.
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deep shale, brittleness assessment, tensile testing, rock mechanics, factors influencing

1 Introduction

Over the last two decades, rapid development has been observed
in China's shale oil and gas industry, which has propelled the shale
revolution, resulting in notable improvements in industrial output
and theoretical research (Jin et al, 2021; Lei and Zhijun, 2019;
Xuefeng et al., 2024).China’s shale oil output was 3.4 million tons
in 2022, with an expected production of over 4.2 million tons in
2023, indicating significant development potential for shale oil in the
country. In 2022, the production of shale oil in China was 3.4 million
tons, and production is expected to surpass 4.2 million tons in 2023,
indicating a substantial potential for development in the shale oil
sector (Du et al., 2009; Guo et al., 2022). In 2024, the Xingye nine
well drilled by Sinopec in the second section of the Lianggaoshan
formation in the Fuxing area achieved horizontal well test results of
108.15 m? of oil and 15,800 m* of gas per day, representing a major
breakthrough in shale oil exploration within the Sichuan Basin, as
well as validating the significant exploration potential of shale oil
in northeastern Sichuan (He et al., 2022). Nonetheless, the existing
technological processes for shale oil exploration and development
are not sufficiently comprehensive. The terrestrial shale reservoirs
of the Jurassic Lianggaoshan formation have a high clay mineral
content, complex structures, and relatively strong plasticity, leading
to significant challenges in hydraulic fracturing. The mechanical
properties of shale represent an essential element in the evaluation
of shale gas reservoirs, and hydraulic fracturing is recognized as
the fundamental technology for shale gas development. A precise
comprehension of shale’s mechanical properties can offer valuable
references for its hydraulic fracturing.

The mechanical properties of rock refer to its brittleness,
plasticity, rheology, toughness, and other mechanical characteristics
exhibited under stress. For shale reservoirs, the brittleness of the
shale reservoir significantly impacts the effectiveness of shale gas
extraction. Shale with higher brittleness favors the development of
natural fractures. When effective fracturing measures are employed,
itis easier to form complex network fractures with flow conductivity,
thereby enabling efficient shale gas development (Jiang et al,
2010; Fu et al, 2011; Qinghui et al., 2012a; Zhang et al., 2017).
Consequently, an increasing number of domestic and international
scholars have begun to focus on evaluating the mechanical
properties and brittleness of shale reservoir rocks (Jarvie et al,
2007; Zhang et al., 2016; Zhong et al., 2018). Cai Meifeng et al.
argue that the brittleness and plasticity of rock are not inherent
properties but can transform into each other as the stress state
changes (Zhang et al., 2018; Cai et al., 2002; Cao et al., 2024c).
Rickman and Altindag consider brittleness an intrinsic property of
rock and suggest that external mechanical conditions, fractures, and
other factors should not be considered when assessing it (Zheng,
1988; Rickman et al., 2008; Xiong et al., 2024; Sang et al., 2023;
Cao et al, 2024a). Li Qinghui etal. propose that brittleness is
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the ability to generate internal non-uniform stress under its own
heterogeneity and loading, leading to localized failure and the
formation of multi-dimensional fracture surfaces (Altindag, 2010;
Qinghui et al., 2012b; Qinghui et al., 2012¢; Juyuan, 2013). Zhang
etal. (2017) found that establishing evaluation indicators for rock
brittleness can effectively reflect its mechanical characteristics of
brittle fracture, making it the most intuitive and effective method
for macroscopic brittleness evaluation at present. However, this
method is limited by the relatively low efficiency and high cost of the
experiments themselves. Regarding the brittle mineral composition
method, Jarvie et al. (2007) initially believed that quartz was the only
brittle mineral. However, as research has progressed, more scholars
now recognize that feldspar, dolomite, and calcite also contribute to
rock brittleness (Cao et al., 2024b; Cao et al., 2024¢; Ehsan et al,,
2024a; Cao Feng et al,, 2024; Ehsan et al., 2024b; Amjad et al., 2023;
Ziba et al., 2023; Saberi and Hosseini-Barzi, 2024). However, there is
currently a lack of research on the impact of lithofacies heterogeneity
in lacustrine shale reservoirs on rock mechanics and brittleness.
There is an urgent need to establish interpretation methods and
models applicable to the evaluation of rock mechanics, brittleness,
and fracturability of various lithologies in the Jurassic system.

This paper will draw upon the results of various rock mechanics
experimental tests, including triaxial high-temperature and high-
pressure mechanical experiments, tensile strength experiments, and
X-ray diffraction experiments. The innovative aspect lies in deeply
revealing the specific factors influencing the rock mechanics properties
and brittleness of lacustrine shale reservoirs due to petrographic
heterogeneity, providing a new perspective for understanding
the complex nature of shale reservoirs. Based on the analysis of
morphological characteristics and mechanical properties of rock
fracture cracks, a comprehensive index is innovatively constructed to
quantitatively characterize the brittleness of terrestrial shale reservoirs
with complex structures. The aforementioned research findings
provide significant technical support for the selection of vertically
fractured intervals in deep shale gas reservoirs, contributing to the
improvement of shale gas development efficiency.

2 Methods for sample preparation and
experimentation

2.1 Sample preparation and experimental
protocol

The samples for the experiments were sourced from the
Jurassic lacustrine shale in northeastern Sichuan. Because cores
obtained from the field typically have irregular shapes, they
require processing before being used in experiments. The sampling
directions for the triaxial rock mechanics experiments were set to be
longitudinal and transverse (Xuefeng et al., 2024; Biswas et al., 2024;
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FIGURE 1

(According to (Bai et al., 2024), after modification).

Schematic Diagram of Experimental Sampling. (A) Schematic Diagram of Sampling for Tri-axial High Temperature and High Pressure Experiment. (B)
Schematic Diagram of Sampling for Tensile Test. (C) Histogram of the main lithologies in the area. lllustration of the experimental sampling process.
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Banerjee et al., 2024) (Figure 1B). In the course of conducting high-
temperature and high-pressure triaxial experiments, samples were
consistently obtained in the transverse direction to investigate the
influence of confining pressure and temperature on rock mechanical

properties. Furthermore, control experiments for rock mechanics
were established in both longitudinal and horizontal orientations,
considering the actual temperature and pressure conditions of the
reservoirs in the study area and averaging conditions based on prior
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FIGURE 2

Quartz + feldspar/% 25 50 75 Carbonate minerals/%

Diagram of mineral composition and lithofacies division of Lianggaoshan formation.
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TABLE 1 (Continued) Results of whole rock mineral diffraction in the Jurassic system.

Frontiers in Earth Science

Whewellite Fluorapatite Clay
minerals

Pyrite

Dolomite Baryte

)
=
L
©
O
(0]
(%)
Ly
O
2
(o)
Ao
o

Lithology Quartz

Depth

feldspar

identification

identification

] o - ®
<t [N [\ N
© n ) )
N
N —_
N *x ©
~ S —
— © ©
= 0 v ~
N o ] i
o o o o
3 A i) B
5 5 3 2
IR IR ARk
= = = < 8
S e < 4 RN} v E
O O O =
0 o ISo) ~
~ « < =
< o s =N
3 ) ) o
© ) @ ®©
= = - =
3 3 3 3
> >~ >~ >~
N o — IN
N ) 5 B

10.3389/feart.2025.1515701

experiments. The experimental conditions for the rock mechanics
tests were established as follows: Ying Mountain block (YS5 and
YS8 wells): 20 MPa and 50°C; Pingchang block (PY1-2H, PY1-5H,
and PA101 wells): 30 MPa and 70°C; Longgang block (DY1 well):
30 MPa and 70°C. The sampling directions for tensile experiments
were set to be vertical and horizontal. Taking into account the
coverage of the samples, differences in reservoir conditions, vertical
segment distribution, and core collection status, along with the
distribution of lithofacies, sedimentary structures, and fractures in
the study area, 260 samples from nine different categories across
six wells—PY1-2H, PY1-5H, PA101, DY1, YS5, and YS8—were
collected and processed (Figure 1A). FigurelC is a histogram of the
main lithologies in the area.

2.2 Experimental methods

The mechanical parameters of rock cores are determined using
a high-temperature and high-pressure triaxial testing apparatus,
specifically the RTR-1000 Static (Dynamic) Triaxial Rock Mechanics
Testing System from GCTS Corporation in the United States.
This comprehensive setup consists of four main components: a
high-temperature and high-pressure triaxial chamber, a confining
pressure system, an axial pressure system, and an automatic
data acquisition and control system. The apparatus complies with
ASTM D2664-04 standards and the recommended methods for
rock mechanics experiments by the International Society for
Rock Mechanics and Rock Engineering (Qinghui et al., 2012a;
Jarvie et al, 2007; Reedy et al, 2024). The testing system
boasts a maximum axial load of 1,000 kN, a maximum confining
pressure of 140 MPa, a pore pressure of 140 MPa, a dynamic
frequency of 10 Hz, and a temperature of 150°C. The experimental
control precision is as follows: pressure: 0.01 MPa; liquid density:
0.01 g/cm?; deformation: 0.001 mm. The testing is conducted at an
ambient temperature ranging from 200°C to 230°C and a humidity
of 64% RH, utilizing a lateral isobaric triaxial testing method
(Li et al., 2024; Chakladar et al., 2024).

During the tensile strength testing, a 50 KN electronic servo
system is employed to conduct a splitting test on standard specimens
until the rock reaches its tensile limit and fractures. Corresponding
parameters are then calculated. The testing procedures are
strictly implemented according to the DZ/T 0276.21-2015 “Rock
Tensile Strength Testing” standard. The experimental control
precision for this test is: pressure of 0.05 MPa and deformation
of 0.001 mm (Li et al., 2024).

For whole-rock XRD mineral analysis, a DX-2700 X-ray
diffractometer is used to determine the mineral composition and
clay content of reservoir rocks. Powder samples are thoroughly
crushed using a sample crusher to a size of approximately 5 mm.
Based on the diffraction data obtained from the testing, including
diffraction curves, d-values, relative intensities, and diffraction peak
widths, analysis software is utilized on a computer to conduct whole-
rock and clay mineral composition analysis (Cao Feng et al., 2024).

The porosity of rocks (helium method) is calculated using
a PHI-220 automatic porosity tester. This method exploits the
principle that the diffusion rate of helium in pores is directly
proportional to porosity. By measuring the diffusion rate of helium
in shale, porosity can be calculated. The porosity and permeability
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TABLE 3 Classifications of triaxial stress-strain curves of shale under high pressure and high temperature.

Type Image Feature points ’ Lithology

300

'z 20
Z
Type 1: The pre-peak behavior is defined by 5 Yield-to-peak ratio: Fine sandstone
elastic-plastic characteristics. Post-peak, the material 0.833 Bedding fine sandstone
displays significant brittleness, with strain hardening PY,‘;“;},‘,\Z‘,’.‘: o Weakening modulus: Felsic shale
noted during the decline in strength. 3.0 2.0 5 % 1.0 5% 30 -9620.871
Radial strain(%) Axial strain (%)
120
100 }
Type 2: The pre-peak behavior is defined by a largely Yield-to-peak ratio: Clayey shale
elastic-plastic response. A considerable amount of 0.647Modulus Stratiform mixed shale
plasticity is evident in this category, resulting in DY1,3365.46m of weakening: -10224.7 Gray shale

X . 70C 30MPa
pronounced brittleness following the peak. 0 ;
3.0 2.0 1.0 0.0 1.0 2.0 3.0

Radial strain(%) Axial strain (%)

Type 3: The pre-peak behavior is defined by elastic Yield-Peak Ratio: 0.855 Stratified Clay-rich Shale

characteristics. Moderate brittleness occurs post-peak, % Deterioration Modulus: Mesoshell limestone
reflecting a transitional behavior. ) "‘7'(')';.'3'63;?,:‘“"‘ -512.87 Felsic shale
30 2.0 Lo U.VU .o 2.0 3.0
Radial strain(%) Axial strain (%)
150
Type 4: The pre-peak behavior is defined by elastic Yield-Peak Ratio: 0.92 Mixed shale
characteristics. Following the peak, the material Deterioration Modulus: Clayey shale
demonstrates plastic behavior. 25 "‘7’(;'(,5";63’\54:?"2"‘ -141.277
20 20 Lo 00 1o 20 50
Radial strain(%) Axial strain (%)
120
Type 5: The pre-peak behavior is defined by a Yield-Peak Ratio: 0.59 Gray shale
combination of elastic and plastic characteristics. After Deterioration Modulus:
reaching the peak, the material retains its plastic 20 YS8,1699.86m -79.068
behavior. o R i
3.0 2.0 1.0 0.0 1.0 2.0 3.0
Radial strain(%) Axial strain (%)

of the samples are analyzed using the GB-T 29172-2012 core  into four major categories based on the content of quartz-
analysis method (Xuefeng et al., 2024). feldspar, clay minerals, and carbonate minerals: I, Clayey Shale
(CAS); 11, Silty Shale (SYS); II1, Calcareous Shale (CS); IV, Mixed
Shale (BS).IV. Mixed shale (BS). This classification is based on

3 Results the mineral content characteristics of the study area and the

influence of organic carbon in shale oil reservoirs, with 1%
3.1 Study on petrology and lithofacies and 2% designated as the thresholds for total organic carbon
characteristics (TOC) content. Three categories are identified: low, medium,

and high organic carbon (Ehsan et al, 2024a; Amjad et al,

The mineral composition of shale is primarily comprised  2023) (Figure 2). Furthermore, four lithofacies are classified:

of clastic components (such as quartz and felspar), matrix I Long-feldspar shale facies (feldspar + quartz > 50%); II
materials (like clay minerals), and cementing materials (such  Calcareous shale facies (carbonate minerals > 50%); III. Clay-
as carbonate minerals). The traditional classification divides it  rich shale facies (clay minerals > 50%); IV. Mixed shale facies
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Distribution Diagram of Rock Mechanics Parameters for Different Homogeneous Lithologies in Tri-axial Experiments. (A) Transverse elastic modulus of
homogeneous rock; (B) Transverse Poisson’s ratio of homogeneous rock. (C) Transverse compressive strength of homogeneous rock.

(no mineral component exceeds 50%). The lithology analyzed
displays considerable diversity, particularly with higher amounts
of clay minerals (Ehsan et al., 2024b). The mineral composition
of Jurassic shale is predominantly quartz and clay minerals, along
with lesser amounts of plagioclase and calcite, and includes small
quantities of pyrite. In the Liangshang section, plagioclase content
is markedly higher compared to the Danzhai and Dongyuemiao
sections, suggesting a more substantial impact from proximate
sediment sources. In general, the mineral compositions vary greatly
among different lithologies. Sandstones are mainly characterized
by high contents of quartz and feldspar, whereas shales show
substantial variations, predominantly composed of quartz and clay
minerals. Notably, the calcareous shale in the Danzhai section has
a higher concentration of calcite. Within the study area, the rocks
predominantly display three categories of lamination structures:
organic-rich lamination, sand-rich lamination, and calcareous
lamination (Table 1).

3.2 Results of triaxial compression rock
mechanics experiments

Results from the tests of rock mechanics parameters under
triaxial loading conditions are shown in Tables 2, 3 presents the
stress-strain curves of selected rock samples, indicating that shale
samples transition from elastic deformation to fracturing under
low-temperature pressure, whereas at high-temperature pressure,
the peak stress is reached more slowly, and significant residual
stress is maintained after rupture. As the confining pressure
increases, the pores and microfractures within the rock are generally
subjected to intense compression from the surrounding rock.
The stress-strain curves are categorized into five types based
on the morphology and characteristic points of the three stages
of the stress-strain relationship. The first three types indicate
strong brittleness in the rocks, mainly represented by sandstone,
leucogranite shale, and laminated clay shale, with notable differences
in mechanical properties observed in both horizontal and vertical
orientations (Table 3). The complexity of the fracture patterns
in rock samples is a fundamental indication of brittleness. This
study primarily identified single shear failure as the fracture mode,
with samples largely remaining intact after fracturing. As the
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uniformity of the rock increases, the elastic properties become
stronger, resulting in more complex fractures. Furthermore, if the
rock contains layered structures, the fracture mode varies with the
orientation of these layers. Supplementary Explanation S1 illustrates
that at a pressure of 20 MPa, the fracture characteristics of the
rock samples are predominantly of the splitting type, with shear
fractures being secondary. Cracks mainly develop axially, showing
complex morphologies, with notable fragmentation of the samples.
Under the condition of 30MPa, the crack extends to another
group of cracks and terminates, accompanied by microcracks at the
end of longer cracks. Under this confining pressure, double shear
type is dominant, and the fracture surface no longer follows the
axis and presents a higher angle with the horizontal. The types of
fractures in the rock can be classified into three categories: tensile
failure occurs under conditions of high brittleness when axial stress
surpasses compressive strength, resulting in tensile fractures along
the axial direction, characterized by one or more sets of splitting
cracks. Shear failure arises in rocks displaying strong plasticity,
with large plastic deformations and evident lateral deformation
leading to plastic shear failures. There is also a composite failure
type, where the rock samples show both pronounced tensile
splitting and shear fractures simultaneously. As the conditions
transition from low temperature and low confinement pressure
to high temperature and high confinement pressure, the fracture
modes of the rock specimens change from a complex splitting-
tensile type to a composite tensile-shear type, ultimately resulting
in a pure shear type.

3.3 Tensile strength test results

Table 4 presents the partial results of rock mechanics parameter
tests conducted under tensile strength loading conditions. The
results of tensile strength tests for different lithologies in the Jurassic
Formation this time vary significantly. Overall, the tensile strength
of sandstones from the Lianggaoshan Formation is relatively
high, generally exceeding 10 MPa. In contrast, the tensile strength
of limestones and mudstones containing shells in the Da’anzai
and Dongyuemiao sections is relatively low. Additionally, felsic
shales and mixed shales have higher tensile strengths than clayey
shales. The experiment revealed three primary fracture modes:
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FIGURE 4

Diagram of the Relationship between Rock Mechanics Parameters and
Mineral Composition for Different Homogeneous Lithologies in

Tri-axial Experiments. (A) Correlation between Quartz + feldspar

content minerals and compressive strength; (B) Correlation between
calcite and compressive strength; (C) Correlation between clay
minerals and compressive strength.

simple uniform longitudinal splitting, parallel longitudinal splitting,
and intersecting shear and tensile fractures (Supplementary
Explanation S2).

3.4 Analysis of influencing factors on rock
mechanical propertie

3.4.1 Mineral composition and lithology

Under the same burial depth conditions, rock layers rich in
brittle minerals are often more compressible than rock layers lacking
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brittle minerals (Qiao et al, 2020). The acquisition of mineral
species and their composition ratios in strata is an important
approach for identifying brittle and ductile layers (Rahimzadeh etal.,
2018). Because lithological characteristics vary by region, the
identification of brittle minerals must be integrated with specific
analyses of sedimentary environments and lithology in different
areas; nevertheless, quartz is always recognized as a brittle mineral
(Jarvie et al., 2007; Zhang et al, 2016; Rickman et al., 2008;
Nelson, 2001; Yuanyuan et al, 2021). Figure3 illustrates the
distribution of mechanical parameters for homogeneous lithological
rocks under triaxial compression. The mechanical parameters
vary among different homogeneous lithologies. The compressive
strength and elastic modulus of sandstone and limestone exceed
those of shale, with elastic moduli ranging from 25 to 50 MPa.
Andesite shale and mixed shale exhibit greater strength compared
to other lithologies, with their elastic moduli ranging from 22
to 34 MPa. In fine sandstone, simple through shear fractures
are predominant, while clay-rich shales and chalky limestones
exhibit both non-through shear fractures and splitting tensile veins
(Supplementary Explanation S3). In general, compressive strength
shows a positive correlation with andesite minerals and a negative
correlation with clay minerals, with no clear relationship identified
with calcite (Figure 4). Under tensile testing conditions, samples
from various lithologies and strata demonstrate a characteristic
where tensile strength is greater in the vertical direction than
in the horizontal direction. The tensile strength difference of
sandstone is notably smaller than that of mud shale. Generally,
the tensile strength of sandstone surpasses that of shale and
chalky limestone, with the latter exhibiting the lowest tensile
strength due to its banded structure. The tensile strength of
andesite shale is higher than that of mixed shale and calcareous
shale (Figure 5). Higher quartz content correlates with greater
tensile strength, while higher clay mineral content correlates
with lower tensile strength (Figure 6). Following tensile strength
experiments on homogeneous lithology samples, a predominant
occurrence of simple uniform longitudinal splitting was observed
(Supplementary Explanation S4).

3.4.2 Lamination development characteristics
and degree of development

Bedding planes are identified as mechanical weak features
within the rock, which affect fracture propagation paths during
the fracturing process, including the redirection of induced
fractures and the penetration and connection along bedding
or between layers (Qiao et al, 2020; Zhao et al., 2019). Under
triaxial loading conditions, the increase in argillaceous and quartz-
rich bedding and brittle minerals leads to improved elasticity,
a relative reduction in Poisson’s ratio, and a decrease in the
compressive strength of the rock (Figure 7). The layered clay-rich
and mixed shales predominantly display either shear or tensile
fractures, while argillaceous gray shales reveal significant fracture
propagation affected by quartzose and argillaceous bedding. Such
rock types are characterized by a relatively high occurrence of
shear fractures and shear slip propagation along the bedding
planes. Conversely, layered sandstones show a greater prevalence
of fractures extending along bedding, with fewer fractures
penetrating through the bedding (Supplementary Explanation S5).
Under uniform lithological conditions in tensile testing, the
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tensile strength of laminated rocks shows a significant reduction,
with longitudinal tensile strength found to be lower than
transverse tensile strength (Figure 7). The fractures that occur
parallel to the bedding are largely characterized by shear
fractures, whereas the fractures that occur perpendicular to
the bedding mainly consist of shear and tensile fractures
(Supplementary Explanation S6),
between sandstones and shales.

indicating some differences

3.4.3 Rock anisotropy

Layering acts as a mechanical weak plane within the rock,
affecting the propagation paths of fractures during the fracturing
process, including induced fracture turning and the penetration
and communication along or between the layers (Qiao et al., 2020;
Yuan et al., 2021). In the presence of triaxial loading conditions,
rock samples with developed layering show a more complex
fracture network, with fractures primarily resulting from tensile-
shear failure that penetrates the layers, leading to more convoluted
crack shapes with small cracks at their ends. Conversely, rock
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samples with weaker layering display straight fractures that are
simpler in shape than those in the former. In general, under the same
experimental conditions and with uniform rock characteristics, the
longitudinal elastic modulus and compressive strength exceed the
transverse test values. Furthermore, the longitudinal Poisson’s ratio
is lower than the transverse ratio, with the mechanical property
differences becoming more pronounced after layering development
(Figures 8A-C). Longitudinal samples predominantly show simple
shear fractures after failure, whereas transverse samples exhibit
not only similar shear fractures but also splitting cracks along the
layering, with the influence of layered lithology being particularly
evident. In tensile test conditions, transversely sampled rocks
show more developed layering and a diminished ability to resist
crack propagation. Consequently, in the tensile tests, the tensile
strength of layered lithology is noticeably weakened compared
to uniform rock properties, and the longitudinal tensile strength
is less than the transverse tensile strength (Figure 8D). Fractures
propagating along the layering direction are predominantly shear
fractures, while the fracture patterns perpendicular to the layering
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in various orientations in tensile experiments.

direction are mainly characterized by shear and longitudinal
tensile fractures; however, notable differences are present between
sandstone and shale.

3.4.4 Temperature and surrounding pressure

In high-temperature and high-pressure triaxial testing
conditions, confining pressure has a more substantial effect on
the mechanical properties of shale and sandstone compared to
temperature. As confining pressure increases, the elastic modulus
and compressive strength show considerable increments, whereas
the Poisson’s ratio experiences a slight increase. The mechanical
characteristics of clayey shale demonstrate greater sensitivity to
changes in confining pressure. With increasing temperature and
confining pressure conditions, the rock samples evolve from
composite shear fractures and splitting to single shear fractures,
leading to a decrease in both the number and complexity of

fractures (Figure 9).

4 Discussion

4.1 Brittleness index based on elastic
parameters

R. Rickman etal. explored the brittleness index derived
from elastic parameters, employing statistical regression methods.
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Their findings indicate that higher Young’'s modulus and lower
Poisson's ratio correlate with enhanced brittleness. Additionally,
they introduced a normalized calculation formula for brittleness
based on Young's modulus and Poisson’s ratio (Rickman et al.,
2008) (Equations 1-3).

By = O'SEbrit+0'5nubrit (1)
E-E, ;
Epyy = ﬁ (2)
max min
Hinax —H
By = ———— (3)

Pmax ~ Bmin

In this formula, Emax, Emin, pymax, and pmin denote the
maximum and minimum values of the Young's modulus and
Poisson’s ratio for the rock samples, respectively. Researchers in
China analyzed the mineral composition of the Barrt shale in the
Fort Worth Basin and the Lianggaoshan Formation in northeastern
Sichuan. They found that the Lianggaoshan Formation has a
relatively lower content of brittle minerals and a higher content of
clay compared to the Barnett shale in North America, although the
general distribution remains similar (Jarvie et al., 2007; Mohammad
Mahdi and Reza, 2015).
this formula demonstrates a good correlation with the fracture

The brittleness index derived from

breakdown pressure and extension pressure of shale samples in field
fracturing.
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4.2 Brittleness index based on stress-strain
curve

The assessment of rock brittleness features through the rock
stress-strain curve has been extensively utilized in engineering
applications. It reflects the complete process of rock deformation,
fracture, and ultimate loss of load-bearing capacity under external
loads. It enables the quantitative acquisition of rock characteristics
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across various stress states. This represents the most intuitive and
effective approach for assessing the brittleness of rock materials.
The assessment of brittleness characteristics using the stress-strain
curve has gained significant application in engineering. This method
mainly originates from characteristic points related to the fracture
transformations of rock, such as peak stress, peak strain, residual
stress, and residual strain. Formulas for assessing brittleness are
developed based on the energy area or variations in characteristic
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TABLE 5 Calculation results of brittleness index based on the complete stress-strain curve.

Measurement | Bel BE (first) BE (second) BE (third) The average
number brittleness
value

1 201.17 0.18 25.53 045 | 029 | 026 0.42 035 0.38 0.38
2 63.17 027 25.63 0.41 037 | 022 0.23 033 0.30 0.29
3 133.04 0.22 12.95 042 | 036 | 023 0.32 0.26 0.27 0.28
4 172.01 035 3.92 048 | 007 | 045 0.21 0.22 0.22 0.22
5 207.76 0.28 19.41 045 | 025 | 030 0.36 033 035 0.35
6 394.78 0.14 134.31 045 | 032 | 023 0.89 091 091 0.90
7 89.94 0.12 11.06 045 | 030 | 025 0.29 0.22 0.23 0.25
8 176.42 0.18 2.20 037 | 026 | 037 0.30 0.28 0.28 0.29
9 100.54 0.22 0.84 032 | 026 | 042 0.19 0.19 0.19 0.19
10 205.71 0.16 14.64 042 | 027 | 031 0.40 035 0.35 0.36
11 321.69 021 36.31 043 | 033 | 024 0.59 0.50 0.49 0.53
12 203.56 0.21 69.60 0.41 031 | 028 0.50 0.60 0.58 0.56
13 192.67 0.20 17.61 039 | 029 | 032 0.37 0.41 0.40 0.39
14 148.73 0.27 34.05 039 | 034 | 027 0.34 034 0.30 0.33
15 197.14 021 29.71 040 | 031 | 030 0.41 0.42 0.37 0.40
16 191.42 0.23 1115 036 | 028 | 035 0.33 037 0.36 035
17 143.94 0.14 437 038 | 023 | 039 0.27 027 0.27 0.27
18 40.56 0.29 10.73 039 | 036 | 024 0.17 0.20 0.18 0.18
19 75.06 0.14 3.18 039 | 027 | 035 0.22 0.20 0.20 0.21
20 99.86 0.41 0.36 031 034 | 035 0.13 0.12 0.12 0.13
21 179.85 0.55 0.08 025 | 036 | 038 0.10 0.10 0.09 0.10
22 50.47 033 1.62 036 | 036 028 0.14 0.15 0.14 0.14
23 69.88 037 0.13 030 | 032 | 038 0.12 0.11 0.11 0.11
24 50.23 037 6.48 037 | 038 | 025 0.13 0.13 0.12 0.13
25 112.44 0.10 4.16 039 | 022 | 039 0.25 0.26 0.25 0.25
26 117.55 0.48 0.00 033 | 040 | 026 0.12 0.12 0.12 0.12
27 217.14 0.25 4.70 042 | 036 | 022 0.39 0.30 0.29 0.33
28 132.39 0.36 2.68 031 033 | 036 0.19 0.19 0.19 0.19
29 27136 | —0.07 6.47 0.41 0.15 | 044 0.44 0.46 0.45 045
30 201.17 0.18 25.53 045 | 029 | 026 0.42 035 0.38 0.38
31 63.17 027 25.63 0.41 037 | 022 0.23 033 0.30 0.29
32 133.04 0.22 12.95 042 | 036 | 023 0.32 0.26 0.27 0.28
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TABLE 6 Quantity scale.

Scale Definition
1 In the comparison of two elements, they are regarded as having the same importance.
3 In the comparison of two elements, the former is considered to be somewhat more important than the latter.
5 In the comparison of two elements, the former is clearly more important than the latter.
7 In the comparison of two elements, the former is strongly more important than the latter.
9 In the comparison of two elements, the former is considered to be extremely more important than the latter.

2,4,6,8 Denotes the intermediate values of the previously mentioned adjacent assessments.

Reciprocal If the importance ratio between factor i and factor j is a;;,then the importance ratio of factor j to factor i can be expressed as a;; = 1/a;

TABLE 7 Judgment matrix A.

Significance value

Compression Tensile Cohesive Angle of
strength strength strength internal friction
Ay E/p 1 L5 4 5 55
Compression strength 2/3 1 3 4 5
Tensile strength 1/4 1/3 1 2 3
Cohesive strength 1/5 1/4 2 1 2
Angle of internal friction | 2/11 1/5 1/3 172 1

TABLE 8 Normalized judgment matrix A.

Significance Compression Tensile strength Cohesive Angle of internal
value strength strength friction
E/n 0.44 0.46 0.39 0.40 033 0393 | 1.965
Compression strength 0.29 0.30 0.29 0.32 0.30 0.302 1.51
Tensile strength 0.11 0.10 0.10 0.16 0.18 0.139 | 0.695
Cobhesive strength 0.09 0.08 0.19 0.08 0.12 0.095 0.475
Angle of internal friction 0.08 0.06 0.03 0.04 0.06 0.072 0.36
points. This study focuses on the following approaches for the In the equation, §; and §,, are defined as the initiation stress and
evaluation of brittleness (Chen et al., 2018) (Equations 4-6): the peak stress, respectively. ¢; and €, represent the initiation strain
and the peak strain. Additionally, §, denotes the residual stress, while
B;=B,+B, 4 & signifies the residual strain. This approach considers the changes
inboth the pre-peak and post-peak curves, and it allows for relatively
(0p=0,)/9, simple calculations.
i1~ ( p— e‘) Jep ®) The assessment of sandstone brittleness, grounded in the
1
(0p—0)/8 complete stress-strain curve and energy variations during the
j . S .
= AL ] (6)  rock fracture process, is categorized into three main stages: work
(er=2)/ep hardening and linear elastic damage, plastic deformation and
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Presents the combined brittleness assessment index (Bl) and its association with hydraulic fracturing. (A) Brittleness Index vs Breakdown Pressure; (B)

Brittleness Index vs Fracture Extension Pressure.

damage, and failure and softening. For each sample, the stress-strain
curve is analyzed, and adjustments to the theoretical programming
code are made. Remapping, energy block division, and calculation of
brittleness-sensitive parameters across various stages are conducted.
The fuzzy analytic hierarchy process, based on energy evolution
values from different stages, is used to ascertain weights and
contribution values. This entire procedure is repeated three times to
derive the final average (Table 5).

4.3 Construction and verification analysis
of comprehensive brittleness index

The brittleness data derived from rock mechanics experiments
or mineral composition tests are generally reliable, but they pose
challenges such as high costs, time consumption, and the difficulty
of performing comprehensive single-well profile analysis due to data
dispersion. Various researchers have developed evaluation methods
for shale reservoir fracturability based on logging data, which
varies continuously with depth and is highly accurate. Acquiring
dynamic parameters of rock mechanics from logging data is a
key approach for assessing shale brittleness. Typically, dynamic
rock mechanics parameters such as Young' s modulus, Poisson’s
ratio, internal friction angle, and cohesion are calculated using P-
wave travel time, S-wave travel time, and density logging data. The
following formulas are used to calculate the dynamic rock mechanics
parameters (Equations 7-12):

(3882 -4

)

p
Dynamic Young's Modulus:E = ! x9.299 x 107 (7)

ae(ai-a5)
(a2 -28)
Dynamic Poisson’s Ratioqy = ———— (8)
(a7
Compressive Strength:o, = [0.0045E(1 — V;,) + 0.008EV,]  (9)
0.0045E(1 - V) + 0.008EV.
Tensile Strength:c, = [ ( IS;) ) (10)
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. 14078V,
Cohesion:C = 4.69433 x 107 x pj —— (1 —2u)| —
At
P
(11)
Internal Friction Angle:¢ = - [2(1 1 f‘jld ) + 1] (12)

In this equation, p, is defined as the DEN value; E denotes
the dynamic Young's modulus, expressed in GPa; u represents the
dynamic Poisson's ratio, a dimensionless quantity; o, denotes the
compressive strength, expressed in MPa; o, represents the tensile
strength, quantified in MPa; C denotes the cohesion, expressed in
MPa; ¢ represents the internal friction angle, quantified in degrees;
At and At,, represent the travel times of shear and compressional
waves, respectively, expressed in ps/m; p denotes the volume density
of the geological formation, quantified in g/cm®.

The brittleness index, derived from mechanical experiments, is
applied to the well-logging evaluation model, five evaluation factors
that significantly influence brittleness are taken into account: E/y,
compressive strength, tensile strength, cohesion, and internal friction
angle (Fang et al., 2007; Lei et al., 2007a; Lei et al., 2007b). The Analytic
Hierarchy Process (AHP) is employed to quantify the five parameters
and conduct pairwise comparisons, thereby constructing a judgment
matrix for the calculation of weights (Table 6).

A judgment matrix (A) is constructed for the factors
contributing to the comprehensive brittleness indicator (BI),
simultaneously, (A) is normalized by columns, followed by the
calculation of the eigenvector (w) and the product (Aw) (Tables 7, 8).

The matrix (A) is subjected to consistency evaluation, and the
consistency ratio is calculated according to the following formula
(Equations 13-15):

CR i (13)
Amax_n
CI= (14)
n-1
n Awl.
Amﬁz[ vl (15)
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Histogram for comprehensive brittleness evaluation of well PAL.

The average random consistency index (RI) for (n = 5) is
identified as 1.1075, and the calculated consistency ratio (CR = 0),
which is below 0.1, signifies that the consistency has been achieved.
It should be noted that the assessment of ambiguity in this study
is conducted based on correlation, thereby incorporating a certain
level of subjectivity. The weights assigned to (BI), compressive
strength, tensile strength, cohesion, and internal friction angle in
the comprehensive brittleness indicator (BI) derived from rock
mechanics are determined to be 0.393, 0.302, 0.139, 0.095, and
0.072, respectively. The comprehensive brittleness evaluation metric
for the Jurassic shale in northeastern Sichuan is derived as follows
(Equations 16-18):

Bl = 0.3935 +0.3020, +0.1390, + 0.095C + 0.072¢ (16)

Ultimately, the standardization was performed using the range
variation method, represented by the following formula:

X-X .
S — min (17)
’ XXax - XXin
S = _max " (18)
=
Xmux - Xmin
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In this equation, S, and Sn indicate the standardized values
of positive and negative indicators, respectively; X signifies the
parameter value; X, refers to the maximum parameter value; and

X,,in indicates the minimum parameter value.

min

The comprehensive brittleness indicator (BI), which was derived
from the normalization of E/p, compressive strength, tensile
strength, cohesion, and internal friction angle, displays consistency
with the fracture breakdown pressure and extension pressure
observed during field fracturing. It was found that a higher
brittleness index corresponds to lower fracture breakdown and
extension pressures, suggesting relatively good compressibility
(Figure 10). The strength of the comprehensive brittleness indicator
(BI) is attributed to its consideration of a wide range of brittleness
influencing factors and its solid correlation with the brittleness
index obtained from the full stress-strain curve. This indicator
effectively reflects the intrinsic failure characteristics of the rock and
facilitates continuous evaluation in well logging, indicating that the
brittleness evaluation model possesses generalizability. By applying
this indicator to assess the brittleness of the PA1 upper and lower
sections in the deep layers of northeastern Sichuan, it was observed
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that the upper section exhibits a higher brittleness index (Figure 11),
indicating a greater tendency for the shale to develop a network of
fractures, which is crucial for future shale gas exploitation.

5 Conclusion

(1) The mechanical properties of Jurassic shale rocks are mainly
influenced by factors such as mineral composition and confining
pressure. Quartz, as a brittle mineral, affects Young' s modulus,
Poisson’s ratio, and tensile strength, all of which increase with
increasing quartz content. Additionally, there is a certain inverse
correlation between clay content and tensile strength. After rock
failure, cracks decrease with increasing confining pressure and
temperature, accompanied by a significant trend of increase in
Young's modulus and Poisson’s ratio.

(2) Under triaxial experimental conditions, rock samples with
well-developed bedding planes exhibit more developed
cracks. In tensile experiments, shale containing laminae
shows a high degree of tensile strength weakening along the
laminae direction, and the more complex cracks observed
after the experiment indicate that laminae, as mechanically
weak planes within the rock, play an important role
in rock failure.

Based on the Analytic Hierarchy Process (AHP), the

weights of five factors are calculated, and a comprehensive

3)

brittleness index (BI) is proposed for brittleness evaluation.
This brittleness index correlates well with the fracture
initiation pressure and propagation pressure during field
fracturing. Overall, the Liangshang section has a higher
brittleness index and is more prone to forming fracture
networks, making it the primary target layer for later shale
gas development.
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