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Introduction

Dark matter, also known as hidden/missing mass or nonluminous matter, is a
component of the universe that spans 90 orders of magnitude in mass, ranging from
ultralight bosons (often referred to as “fuzzy dark matter” (Hui et al., 2017), to massive
primordial black holes (Bertone and Tait, 2018). These concepts have raised renewed interest
following the detection of gravitational waves by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and Virgo, which originated from the merging of black holes
several tens of times more massive than the Sun (Bertone and Tait, 2018; Bird et al,,
2016; Clesse and Garcia-Bellido, 2017), which respond to gravity, and remains invisible
to light (Hecht, 2016). Biogeochemical scientists have to tackle a similarly puzzling issue
with dark dissolved organic matter (DDOM) in surface waters (Cai et al., 2024; Hu et al,,
2023). Recently, Cai et al. (2024) using ultrahigh-resolution Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR MS), identified 9,141 dark DOM molecules that
exhibited high-molecular-weight (HMW) and greater diversity than the classical DOM
subset, analyzing 38 DOM extracts covering the continuum of the Yangtze River-to-
ocean, whereas undetected peaks and bacterial nodes were considered to represent DDOM
(Cai et al., 2024; Hu et al., 2023). Notably, the HMW DDOM fraction was found to increase
along this river-to-ocean continuum (Bird et al., 2016). Other studies have shown that only
8.7% and 9.6% of the 50,942 and 48,392 m/z peaks of DOM measured by FT-ICR MS in,
respectively, sediments and waters of worldwide rivers, could be assigned to identifiable
molecular formulae (Toyoda, 2020; Goldman, 2020). However, these undetected peaks
derived from DOM remain elusive, primarily due to lack of reference spectra available in
current databases (da Silva et al., 2015).

Many of the mentioned studies, however, have not taken into account
the authentic sources of DOM, specifically allochthonous (terrestrial) and
autochthonous (aquatic) sources, along with their optical and chemical
characteristics. This oversight may lead to misconceptions regarding the
authenticity of DDOM. In particular, which fractions or components of DOM
should be prioritized for consideration as DDOM candidates, and what are
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FIGURE 1

Fluorescence (excitation-emission matrix, EEM) spectra of terrestrial humic substances [humic acids-HA (A), fulvic acids-FA (B) and protein-like
substances-PLS (C)] extracted from a forest soil, and of extracellular polymeric substances (EPS, (D)) from phytoplankton and their subsequently
released autochthonous humic-like substances (C-type, (E) and M-type, (F) and protein-like substances (G, H), which then generate their individual
components, i.e., tryptophan-like substances (l), tyrosine-like substances (J) and phenylalanine-like substances (K) in water.

Phenylalanine-likg §°'®

the key fundamental questions regarding DDOM in the biosphere
that remain unresolved?

Source characteristics of DOM and
their relevance as dark DOM

In general, allochthonous DOM detected in natural waters is
primarily derived from soil containing decaying terrestrial plant
materials (Senesi and Loffredo, 1999; Piccolo, 2002), and is then
partially transported to surface waters through surface runoff and
groundwater leaching (Cataldn et al., 2016; Zark and Dittmar,
2018; Yi et al., 2021; Mostofa et al., 2019). Allochthonous DOM is
predominantly composed of humic substances (HS), which include
humic acids (HA), fulvic acids (FA), and protein-like substances
(PLS) (Figure 1A-C) (Gao et al., 2018; Mohinuzzaman et al., 2020;
Tadini et al., 2018; Yang et al., 2024).

In contrast, autochthonous DOM in water originates from
planktonic  photosynthetic organisms (e.g., phytoplankton)
via photo/microbial respiration processes (Guidi et al., 20165
Shammi et al., 2017; Yang et al., 2021; Flemming et al., 2016), and
is primarily exported as extracellular polymeric substances (EPS)
(Figure 1D) (Shammi et al., 2017; Yang et al., 2021; Flemming et al.,
2016). The EPS subsequently release various components of DOM,
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including autochthonous humic-like substances (C and M types),
carbohydrates, lipids, and protein-like substances, which encompass
a range of amino acids, including tryptophan-like, tyrosine-like,
and phenylalanine-like substances (Figures 1E-G) (Shammi et al.,
2017; Yang et al,, 2021; Adav et al., 2008; Parlanti et al., 2000;
Wei and Jin, 2022). Importantly, all soil FA and PLS fractions,
as well as autochthonous DOM exhibit recognized solubility
across all pH conditions, and they are highly degradable and
undergo modifications when passing from inland to marine waters
(Cataldn et al, 2016; Zark and Dittmar, 2018; Mostofa et al.,
2019; Shammi et al, 2017; Yang et al, 2021; Smith et al,
2017; Zhang et al., 2009; Mostofa et al., 2007; Moran et al.,
2000). In contrast, HA possess a macromolecular/supramolecular
structure that is chemically, and microbially recalcitrant. They
exhibit multifunctional properties, including polyfunctionality,
polyelectrolyticy, size polydispersity, physical heterogeneity, and
structural lability (Senesi and Loffredo, 1999; Piccolo, 2002;
Tadini et al., 2018; Schulten and Schnitzer, 1993; Steelink, 2002;
Sutton and Sposito, 2005). These characteristics are primarily
responsible for the remarkable ability of HA to form organo-
mineral complexes, which contribute to the stabilization of organic
2019; Moore et al,, 2023; Zhang et al,
2023) and serve as essential constituents in the continuous
supply of nutrients for plant and microorganism growth (Senesi

C (Hemingway et al,
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FIGURE 2

Fluorescence (excitation-emission matrix, EEM) spectra of complexed state (CS) humic acids (HAcs), alkali extracted (A,) from a paddy and a maize soil,
and identified by applying EEM-PARAFAC modeling to the original solution before and after pH adjustment. The modifications of the fluorescence
peaks (C and A) maxima are indicated with an arrow in the corresponding EEM images.

and Loffredo, 1999; Piccolo, 2002; Sutton and Sposito, 2005;
Garcia et al, 2016; de Melo et al, 2016; Wang et al, 2022;
Tiwari et al., 2023).

The solubility and/or insolubility characteristics of HA are
significant features in their behavior (Senesi and Loffredo, 1999;
Piccolo, 2002; Yang et al, 2024). In principle, a decrease in
the solution pH enhances the intramolecular forces (IF) of HA
by increasing the protonation of their functional groups. This,
in turn, reduces their electron-donating capacity in aqueous
solutions (Yang et al., 2024). Specifically, as acidity increases, the
net IF become predominant, leading to enhanced intramolecular
interactions among various functional groups through hydrogen
bonding. This interaction can render some fractions or functional
groups of HA undetectable (Yang et al, 2024). Ultimately, all
functional groups associate, resulting in the precipitation of HA
from the solution (Yang et al., 2024). For instance, as pH decreases,
the concentration of alkali-extracted HA (dissolved in a 0.1 M
NaOH solution at pH ~13.0) gradually diminishes, with a fraction
precipitating at pH 6.0, while the remaining HA fractions completely
precipitate at pH 1.0. The corresponding pH-dependent changes in
fluorescence (excitation-emission matrix, EEM) spectra and their
peaks (C and A) are illustrated in Figure 2 (Yang et al., 2024). The
alkali-extracted, complexed state dissolved organic carbon (DOCy)
is estimated to decrease by approximately 39.1%-46.4% at pH 6 and
by 48.1%-53.8% at pH 1. This process is accompanied by a reduction
in the intensity of the HA fluorescence peak C by approximately
29.7%-47.0% at pH 6, with a complete disappearance at pH 1-2
(Figure 2) (Yang et al., 2024).

Similarly, the water extracted, labile state DOC (DOC)
decreases by approximately 48.3%-49.2% at pH 6, and completely
disappears at pH 1-2 (Figure 2) (Yang et al., 2024). These results
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suggest that as pH decreases, the TOC analyzer is unable to detect
certain fractions of HA as DOC because these fractions remain in
an insoluble state. Consequently, a pH-dependent disappearance of
HA from the solution occurs. This missing fraction of DOM/HA
likely consists of high-molecular-weight (HMW) DOM, where
intramolecular interactions among functional groups impede their
identification (Yang et al., 2024). In essence, the pH-dependent
behavior of soil HA involves aggregation and precipitation processes
that are also influenced by the pH and salinity of seawater. The
supersaturation of coastal seawater composition can lead to the
settling and storage of HA fractions in the form of organo-mineral
complexes, e.g., Fe-(oxy)hydroxide minerals, at coastal seawater
sites (Hemingway et al., 2019; Moore et al., 2023; Zhang et al.,
2023). Therefore, the pH-dependent soil HA fractions could be
recognized as DDOM.

Discussion

In essence, the solid-phase extraction (SPE) method used by
Cai et al. (2024) is unable to recover a significant portion of
the hydrophilic DOC fraction, achieving only 3-28% recovery
(Grasset et al., 2023). Consequently, major DOM fractions, such as
pH-dependent soil HA, are selectively excluded from the subsequent
mass spectrometry analysis following SPE (Grasset et al., 2023). In
particular, the SPE-based DOM extracts collected along the river-
to-ocean continuum exhibit an increasing abundance of HMW
components (Cai et al., 2024), which may be associated with the
rise of autochthonous protein-like and carbohydrate matter, rather
than the decline of terrestrial pH-dependent soil HA fractions

frontiersin.org


https://doi.org/10.3389/feart.2025.1517025
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Mostofa et al.

Contribution (%) of organic substances to DOM

streams & . )
ivers lakes oceans

v v
errestrial plant-derived HS composition

15-80% of FA 14-70% of FA

1-30% of FA, with the
exception of one site at 75%

decreasing decreasing
5-29% of HA 0-22% of HA 0% of HA J
/PTnnklonir—derh'ed organic substances
not detected ~12-60 % of

autochthonoys FA | 5-10 % of autochthonous FA
ecreasing

10-30% of increasing 1-65% ofincreasink0-80% of carbohydrates

carbohydrates carbohydrates
2-48% of 10-33% of amino ~ 10-28% of amino acids,
dissolved amino ~ acids, proteins and proteins and lipids together.
acids organic acids decreasing

increasing

FIGURE 3

A schematic diagram illustrating a decrease in allochthonous humic
substances (HS), including humic acids (HA) and fulvic acids (FA),
which primarily originate from decaying terrestrial plant materials as
reviewed in Ref. 42. This decrease is accompanied by a corresponding
increase in autochthonous FA, carbohydrates, and proteinaceous
matter, which primarily originates from the planktonic community.

throughout the river-to-ocean continuum (Figure 3) (Catalan et al.,
2016; Mostofa et al., 2019; Mostofa et al., 2013).

Notably, HA release sequentially degraded organic molecules
that were originally bound to HA through photochemical and
microbial processes (Mostofa et al., 2013; Amador et al., 1989). It is
highly likely that these SPE-based DOM components are optically
active (Mostofa et al., 2019; Zhang et al,, 2009; Grasset et al.,
2023; Mostofa et al., 2013). Differently, the pH-dependent soil
HA are optically inactive in terms of fluorescence intensity, which
diminishes with decreasing pH and are not detectable through
TOC analysis (Yang et al., 2024). The discussion above suggests
that the currently proposed DDOM is not substantiated by the
considerations of DOM sources.

Finally, the pH-dependent soil/terrestrial HA, tentatively
classified as a DDOM fraction, are prevalent in important
soil and sediment environments due to their long-term C
stabilization and accumulation through organo-mineral complexes
(Hemingway et al, 2019; Moore et al, 2023). This process,
in turn, contributes to soil stability and health, promoting
sustainable agricultural productivity, as well as providing living
habitats for various organisms. Furthermore, a portion of
pH-dependent terrestrial HA might be one of the key DOM
contributors to the long-term C stability in oceanic environments
(Catalan et al., 2016). Additionally, a fraction of pH-dependent
soil HA could be recognized as DDOM and would also be
optically inactive. Undoubtedly, pH-dependent soil HA cannot
be extracted by SPE-based methanol solvents due to their
insoluble macromolecular and supramolecular nature (Senesi and
Loffredo, 1999; Piccolo, 2002; Yang et al., 2024), leaving them
uncharacterized at the molecular level. Therefore, a substantial
fraction of pH-dependent soil HA, continuously produced from
photosynthetically active terrestrial plants, might be classified as
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DDOM, i.e., dark matter in the biosphere. This soil HA fraction
fundamentally plays a crucial role in soil’s structural framework,
serving as a primary building block of the soil matrix across the
Earth’s crust and facilitating C stabilization by forming organo-
mineral complexes. Lastly, the connections between DDOM
and the significance of sensitivity analysis in the monitoring
and management of natural water resources (Errico et al.,, 2019;
Pirone et al., 2024; Lama and Chirico, 2020) should be the focus of
further studies.
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