
TYPE Methods
PUBLISHED 18 March 2025
DOI 10.3389/feart.2025.1524300

OPEN ACCESS

EDITED BY

Shaoke Feng,
Southwest Oil and Gas Branch, China

REVIEWED BY

Qiang Guo,
China University of Mining and
Technology, China
Yuyue Huang,
China University of Petroleum, China
Peng Wang,
China National Offshore Oil
Corporation, China

*CORRESPONDENCE

Xuan Hu,
807713653@qq.com

Lei Zhao,
m17399379954@163.com

RECEIVED 07 November 2024
ACCEPTED 20 February 2025
PUBLISHED 18 March 2025

CITATION

Hu X, Wang ZL, Su J, Yang WW, Chen XX, Liu P
and Zhao L (2025) A LithoScanner logging
data processing method and application
applicable to shale oil formation.
Front. Earth Sci. 13:1524300.
doi: 10.3389/feart.2025.1524300

COPYRIGHT

© 2025 Hu, Wang, Su, Yang, Chen, Liu and
Zhao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A LithoScanner logging data
processing method and
application applicable to shale oil
formation

Xuan Hu*, Zhen Lin Wang, Jing Su, Wang Wang Yang,
Xiao Xuan Chen, Peng Liu and Lei Zhao*

Research Institute of Petroleum Exploration and Development, Xinjiang Oilfield Company of
PetroChina, Karamay, China

Lithology identification is crucial for understanding the characteristics of
reservoirs, optimizing development plans, and enhancing development
efficiency. For shale oil formations, the mineral composition is complex
and the lithological combinations are diverse, which imposes limitations on
conventional well logging interpretation for lithology identification.LithoScanner
Logging is a method for quantifying mineral content; however, discrepancies
persist between logging-derived mineral content and core experimental results
in the actual exploration and development process. There are four main
problems in LithoScanner Logging data processing: 1. Core data used to
calibrate the dry weight of LithoScanner Logging elements are difficult to locate;
2. Changes in sedimentary environments and downhole geological conditions
in different regions have a greater impact onthe instrument’s built-in sensitivity
parameters; 3. The converted yields of some elements with low dry weight
percentages are converted to dry weight curves, and the data are distorted not
reflecting the real situation of the stratum; 4. The optimization algorithm exhibits
poor applicability, lacks robust constraints, converges rapidly, and tends to trap
in local optima. In response to the four questions above. First, rockmatrix density
is calculated using density and nuclear magnetic resonance (NMR) logging data,
serving as the basis for depth normalization of core data; secondly, based on the
oxide closure model, the offset and scaling factor are added to the calculation
of the elemental dry weights, so as to obtain the optimal solution of the logged
elemental dry weights; lastly, the elemental dry weights are combined with the
differential evolution method, and the density profile and the sum of the mineral
dry weights is used as the constraints, so as to carry out the inversion of the
mineral dry weight is inverted.The results of mineral inversion have been well
applied in different types of shale oil such as Daqing Gulong, Sichuan Liang
Gaoshan, Xinjiang Mabei, etc. The mean absolute error between calculated
mineral dry weights and core XRD experimental results is less than 5%.
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1 Introduction

Shale oil reservoirs are characterized by rapid changes
in lithology and physical properties, as well as strong non-
homogeneity, and their strong non-homogeneity poses a great
challenge to the identification of sweet spots and efficient
development (Zhao et al., 2024). LithoScanner logging has the
capability to directly identify formation elements and thereby
determine lithology, which allows it to bypass the influence of
formation physical properties and oil content. However, when
applied to shale oil formations, LithoScanner logging still encounters
four major challenges: (1) It is challenging to accurately position
the core data used for calibrating the elemental dry weights
in rock scanning. (2) The significant variability in sedimentary
environments and downhole geological conditions across different
regions has a considerable impact on the instrument’s built-in
sensitivity parameters. Using the default elemental sensitivity
settings of the instrument is inappropriate. (3) Based on the
principles of the Schlumberger rock scanning logging tool, the

relationship between elemental yield and elemental dry weight is
nearly linear. However, this simple linear relationship can lead to
overfitting when converting the yields of certain elements with
low dry weight proportions into dry weight curves, resulting in
distorted data that fails to reflect the true formation characteristics.
(4) After calibrating the elemental dry weights, it is necessary to
interpret the dry weight proportions of formation minerals using
the oxygen closure model. Typically, an optimization algorithm
is employed to calculate mineral dry weights. However, the lack of
robust constraints often leads to rapid convergence into local optima.
This results in a narrow range of variation in the mineral profile
solutions, which compromises the reliability of the interpreted
mineral profiles. Consequently, the match between the interpreted
mineral profiles and logging curves is poor, and the geological
significance is limited.

For shale oil reservoirs, the application of stratigraphic elemental
logging techniques combined with supporting core experiments
is the main technical approach for continuous characterization of
shale oil lithological profiles (Liao, 2015). LithoScanner logging is

FIGURE 1
The two primary mechanisms of neutron interaction with atoms in the formation (A) Schematic diagram of inelastic scattering of neutrons(Neutron
inelastic scattering refers to the process where high-energy neutrons collide with atomic nuclei, losing some of their energy and exciting the nuclei to
higher energy levels. The nuclei then release gamma rays as they return to their ground state. This process can be used to detect the elemental
composition of formations) (B) Schematic diagram of thermal neutron capture(Thermal neutron capture refers to the process where thermal neutrons
(low-energy neutrons) are absorbed by atomic nuclei, causing the nuclei to become unstable and release gamma rays. The energy characteristics of
these gamma rays can be used to identify elements in the formation).

FIGURE 2
LithoScanner Instrument Measurement Section (The tungsten metal shell can effectively reduce the impact of captured gamma rays from the
instrument on the detector).
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FIGURE 3
Neutron pulse time series (An appropriate timing sequence of the pulsed neutron generator can help effectively distinguish between the inelastic
scattering spectrum and the capture energy spectrum).

FIGURE 4
Schlumberger Interpretation Flowchart (This interpretation process represents the currently standard workflow, which involves converting the
elemental yields detected by the instrument into the dry weights of formation elements, followed by further processing to derive the dry weights of
minerals).

currently used to identify the lithology of the formation, through the
Schlumberger LithoScanner logging, through the emission of fast
neutrons into the formation, and measure the gamma-ray spectrum
of the reaction between the fast neutrons and the nuclei in the

formation, in order to calculate the production of each element, and
then calculate the dry weight of each element, for the traditional
elemental logging technology, the identification of the elemental
species and the accuracy of a greater improvement (van den ord,
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FIGURE 5
Interpretation Results of Magnesium Dry Weight Using Schlumberger’s Method (The second channel on the left represents the experimental
measurement points of the magnesium element and its dry weight curve. The coupling relationship between the two is quite poor. The amplitude of
change in the dry weight curve is extremely small, nearly presenting as a straight line. However, the amplitude of change in the relative yield curve in
the first channel on the left, which reflects the real - world conditions of the formation, is quite large).

TABLE 1 Statistics of North American and domestic shale oil depositional environments.

Area Sedimentary environment

Basin type Sedimentary
environment

Main
lithologies

Depth of
Burial/m

Deposition
thickness/m

Ground
temperature
Gradient
(°C/hm)

China Faults, subsidence
basins, strong

tectonics, strong
segmentation

Terrestrial lake basins
(high inhomogeneity,
rapid phase change)

Lakes mud shale
interbedded with thin
layer of powder-fine
sandstone/graystone/

dolomite/tuff

1000∼4500 10∼500 (°C/hm)

North America Stabilization of the
foreland basin, Klaten

basin

Marine shelf
(sedimentary

stability, continuity)

Marine
shale/mudstone/chert/

mudstone

500∼4000 20∼100 3.0∼5.0
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1991; Cannon and Coates, 1990). In terms of the interpretive
application of this technology, Gainitdinov et al. (2024) from abroad
improved themethod of calculating the dry weight of minerals from
LithoScanner logging elemental dry weights by utilizing a variety of
machine learning algorithms; Lai et al. (2022) used LithoScanner
logging data combined with conventional logging data to evaluate
the lithology and brittleness of shale oil reservoirs and summarized
the relationship between lithology, brittleness, and oil content in
unconventional reservoirs; Zhang et al. (2024) utilized LithoScanner
logging and accurately calculated the mineral content based on a
decision tree model, and combined it with 2D NMR logging to
comprehensively evaluate the lithology, effective porosity, and fluid
properties of shale oil reservoirs. In China, Adeoti et al. (2019)
utilized LithoScanner logging technology, combined with the least
squares method and generalized inverse matrix solution, proposed
corresponding data processing methods, and made significant
progress in the interpretation of complex lithological formations
in various oilfields; Waters et al. (2020) applied LithoScanner
logging to formations with a variety of lithologies and accurately
measured the content of clay, silica, and calcium in the formations.
Based on the previous research, this paper explores four problems
in the data processing and interpretation process in depth, and
innovatively utilizes core XRD experiments to calculate core dry
weight density to calibrate LithoScanner logging processing data.
The pre-processing process of elemental yield and core elemental
dry weight is also established to increase data stability. Based
on the differential evolution method with good applicability, it is
proposed to add the data processing and interpretation process
based on the constraints of fusing multiple logging data such as
conventional density profiles and nuclear magnetic logging, and
improving the optimization algorithm, The interpretation results
can be applied to the continuous characterization of lithological
profiles of multiple types of shale oils, and the analysis of the
coupled relationship between lithological assemblage characteristics
and production was implemented using the Daqing Gulong shale oil
as an example, which verified the reliability of the data processing
flow and interpretation method.

2 LithoScanner logging principle and
common processing flow

Stratigraphic elemental capture spectroscopy originated in the
1980s, initially using pulsed neutron generator (PNG)-based cable
tools and thallium-doped sodium iodine (NaI(Tl)) scintillation
detectors (Juntao et al., 2018).The basic principle of its work is based
on the instrument pulse seed generator, which produces gamma rays
generated by the interaction of fast neutrons with stratum rocks,
see Figure 1, and obtains inelastic scattering gamma spectra and
thermal neutron capture gamma spectra by means of detectors and
spectral analysis, thus obtaining information on the elements of
the stratum (Craddock et al., 2013). Subsequent instruments in the
field of gamma scintillation detector materials continue to push the
boundaries of innovation, the main development in recent years
is the development of a pulsed neutron generator by adjusting the
timing, effectively distinguish between inelastic scattering spectra
and thermal neutron capture spectrum LithoScanner logging
instrument, can significantly improve the identification of the
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FIGURE 6
Processing results of a well after using the least squares optimization algorithm (It can be seen from the first mineral profile on the left that the dry
weight content of each mineral has not changed significantly. This indicates that this algorithm has difficulty reflecting the actual situation of the shale
- oil formation).

types of elements in the stratigraphy and accuracy, in particular
Mg, C and other more critical elements (Galford et al., 2009;
Mao et al., 2022; Lai et al., 2024), This is significant for the
quantitative identification of minerals in shale oil formations with
diverse mineralogical species.

The instrument consists of three main modules: a neutron
generator, a shielding section (which shields the neutrons and
gamma rays directly from the generator), and a gamma ray detector
(Figure 2). The main working principle is that the pulsed neutron
generator emits neutrons with an energy of 14-MeV into the
stratum (Yang and Wang, 2012; Radtke et al., 2012), and these
neutrons interact with the stratum to produce gamma rays. By
choosing a suitable neutron pulse sequence (Figure 3), the inelastic
scattering energy spectrum associated with the gamma ray count
rate (SBUR-α∗SEAR) and the thermal neutron capture spectrum
can be obtained through the detection by the scintillation detector
and the processing of photomultiplier tube (SEAR + SLAT + STAU-
β∗SBKG), while a shield-containing instrument is wrapped around
the enclosure near the detector to minimize the effect of captured

gamma rays from the instrument on the detector. At this time,
the energy spectrum can be regarded as a linear superposition
of the standard spectra of each element in the stratum, and the
yield that can characterize the relative content of each element can
be obtained after deconvolution of the spectrum (Craddock et al.,
2013), and the sum of the relative yields of each element is 1. The
relative yield of each element depends on the abundance of the
elements in the stratum as well as the instrument’s sensitivity to each
element.

Elemental relative yields to mineral dry weight, the
Schlumberger treatment process is divided into two main steps,
S1 and S2 (Figure 4). The first is S1:LithoScanner logging relative
yield to formation elemental dry weight conversion.The principle is
based on the oxygen closure model, which connotes that the weight
of each mineral in the formation sums to 1, and the weight of its
oxide form sums to 1. Schlumberger has a set of mineral model
libraries with sensitivity S for each element. By constructing oxygen
closure models for the major elements of the formation, the dry
weights of each element can be derived through a built-in iterative
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FIGURE 7
Interpretation flow of lithology scan processing.

inversion algorithm (Sun et al., 2014).

Wi = F∗Yi ∗ Si (1)

where:Wi is the dry weight of an element in the formation; Y i is the
relative yield of an element; F is the formation normalization factor;
Si is the sensitivity of an element.

And then comes the S2 step: the transformation process from
formation elemental dry weight to mineral profile. It is necessary to
establish amultidimensional equation between elemental dryweight
and formation mineral dry weight based on the specific gravity of
elements in the oxygen closure model (Herron and Herron, 2000;
Herron et al., 2002), see Equation 2, and the formation mineral
dry weight, i.e., the continuous profile of formation minerals, can
be solved by the built-in ELAN optimization algorithm. In order
to obtain a continuous lithology and lithofacies profile, a ternary
division map of mineral weight components can be constructed
to identify the lithology and lithofacies based on the geological
characteristics of the study area.

{{{{{{{{{{
{{{{{{{{{{
{

WMg =∑(wPercentageofMg ∗wDryweightofmineralscontainingMg )

•    •    •

•    •    •

•    •    •

WSi =∑(wPercentageofSi ∗wDryweightofmineralscontainingSi)

(2)

where: WSi is the dry weight of elemental Si; wPercentage of Si is
the weight percentage of a mineral containing elemental Si;
wDry weight of minerals containing Si is the proportion of elemental Si in
the mineral.

3 Problems in the interpretation

In this paper, starting from the actual interpretation process,
the petrographic scanning interpretation process disclosed by
Schlumberger mainly has the following problems, see Figure 5:
Firstly, considering that the depositional environments of foreign
marine shale oil and domestic land-phase shale oil are different, see
Table 1, the environments differ in temperature, pressure, salinity,
acidity, alkalinity, redox conditions, etc., which will affect the
formation and preservation of the minerals, and therefore the
mineral species and mineral distribution forms will be different;
at the same time, the downhole formation conditions, formation
gradient, borehole conditions, etc., will also be different. At the
same time, the downhole stratigraphic conditions, stratigraphic
gradient, borehole conditions, etc., will also be different, and the
difference of the downhole environment will affect the sensitivity
of the instrument to the detection of stratigraphic elements, and
its parameters (Zhang and Li, 2022; Miles and Badry, 2014)
(generally non-adjustable), and it is inappropriate to directly
apply the built-in oxygen closure model of Schlumberger to
calculate the stratigraphic elements of the dry weight. In addition,
the shale oil depositional environments in different regions of
China are also different from each other as shown in Table 2,
so the relative yield to the elemental dry weight needs to
be corrected based on the actual mineral dry weight of the
formation.

Secondly, the iterative inversion algorithm of Schlumberger’s
relative production into the dry weight of formation elements is
unknown, and the oxygen closure model and sensitivity are set
by default. For shale oil formations with diverse mineral types,
the built-in module of Schlumberger has poor adjustability, and
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FIGURE 8
Interpretation flow of modified lithology scan processing (added the S1 data preprocessing step and improved the S2 and S3 processing workflows.
The improved workflows correspond to the S1 and S2 steps in the standard processing workflow, respectively).

at the same time the dry weight accounts for a relatively low
percentage of the elements, which is prone to overfitting of the
data, and fails to respond to the real situation of the formation;
As shown in Figure 5, the second channel on the left is the
experimental measurement point of magnesium element and the
dry weight curve, the coupling relationship between the two is very
poor, and the variation of dry weight curve is very small, almost a
straight line, but the variation of relative yield curve which reflects
the real situation of the formation is very large, which indicates that
the solved dry weight curve of magnesium element does not reflect
the complex mineral changes in the longitudinal direction of shale
oil formation, and magnesium element, as a landmark constituent
of the dolomite of shale oil formation, can more intuitively
reflect the changes of dolomite content of formation, so such
problems need to be solved. As the signature element of dolomite
in shale oil formation, the dry weight content of magnesium
can reflect the change of dolomite content in the formation
more intuitively, so the solution of this kind of problem is very
necessary.

Thirdly, the optimization algorithm for calculating the dry
weight of minerals based on the dry weight of the formation is
unknown, if the least squares optimization algorithm commonly
used in the system of linear equations is used, it is easy to fall

into the local optimal solution, and the range of variation of the
solution value domain is small, and the shale oil formation tends
to have a strong non-homogeneity in the longitudinal direction,
and the minerals change continuously and quickly, and it is difficult
to react to the actual situation of the formation in the optimal
solution of such an algorithm (Mosse et al., 2014). At the same time,
because of the large uncertainty in the solution process, if there
is a lack of better constraints to optimize the objective function,
the optimal solution is less coupled with the logging data reflecting
other geophysical characteristics of the stratum, which is difficult
to provide geologists with effective information and lacks geological
significance; for example, in Figure 6, the first channel on the right
hand side is the mineral profile obtained from the treatment, and
the optimal solution of various minerals in terms of dry weight
has no change because of the too-fast convergence, and is poorly
coupled with the conventional The coupling relationship with the
conventional logging curve is poor, and the reference significance is
small.

Fourthly, core XRD experimental mineral dry weight directly
calibrated mineral dry weight profile is inappropriate, first of
all, the core XRD experiments should be done to normalize
the processing, there’s no better way to put it back in place,
and secondly, the results of the mineral profile processing is
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FIGURE 9
Graphs of the results of core XRD experimental data before and after positioning (Judging from the homing results, the added step S1 can effectively
solve the problem of homing core XRD experimental data).

FIGURE 10
LithoScanner logging elemental relative yield - core elemental dry weight conversion flowchart (The improved part of the process is within the red box.
Optimizing the objective function with the regularization term can significantly enhance data stability).

still uncertain, the use of the core XRD experiments directly
calibrated there will be a large error (Herron et al., 2014), the
core experimental data is larger, normalization is also more

difficult. Finally, common problems existing in the processing
of the general processing flow are summarized, as shown in
Figure 7.
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FIGURE 11
Comparison of elemental dry weight and core elemental dry weight before and after the improvement of Mg and sulfur elements (Before and after the
improvement, the coincidence rate of magnesium and sulfur elements, which have a relatively low dry weight proportion, with the experimental points
has increased significantly. Their shapes have also become closer to those of the relative yield curves of the elements. As a result, more of the
formation information detected by the LithoScanner logging can be retained).

4 LithoScanner logging data
processing methods and procedures

In view of the many problems in the above processing process,
the data processing process was improved on the basis of previous
research, and solutions were proposed for the corresponding
problems, see Figure 8.

The whole process is divided into three parts, S1: Firstly, for the
normalization of core XRD experimental data, the total porosity of
NMR logs and conventional log density curves can be used to back-
calculate the density of the rock skeleton, The dry weight density of
the experimental site was also calculated based on the XRDmineral
dry weight of the core; Deep normalization of core XRD dry weight
density using rock skeleton density as a reference, thus completing
the normalization of core XRD experimental data, Figure 9
shows the comparison of the effect of a well before and after

homing, and the right data point is better coupled with the
NMR-calculated skeleton density curve after homing upward
by 1.9 m.

Inversion of rock skeleton density using NMR total porosity and
conventional logging density curves, specifically:

ρma =
ϕHC − ρ
ϕHC − 1

(3)

where: ρma is the calculation of rock skeleton density based on
logging volume model and NM total porosity; ϕHC is NMR
total porosity.

Calculate the dry weight density of the experimental site,
specifically:

ρx−ma = 1/(∑
Wdryweightofminerals

ρmineraldensity
) (4)
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FIGURE 12
LithoScanner logging processed dry weights for each element of the formation compared to the elemental dry weights calculated from the core
experiments (The final results of each element of the formation according to this process are shown in Figure 14, in which the blue curves of the right
lane 2∼lane 9 are the results of dry weight processing of elemental content of LithoScanner logging of a well, and the red points are the results of XRD
calculation of the rock core).

where: ρx−ma is the dry weight density of the core calculated
based on XRD; Wdry weight of minerals is the mass fraction of
each mineral in the core XRD; ρmineraldensity is the mineral
density.

Step S2 Considering the influence of different geological
environments in each region on the downhole measurement
instrument, using the elemental dry weight calculated after the
core XRD experiment homing as the standard, and based on
the principle of the oxygen closure model, an offset offset is
added for correcting the instrument’s sensitivity to the formation
elements S, see Equation 2, to establish the relationship between
the relative yield of rock-sweeping elements and the elemental dry
weight conversion.

Wdryweightofanelement + offset =
PElementalyield

S
(5)

For elements with a relatively low percentage of dry
weight, it is easy to overfit the data, The relative yields of core
element dry weights and LithoScanner logging elements were
standardized to ensure zero mean and unit variance and to
improve data stability, At the same time, A regularization term
is introduced to optimize the objective function. By tuning
hyperparameters (α and λ), optimal scaling and translation factors
are derived, and find the optimal translation factor offset and
the optimal scaling factor S, so as to get the optimal logging
element dry weight solution, and the flowchart is shown in
Figure 10:

Assuming that there are i core samples, in terms of elemental
magnesium, for each sample of the core there is a corresponding
dry weight mass fraction W(Mg) elemental dry weight and
LithoScanner logging in terms of elemental Mg yield PMg yield.
According to the given relation Equation 5, a system of equations
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FIGURE 13
Mineral profile interpretation results of a well with improved process (Lanes 2 - 9 on the right represent the dry weight of minerals calculated by
LithoScanner logging. The pink dots in these lanes are the dry weight of minerals calculated from the core, showing a good match. The second lane on
the right is the interpreted mineral profile. The red curve in the 10th lane on the right is the skeleton density calculated inversely from the solved
mineral profile, and the black line is the skeleton density calculated by nuclear magnetic resonance. Due to the adoption of constraint conditions, the
coupling effect between the two is quite good).

containing i equations can be created see Equation 6, and the
objective function of the least squares method can be written,
see Equation 7, and the regularization term can be introduced to
optimize the objective function, see Equation 8.

{{{{{{{{{{
{{{{{{{{{{
{

P1 = S1 ∗ (W1 + o f fset)

P2 = S2 ∗ (W2 + o f fset)

P3 = S3 ∗ (W3 + o f fset)

⋮

Pi = S∗ (Wi + o f fset)

(6)

i

∑
j=1
(Pj − S∗ (Wj + o f fset))

2 (7)

The objective function after introducing the regularization term:

∑i
j=1
(a∗ (Pj − Si ∗ (Wj + o f fseti))

2 + λ∗ (S2i + o f fset
2)) (8)

The processing results are shown in Figure 11, taking
magnesium and sulfur as examples, the third channel on the
right side is the processing results of sulfur, the green solid line

is the dry weight of sulfur before improvement, the blue solid
line is the dry weight of sulfur after improvement, the red solid
point is the dry weight of core experiment, the fourth channel on
the right side is the processing results of magnesium, the second
channel on the right side is the LithoScanner logging relative yield
curve of magnesium, and the first channel on the right side is
the LithoScanner logging relative yield curve of sulfur. It can be
seen that before and after the improvement, the compliance rate
of Mg and sulfur elements with low dry weight ratio with the
experimental points is greatly improved, and the morphology with
the relative yield curve of the elements is closer to each other, so
that the stratigraphic information detected by LithoScanner logging
can be retained to a greater extent.After applying this process, the
processing results of a single well in the Gulong area are shown in
Figure 12.

Step S3, the transformation of elemental dry weight to mineral
dry weight, Schlumberger uses the optimization algorithm is
unknown, the adjustability is poor, according to the obtained
elements to find the optimal translation factor offset and the
optimal scaling factor S, can be obtained after the transformation
of the elemental yield of the elemental dry weight curves, see
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FIGURE 14
Histogram of absolute error statistics before and after improvement (After processing with this method, the absolute error with the core XRD
experiment data after homing is controlled within 5%, resulting in a significant improvement in interpretation accuracy).

Figure 14 (based on the elemental content of the core to calibrate
the LithoScanner logging after the elemental dry weights), and
then can be used to these dry weights curves can be used to solve
for mineral dry weights. Schlumberger’s oxygen closure model is
constructed assuming that the sum of the weights of the minerals
in the formation is one, the sum of the dry weights of the oxides is
one, and the sum of the weights of the elements is one. Assuming
that the main minerals in a region are quartz, sodium feldspar,
calcite, illite, and chlorite, the expression of the region can be seen
in Equations 9–11:

(Quartz+N− Feldspar+Calcite+ Illite+Chlorite)weights = 1 (9)

(Sio2 +Na2O+Al2O3 +CaO+MgO+ FeO+CO2)weights = 1 (10)

(Si+Na+Al+Ca+ Fe+Mg+C+O)weights = 1 (11)

Again using the element magnesium as an example, there is:

WMG =∑WpercentageofMg ∗WDryweightofmineralscontainingMg (12)

For this region, there are 8 elements and 5 minerals, which is
equivalent to establishing a system of equations with 8 dimensions
and 5 unknowns. Schlumberger’s procedure on optimization
algorithms is unknown, and the optimization algorithm of least
squares is used to calculate the dry weight of minerals, with the
following objective function:

min(∑(Woptimum element dry weight −Welemental yield to elemental dry weight)
2)

There are two problems with this approach: first, the least
squares algorithm converges faster, easily falls into the local

optimal solution, and the range of variation of the mineral profile
solution is smaller, whereas shale oil formations tend to be
more inhomogeneous and the mineral continuum changes faster;
Secondly, it lacks better constraints, and the interpreted mineral
profiles have low credibility and low coupling with logging curves,
which is difficult to provide reference value for geologists and has
no better geological significance. To reconstruct the oxygen closure
model for this purpose, the following improvements were made:
first, two constraints were added: 1) the skeleton density profile
obtained from the mineral dry weight calculation was coupled
with the logging calculation skeleton density profile; 2) the sum
of the mineral dry weights was 1. And it is incorporated into the
optimized objective function and given different weights weight1,
weight2, which makes the interpreted profiles match well with the
logging curves, increase the credibility, and at the same time have
better geological significance; Secondly, the differential evolution
algorithm with the advantages of global optimization is used to
obtain the optimal mineral profiles. The two constraints, when
added to the objective function, become:

Constraint 1:

penalty1 = weight1∗ (1/∑(Wmineral mass fraction/ρmineral density)

−ρNMR Skeleton Density) (13)

Constraint 2:

penalty2 = weight2∗∑(Wmineralmass fraction − 1) (14)

where: weight1 is the weight constant; Wmineral mass fraction is the
calculated mass fraction of each mineral; ρmineral density is the
corresponding density of the mineral; ρNMR skeleton density is the
skeleton density.

Calculated from the density curves of NMR and conventional
logging, weight2 is the weight constant, constraint1 that is, for
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FIGURE 15
Box plots of mineral distribution of XRD data from cores of Gulong
Shale oil Qingshankou Formation, Songliao Basin; Lianggao Mountain
Formation, Sichuan Basin; and Mabei Fengcheng Formation,
Junggar Basin.

the skeleton density curve calculated from the dry weight of the
mineral coupled with the skeleton density curve of the logging
calculation to do constraints, and constraint2 that is, for the dry
weight of the minerals to do constraints on the sum of the 1
The constraint 2 is the constraint that the sum of mineral dry
weights is 1.

Optimized objective function:

min((∑(Woptimumelementdryweight −Welementalyield toelementaldryweight)
2)

+Constraint1+Constraint2) (15)

The objective function is calculated using differential evolution
method. The main calculation process of differential evolution
method is to generate an initial population randomly within the
constraints, use two random vectors in the population to subtract,
produce the difference vector of two vectors, add the difference
vector to the third vector to produce a new variant vector, and
cross with the target vector to produce the experimental vector,
and compare the fitness of the experimental vector with the target
vector, select the appropriate vector for the next round of calculation,
and finally output the optimal solution through continuous iterative
calculations. Compare the fitness of the experimental vector with
the target vector, select the appropriate vector for the next round
of computation, and finally output the optimal solution through
continuous iterative computation.

In this paper, the differential evolution method adopts
Equations 13, 14 as constraints and Equation 15 as the
objective function.

(1) Generate an initial population POP(0) with initial population
POP(0) = {X1 (0),…,Xj (0),…,Xn (0)}, and let there be M
species of major minerals in the region, then Xj (0) is an
M-dimensional vector.

(2) Randomly select the target vector Xi (0) to generate the
variation vector:

Vi(1) =Xi(0) + F(Xr1(0) ‐Xr2(0) ) (16)

where, r1,r2 are randomly selected mutually different indices from
{1.2, …n} and F is the difference weight.

(3) Cross the variant vector with the target vector to generate
the experimental vector Ui(1), where the cross rule for each
mineral stem weight j is as follows:

Uij(1) =
{
{
{

Vij(1), randij ≤ CR or j = rand(j)

Xij(0),else

}
}
}

(17)

where randij is a random number in the range [0,1]; CR is the
crossover probability; rand (j) ensures that at least one of the
dimensions comes from the variation vector.

(4) Substitute the experimental and target vectors into the
objective function Equation 15 for computation and select
either the experimental or target vector into the next-
generation.

Xi(1) =
{
{
{

Ui(1), f(Ui(1)) ≤ f(Xi(0))

Xi(0), f(Ui(1)) > f(Xi(0))

}
}
}

(18)
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FIGURE 16
(Continued).

The vectors entering the next-generation form the population
of the second generation and repeat this step, comparing the size
of the average value of the population fitness of two consecutive
generations with the error threshold, and terminating the procedure
when the average value of the fitness is less than the threshold, at
which point the optimal solution can be obtained. Interpretation
results are shown in Figure 13, the right lane 2∼lane 9 is

LithoScanner logging calculated mineral dry weight, the pink point
in the lane is the core calculatedmineral dry weight, the coincidence
is better, the second lane on the right side is the interpretation of
the mineral profile, the 10th lane on the right side is the inverse
calculation of the skeleton density according to the solution of the
mineral profile in red, and the black line is the NMR calculation
of the skeleton density, and the effect of the two couplings is better
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FIGURE 16
(Continued). The interpretation results of lithology scanning logging for shale oil in the three major basins. (A) Mineral profile interpretation results after
optimizing the objective function by fusing constraints in a well of mud-grained shale oil in Songliao Basin (B) Mineral profile interpretation results after
optimizing the objective function by fusing constraints in a well of mud-textured shale oil in Sichuan Basin (C) Mineral profile interpretation results after
optimizing the objective function with fusion constraints for a well of mélange shale oil in the Junggar Basin.

due to the use of constraints.Meanwhile, the absolute errors before
and after the statistical homing and before and after the method
improvement are shown in Figure 14, and the method improvement
is within 5%, and the conformity rate has been greatly improved,
which has a better application effect.

5 Application examples

The technological process was implemented in three different
blocks of Gulong Qingshankou Formation (mud-type shale oil)
in Songliao Basin, Liang Gaoshan Formation (mud-type shale oil)
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TABLE 3 a) Dry weight ratios of mineral elements in the Qingshankou Formation, Gulong Shale oil, Songliao Basin.

Mineral
name

Mineral
oxide

composition

Al dry
weight
ratio

Fe dry
weight
ratio

Mg dry
weight
ratio

Si dry
weight
ratio

Na dry
weight
ratio

S dry
weight
ratio

C dry
weight
ratio

Ca dry
weight
ratio

O dry
weight
ratio

Ilite Na2O·5A1203·14SiO2 0.191 — — 0.278 0.033 — — — 0.499

Chlorite MgO.2FeO·2SiO2·A12O3 0.133 0.276 0.059 0.138 — — — 0.394

Quartz SiO2 — — — 0467 — — — — 0.533

N-
Feldspar

Na2O·5A12O3·6Si02 0.29 — — 0.18 0.049 — — — 0.481

Calcite CaO·CO2 — — — — — — 0.12 0.4 0.48

Ankerite CaO·FeO·2CO2 — 0.259 — — — — 0.111 0.185 0.444

Pyrite FeS2 — 0.467 — — — 0.533 — — 0

Siderite FeOCO2 — 0 483 — — — — 0.103 — 0.414

b) Dry weight ratios of mineral elements of the Lianggao Mountain Formation in the Sichuan Basin

Mineral
name

Mineral
oxide

composition

Si dry
weight
ratio

Na dry
weight
ratio

Al dry
weight
ratio

Ca dry
weight
ratio

Fe dry
weight
ratio

S dry
weight
ratio

Mg dry
weight
ratio

C dry
weight
ratio

O dry
weight
ratio

Quartz SiO2 0.47 — — — — — — — 0.53

N-
Feldspar

Na2O·5Al2O3·6SiO2 0.18 0.05 0.29 — — — — — 0.48

Calcite CaO·CO2 — — — 0.40 — — — 0.12 0.48

Illite Na2O·5Al2O3·14SiO2 0.28 0.03 0.19 — — — — 0.50

Chlorite MgO·2FeO·2SiO2·Al2O3 0.14 — 0.13 — 0.28 — 0.06 — 0.39

c) Dry weight ratios of mineral elements in the Marbei Fengcheng Formation, Junggar Basin

Mineral
name

Mineral
oxide

composition

Si dry
weight
ratio

Na
dry

weight
ratio

Al dry
weight
ratio

Ca
dry

weight
ratio

Fe dry
weight
ratio

S dry
weight
ratio

Mg
dry

weight
ratio

K dry
weight
ratio

C dry
weight
ratio

O dry
weight
ratio

Quartz SiO2 0.47 — — — — — — — — 0.53

N-
Feldspar

Na2O·5Al2O3·6SiO2 0.18 0.05 0.29 — — — — — — 0.48

Calcite CaO·CO2 — — — 0.40 — — — — 0.12 0.48

Pyrite FeS2 — — — — 0.47 0.53 — — — —

Illite Na2O·5Al2O3·14SiO2 0.28 0.03 0.19 — — — — — — 0.50

Chlorite MgO·2FeO·2SiO2·Al2O3 0.14 — 0.13 — 0.28 — 0.06 — — 0.39

K-
Feldspar

K2O·5Al2O3·6SiO2 0.17 — 0.28 — — — — 0.08 — 0.46

Dolomite CaO·MgO·2CO2 — — — 0.22 — — 0.13 — 0.13 0.52
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TABLE 4 Error analysis table of processing results.

Application
area

Mineral
type

Absolute
error

analysis (%)

Mean
absolute
error (%)

Mud-textured
shale oil in the
Qingshankou
Formation,

Songliao Basin

llite 4.97

3.97

Quartz 4.84

N-Feldspar 4.64

Ankerite 4.97

Calcite 4.27

Chlorite 4.48

Siderite 2.15

Pyrite 1.45

Mud-textured
shale oil of the
Liangaoshan

Formation in the
Sichuan Basin

Quartz 4.2

4.41

N-Feldspar 4.8

llite 4.97

Chlorite 4.19

Calcite 3.9

Mixed-
accumulation
shale oil of the

Marbei
Fengcheng

Formation in the
Junggar Basin

Quartz 4.2

4.19

N-Feldspar 4.62

Calcite 4.79

Pyrite 2.88

llite 4.55

Chlorite 3.2

K-Feldspar 4.5

Dolomite 4.8

in Sichuan Basin, and Mabei Fengcheng Formation (mélange-type
shale oil) in Junggar Basin, targeting two different types of shale oil
(mud-type and mélange-type).

5.1 Overview of blocks

During the depositional period of Qingshankou Formation in
Gulong Depression of Songliao Basin, the lake basin entered into a
rapid subsidence stage, and formed a large set of semi-deep lake-
deep lake shale, which is a shale oil-rich layer system. The Qing
Shankou Formation is the main stage of geological subsidence,
with a wide basin and gentle subsidence, rich in organic matter
and high maturity, developing medium-high maturity shale oil,
and the bottom-up development of the Qing One section (K2
qn1), the Qing Two section (K2qn2), and the Qing Three section

(K2qn3) in sequence, at the bottom of Qing One section and Qing
Two section (Q1 to Q9), the semi-deep lake - deep lake subphase
shale has the greatest thickness and wide distribution, and the
mineral composition of the rock ismainly clayminerals, land-source
clasts, carbonate minerals, and a small amount of other types of
minerals. Figure 15 shows the box plots of mineral distribution in
XRD experiments of cores from the Qingshankou Formation in the
Songliao Basin, the Lianggao Mountain Formation in the Sichuan
Basin, and theMarbei Fengcheng Formation in the Junggar Basin, it
can be seen that the main minerals of the Qingshankou Formation
in the Songliao Basin are quartz, sodium feldspar, calcite, ankerite,
siderite, pyrite, illite and chlorite, with a total of eight minerals, 9
elements (Al, Fe, Mg, Si, Na, S, C, Ca, O).

Multiple migrations of the lake basin occurred during the
depositional period of the Jurassic Liang Gaoshan Formation in the
Sichuan Basin. Liang One section of the sedimentary period of the
lake basin sedimentation centre from the southeast to the middle
of Sichuan gradually expanding, belonging to the lake invasion
period of the semi-deep lake - deep lake deposition, for a set of
continuous 20–30 m thick dark grey, black shale, occasional thin
layers of siltstone and mesocrustal layer.The centre of the lake basin
during the sedimentary period of Liang Two section is located in
Xichong and Guang’an areas in central Sichuan, and the top of
Liang Two section is a set of 15–22 m thick organic matter-rich
black shale interbedded with thin-layered powder-fine sandstone,
with mesocrusts locally seen. The top of Liang Three section is
a set of 5–15 m thick organic-rich black shale with thin layers of
powder-fine sandstone (Figure 18C), with a thin shale thickness and
a large distribution range. The multi-phase lake basin migration
deposition process indicates that the lithology of the Liang Gaoshan
Formation is relatively complex, and the shales in different layers,
different areas, and different lithological combinations have different
reservoir characteristics. Figure 18 shows that the main minerals
in the Liang Gaoshan Formation in the Sichuan Basin are calcite,
quartz, N-Feldspar, illite, chlorite, and a total of eight elements (Al,
Fe, Mg, Si, Na, C, Ca, O).

Junggar Basin Mahu Depression Fengcheng Formation is
located in the upper part of the Lower Permian, Fengcheng
Formation depositional period, alkaline lake depositional
environment, early volcanic activity, arid and hot climate, the
development of a set of mud shale, dolomite, siltstone dominated by
salinisation of the lake basin mixed deposition, from bottom to top
is divided into the Feng One section (P1f1), the Feng Two (P1f2),
the FengThree (P1f3), the total thickness of 200∼1400 m. Feng One
section is lake invasion deposition, with volcanic rocks and tuffs in
the middle and lower part, and mudstone and dolomitic mudstone
interbedded at the top; Feng Two section is high level deposition,
forming a set of mudstone, dolomitic mudstone sandwiched with
dolomitic siltstone and muddy dolomite, and interbedded with
several sets of salt rocks; Feng Three section is lake recession
deposition, with dolomitic mudstone in the middle and lower part,
and siltstone, dolomitic siltstone, muddy siltstone, interbedded with
colourful silty sandstone, and grey mudstone in the upper part.
The upper part is dolomitic siltstone, muddy siltstone, interbedded
colourful siltstone and grey mudstone. The main minerals of the
Fengcheng Formation analysed by core experiments are chlorite,
illite, dolomite, N-Feldspar, calcite, quartz, K-Feldspar, and pyrite,
with a total of 10 elements (Si, Na, Al, Ca, Fe, S, Mg, K, C, O).

Frontiers in Earth Science 18 frontiersin.org

https://doi.org/10.3389/feart.2025.1524300
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Hu et al. 10.3389/feart.2025.1524300

FIGURE 17
Classification of lithology based on mineral dry weight ternary diagram in Gulong area (The mineral ternary method for lithology classification is a
commonly used method by geologists).

Due to the different depositional conditions (lake level change,
material supply, climate change, etc.), the sediment composition,
and its combination form, etc., also changed in the three study
areas. Mineral components based on the oxygen closure model of
each mineral element dry weight ratio can be seen in Table 3, the
well mineral profile processing results are shown in Figure 16.

5.2 Analysis and application of processing
results

Comparison of themineral profile processing results of the three
blocks with the core XRD experiments, the absolute error of all types
of minerals is less than 5%, with good agreement, and the statistical
table is shown in Table 4.

LithoScanner logging processed continuous mineral profiles,
based on the mineral distribution ternary map can be further
completed lithology and lithofacies identification. Mineral
distribution ternary map a commonly used combination of mineral
dry weight to identify the lithology of the method, through the
means of graphical display, analysis of different rock types or
rock components of the proportionality between the relationship
between the rock, and then divided into lithology, which can be
intuitively reflected in the distribution of different lithological
features and the law of change. Take Gulong Qingshankou
Formation shale oil as an example, based on the geological
characteristics of the Gulong area, three types ofminerals, carbonate
(iron dolomite + calcite), clay (illite + chlorite), and feldspar
(feldspar + quartz), are selected as the three major classes in
the ternary diagram shown in Figure 17, based on the mineral
content, without considering the sedimentary structure and the

total organic carbon (TOC) content of the Gulong shale oil
Qingshankou Formation, which can be divided into Clay facies,
long quartz facies, mixed facies, carbonate facies, four major
categories.

Petrography refers to rocks or rock assemblages formed in a
certain sedimentary environment, while petrographic assemblage
refers to the petrographic assemblage which is composed according
to a certain superposition order, and can reflect the regular evolution
of environmental conditions and the existence of a certain genesis
connection. Traditional petrographic classification schemes for
shales are generally based on the composition of inorganic minerals
in the shale, the grain size of the clasts or grains, the sedimentary
structure, and the total organic carbon (TOC) content. Gulong
area grain layer development, its scale structure from microscopic
to macroscopic there are different ways of superposition/mixing,
different mineral components, rock types in different ways of
rotary superposition, in the sedimentary body is manifested in the
development of different lithology or facies of different types of grain
layer structure, from the macroscopic structure can be classified
into three major categories (grain layer, laminar, blocky), shale to
the grain layer and the laminar structure of the predominant. At
the same time, on the basis of the previous research, the macro-
structural division criteria were established: textured (laminar
density >=100 bars/m), laminated (10 bars/m=< laminar density
<30 bars/m), massive (laminar density <10 bars/m), and the total
organic carbon content (TOC) division criteria were rich in organic
matter (>2%), medium in organic matter (1%–2%), and low in
organic matter (0%–1%), and a total of 12 categories were classified.
The final classification standard of petrography is shown in Table 5.

Summarising the petrographic assemblage patterns and
characteristics of 23 wells in the Gulong area, which are
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TABLE 5 Division of petrographic phases in the Gurung area.

Petrographic Subphase Lithology Mineral content Sedimentary
structure

TOC

shale phase

Medium organic matter
grainy clay shale phase

shale
Illite +

Chlorite>=0.5,Calcite +
Iron Dolomite<0.2

Grain layer (laminar
density >= 30)

medium organic matter

(1∼2%)

Organic matter-rich
grainy clay shale phases

rich in organic matter

(2∼%)

Low organic matter
striated long quartzose

shale phases

felsic shale
Quartz + albite >= 0.5,
calcite + iron dolomite

<0.2

low organic matter

(0∼1%)

Medium Organic Matter
Striated Long Quartzose

Shale Phase

medium organic matter

(1∼2%)

Organic matter-rich
grainy long quartz shale

phases

rich in organic matter

(2%∼)

Low organic matter
striated mixed-texture

shale phases

mafic shale

Illite + chlorite
<0.5,quartz + albite

<0.5,calcite + ankerite
<0.2

low organic matter

(0∼1%)

Medium organic matter
striated mixed-texture

shale phases

medium organic matter

(1%∼2%)

Organic matter-rich
grainy mixed-texture

shale phases

rich in organic matter

(2∼%)

siltstone phase
Medium organic matter
layered siltstone phase

siltstone
Quartz + albite >= 0.5,
calcite + ankerite <0.2

Stratified (10<=stratified
density <30)

medium organic matter

(1∼2%)

mixed lithology
mixed lithology with

medium organic matter
layers

mafic rock

Illite + chlorite
<0.5,quartz + albite

<0.5,calcite + ankerite
<0.2

Stratified (10<=stratified
density <30)

medium organic matter

(1∼2%)

Limestone phase
Low organic matter
massive chert phase

Limestone
Calcite + Ankerite >=
0.2, Calcite > Dolomite

Lumpy (laminar density
<10)

low organic matter

(0∼1%)

FIGURE 18
Petrographic assemblage types of the Qingshankou Formation in the Gulong area.
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FIGURE 19
Distribution of three-quality evaluations of different lithologic
combinations (In the Gulong area, the various lithofacies combinations
show significant differentiation in the three qualities of shale oil, and
can be well applied to explain the differences in shale oil production).

classified into five types of assemblages, Class I: interbedded,
laminated long quartz shale, Class II: interbedded long
quartz, low to medium organic mixed shale, Class III:
long quartz shale interbedded with mixed shale, Class IV:
interbedded long quartz, mixed shale interbedded with
carbonatite, Class V: interbedded long quartz, mixed shale
interbedded with clayey shale. The results of this division
are shown in Figure 18.

Statistical analysis of these five types of petrographic assemblage
characteristics and commonly used shale oil three quality evaluation

parameters, various types of petrographic assemblage characteristics
in the shale oil three quality characteristics of each has its own
advantages (Figure 19), Ⅰ type of petrographic assemblage is mainly
composed of grainy long quartz shale, the main lithology of
the brittle minerals content, the petrographic subphase is not
obvious changes, the best compressibility, but its hydrocarbon
generation ability is general, so the quality of the source rock
and the quality of the reservoir is general. Class II petrographic
assemblage is interbedded with mixed-quality textured shale and
long quartz-quality textured shale, the overall structure of the main
petrographic subphase is of interbedded type, the compressibility
is average, poorer than that of Class I petrographic group, the
S1 and oil-bearing porosity are slightly higher than that of Class
I petrographic assemblage, and the quality of source rock and
reservoir is good. Class III lithological assemblage is mainly long
quartz shale interbedded with mixed shale, the overall structure of
the main lithological subphase is interbedded, the compressibility
is higher than that of Class II lithological assemblage as a whole,
comparable to that of Class I lithological assemblage, and the
quality of the source rock and the quality of the reservoir are the
poorest. Class IV lithological assemblage is mainly long quartz,
mixed shale interbedded with carbonate rock phases, the overall
structure of the main lithological subphase is interbedded, the
compressibility is comparable with Class II lithological assemblage,
and the quality of the source rock and the quality of the
reservoir is poorer than that of Class II lithological assemblage.
Class IV lithological assemblages are mainly long quartz and
mixed shale interbedded with clay shale phases, and the overall
structure of the main lithological subphases is of interbedded
type, with the clay shale phases as interbedded layers, so the
compressibility is the poorest, but its hydrocarbon generation
capacity is the best, and the quality of source rocks and reservoirs
is the best.

Collected five wells shot hole section and production data
information, statistics on the thickness and percentage of the rock
phase within the shot hole section, can be further analyzed rock
phase and production capacity relationship.We can see in Figure 20,
the lack of production from the E40 well is related to its single
type of lithologic assemblage and the poor quality of the Class
III lithologic reservoir and source rock; For wells A, B18, C6HC,
and D16, which are rich in the variety of petrographic groups,
the presence or absence of class V petrographic assemblage
has a greater impact on their high or low production, and
compared with wells B18, C6HC, and E40, the presence of class
II and IV petrographic assemblage can enhance the reservoir
output capacity.

6 Discussion

This paper primarily discusses the utilization of LithoScanner
logging technology for processing shale oil formation data and
lithology identification. By addressing issues in Schlumberger’s
processing workflow, the main improvements and contributions
focus on three aspects: 1, A core XRD experimental data
normalization method is proposed. Specifically, density logging and
nuclear magnetic resonance (NMR) logging data are integrated to
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FIGURE 20
Table of single well production and thickness of lithologic assemblage in Gulong area.

calculate rockmatrix density, which is then coupled with core XRD-
derived dry weight density data for correction. 2, The introduction
of a differential evolution (DE) algorithm enhances the original
optimization method. This algorithm offers global optimization
advantages, avoiding local optima. The improved approach better
interprets lithological features under multi-logging data constraints,
enhancing result reliability and geological significance. 3, A multi-
data fusion workflow is developed. Elemental yield and core
element dry weight data are preprocessed to improve stability,
and multiple logging data (e.g., conventional density curves and
NMR logging) are fused for processing and interpretation. This
method strengthens data stability and accuracy, achieving an average
error of less than 5% between calculated mineral dry weights and
core XRD data.

The study provides a more precise and efficient geological
evaluation tool for shale oil exploration. Additionally, key
considerations for multi-type shale oil formations include:

Lithology interpretation workflows differ primarily in
mineralogical diversity and vertical heterogeneity. Based on core
XRD statistics, laminated shale oil exhibits fewer mineral types
and weaker vertical heterogeneity compared to hybrid shale oil.
Thus, during DE-based mineral profile inversion, appropriate
parameters (e.g., smaller population sizes and mutation coefficients
for laminated shale) must be selected to balance accuracy and
reliability.

Certain minerals (e.g., borosilicate in hybrid shale) containing
undetectable elements (e.g., boron, which cannot be measured by
logging tools) cannot be interpreted via oxygen closure models due
to the absence of boron data.

7 Conclusion

(1) During the processing of LithoScanner logging data, the
oxygen closure model was reconstructed based on the XRD
data of the returned core and the differential evolution
algorithm was combined to invert the optimal solutions of
variousminerals. Different types of shale oil inDaqingGulong,
Sichuan Liangshan Mountain, Xinjiang Mabei have good
application effect, and the average absolute error between the
calculated dry weight of various minerals and the core XRD
test dry weight can be less than 5%.

(2) For stratigraphic elements with a low dry weight percentage,
the preprocessing of the data, along with the optimization of
the objective function using a regularization term, is a major
improvement for the interpretation accuracy enhancement.

(3) The improved processing interpretation scheme can be applied
to many types of shale oil formations, with good application
results, and the average absolute error between the calculated
dry weights of various types of minerals and the dry weights of
core xrd experiments can be less than 5%.

(4) Based on the continuous mineral profile obtained from
LithoScanner logging, which can be used for the continuous
division of petrography, lithofacies combinations significantly
influence single-well productivity. TakingDaqingGulong as an
example, the combination ofmultiple types of petrography, and
the percentage of the combination of V-type petrography, are
the more important influencing factors on the production of
its single well.
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