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Existing image processing and target recognition algorithms have limitations
in complex underwater environments and dynamic changes, making it difficult
to ensure real-time and precision. Multiple noise sources interfere with sonar
signals, which affects both data precision and clarity. This article studies the
dynamic display algorithm of sonar data based on grayscale distribution model
and computational intelligence. It proposes to construct a grayscale distribution
model for sonar images, analyze the grayscale histogram, determine the
threshold selection of the maximum entropy threshold segmentation method,
and finally complete the target segmentation. The segmented images can
be used to train the convolutional neural network object recognition model
constructed in this article. To verify the effectiveness of the proposed method, a
test set was used to evaluate the trained target recognitionmodel. The precision
of themodel recognitionwas 87.95%, the recall was 87.97%, and the F1 value was
0.8794, which is significantly higher than the traditional model (Such as Otsu
and SVM is below 80%). The recognition speed reached 37 m, which is a certain
improvement compared to the traditional model.
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sonar data, grayscale distribution model, convolutional neural network, maximum
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1 Introduction

In the 21st century, the rapid development of technology not only greatly promotes
the progress of human society, but also provides unprecedented opportunities for people
to develop and utilize marine resources. The ocean, as the largest ecosystem on Earth,
not only possesses rich biodiversity, but also harbors enormous energy and mineral
resources. With the continuous growth of the global economy and population expansion,
the gradual depletion of land resources has made the development and utilization of
marine resources particularly important (Jia-lin et al., 2022; Sandoval-Castillo et al., 2022;
Barendse et al., 2023). In the process of marine resource development, sonar technology, as
an important detection method, is widely used in fields such as marine terrain mapping,
fish resource investigation, and seabed mineral exploration (Zhang et al., 2022; Shen et al.,
2024). Sonar data can provide detailed underwater environmental information through
the reflection and scattering of sound waves. Dynamic display of sonar data can provide
real-time underwater environmental information, helping scientists and engineers make
timely and accurate decisions in tasks such as ocean resource development, underwater
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construction, and exploration. Real-time dynamic display can detect
underwater obstacles early, but processing large sonar data in
real-time is computationally intensive. The complex underwater
environment andmultiple noise sources interfere with sonar signals,
affecting data precision and clarity. Existing image processing
and target recognition algorithms struggle with localization in
complex, dynamic environments, limiting real-time precision and
sonar imaging resolution. Especially in deep sea or long-distance
situations, the precision of target recognition is limited, and how to
efficiently process and display this data in real time has become an
urgent problem to be solved (Ghavidel et al., 2022;Wang et al., 2023).

This article explores dynamic display algorithms for sonar data
using grayscale distribution models and computational intelligence.
The grayscale distribution model identifies echo signals of varying
intensities by analyzing the distribution of grayscale values in sonar
data.This simplifies complex data, enhances data contrast, and filters
out noise, improving data quality (Mo and Pei, 2023; Zhao et al.,
2022). Given the high-dimensional nature of sonar data, this
model simplifies representation and extracts key features for more
efficient processing. Integrating computational intelligence enables
precise and efficient sonar data analysis, supportingmarine resource
development and utilization (Chen et al., 2022; Liu et al., 2022).

This article evaluates sonar data dynamic display algorithms
based on grayscale distribution models and computational
intelligence through a series of experiments. Results indicate that
the proposed model outperforms traditional models, achieving an
average precision of 87.95%, a recall rate of 87.97%, an F1 score of
0.8794, and a processing speed of 37 m. The research results of this
article have certain academic value for the academic community
in sonar data processing, target recognition, and dynamic display
algorithms, providing new research ideas and practical experience
for related fields.

2 Related work

With the continuous increase of marine resource development
and underwater operations, sonar image underwater target
recognition has become a hot research field. However, the complex
underwater environment and scarcity of samplesmake this task even
more challenging. Scholars such as Huang Haining (Haining et al.,
2024) have conducted in-depth discussions on typical imaging
sonar technologies, summarizing the problems of small sample
size, class imbalance, weak target features, target diversity, and
poor interpretability of target recognition in current technologies.
Scholars such as Chen Peng (Peng et al., 2020) proposed a speckle
reduction method for side scan sonar images based on adaptive
3D block matching filtering to address the issue of introducing
speckle noise in imaging using echo intensity in side scan sonar.
This method first performs power and logarithmic transformations
on the side scan sonar image, and then uses wavelet transform
to estimate the overall noise level of the image. Meanwhile, the
parameters of the adaptive 3Dblockmatching filtering algorithm are
continuously updated based on the results of local noise estimation.
During this process, the effects of global noise estimation and local
noise estimation can be compared, and themost suitable parameters
can be selected to solve the problem of uneven noise distribution.
Through experiments, it has been proven that the equivalent number

of views has increased by at least 6.83%. However, the adaptive 3D
block matching filtering algorithm itself requires a large amount
of computation, especially when processing high-resolution side
scan sonar images, which may result in slow processing speed and
affect the efficiency of real-time applications. Tueller et al. (2020)
proposed a framework to predict seabed types based on the spatial
distribution of features for reliable object detection in sonar images.
They demonstrated through experiments that feature extraction-
based detection methods have high adaptability and detection rates
in sonar images. However, further research and optimization are
needed in practical applications, such as adaptability, computational
complexity, and false alarm rate control.

The grayscale distribution model is a statistical model used in
image processing and computer vision to describe the distribution
of pixel grayscale values in images. It has important application value
in the research of dynamic display of sonar data, and can be used to
enhance image quality, improve object detection and classification,
and improve image segmentation precision. Scholars such as Gu
Ming (Gu and Yuan, 2023) designed a splitting detection algorithm
based on grayscale distribution curves to detect the splitting
condition of the ice spoon head. By calculating the average grayscale
image of the ice spoon head in the vertical direction, and then
performing grayscale correction, the influence of uneven lighting
can be eliminated. Next, concave line segments can be extracted
from the corrected grayscale image and their absolute amplitudes
can be calculated. Finally, the feature values of the splitting position
can be calculated based on preset criteria. The advantage of this
algorithm lies in its ability to effectively handle uneven lighting
and small split openings through grayscale correction and feature
extraction, improving detection precision, reducingmissed and false
detections, and adapting to different lighting conditions and changes
in split opening sizes, with strong robustness. Pan Xinyu et al. (Pan
and Yan, 2023) proposed a gas leakage detection algorithm based on
gas shape characteristics and grayscale distribution. Experimental
results show that the algorithm can accurately detect gas leakage
areas and is robust to interference factors in videos.

Computational intelligence technology is commonly used
to solve complex optimization problems, pattern recognition,
data mining, decision support, and other tasks. In the research
of dynamic display algorithms for sonar data, computational
intelligence can help optimize the parameters of grayscale
distribution models, improve the precision and efficiency of
object detection and recognition. It mainly includes neural
networks, fuzzy logic, evolutionary algorithms, simulated annealing
algorithms, deep learning, etc. Fu et al. (2023) proposed an
underwater small target detection method that combines region
extraction and improved convolutional neural networks. They
successfully achieved the detection of underwater small targets
using convolutional neural network technology, and proved through
experiments that this method can effectively improve the detection
probability and correct alarm rate of underwater small targets.
Compared with other object detection methods, this method has
better detection performance and generalization. Zhang and Zhu,
(2022) proposed an underwater target sonar detection system based
on convolutional neural networks, which utilizes convolutional
neural networks to optimize nonlinear excitation function calls.
It can enhance and extract features from sonar images, simplify
training and image processing, and achieve more convenient and
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FIGURE 1
Sonar imaging noise.

efficient detection of linear underwater targets with high robustness.
Computational intelligence technologies such as machine learning
and deep learning algorithms can be utilized to effectively process
and analyze large amounts of sonar data. Key features can be
extracted from it to accurately identify and classify targets in the
image, improving the efficiency and precision of data processing.

3 Method

3.1 Image enhancement and optimization

Sonar systems are affected by various background noises
in marine environments, including underwater natural noise,
environmental noise, reverberation and self-noise. Among
them, reverberation has a significant impact on sonar imaging
(Kazimierski and Zaniewicz, 2021; Yuan et al., 2021; Jin et al., 2019).
Reverberation mainly includes reflection noise and scattering noise,
which are mainly caused by the reflection of sound waves when
encountering obstacles during underwater propagation, such as
the seabed, sea surface, and underwater objects. Sound waves are
noise formed by the scattering of irregular objects or media during
propagation, as shown in Figure 1.Thepresence of these background
noises can affect the detection and positioning precision of sonar
systems. In order to improve the performance and reliability of
the system, effective noise suppression and image enhancement
techniques need to be adopted.

The current algorithms used for noise removal in sonar images
include mean filtering, non local mean filtering, median filtering,
Gaussian filtering, wavelet transform, and Fourier transform
(Elhoseny and Shankar, 2019; Sahu et al., 2019). In order to achieve
better denoising results, this article chooses to first use Gaussian
filtering for preliminary denoising, and then combine it with wavelet
transform for further refinement processing. Gaussian filtering is

based on the Gaussian distribution function to perform weighted
averaging on the image, which can smooth out small noise in
the image (He et al., 2022; Gao et al., 2020). The weight of a
Gaussian filter is calculated using a Gaussian function, and the
specific formula is as follows:

G(x,y) = 1
2πσ2

e−
x2+y2

2σ2 (1)

Among them, σ is the standard deviation of the Gaussian
function, which determines the smoothness of the filter.

Wavelet transform has the ability of multi-resolution analysis,
which can simultaneously process the local time-domain and
frequency-domain characteristics of signals. It performs excellently
in signal and image denoising, compression, and feature extraction
(Guo et al., 2022; Rhif et al., 2019). Discrete wavelet transform
uses discrete wavelet functions and scales for transformation, and
decomposes the signal into coefficients of different scales and
positions through multi-resolution analysis:

x[n] = ∑
k
cj0[k]ϕj0,k[n] +

∞

∑
j=j0
∑
k
dj[k]ψj,k[n] (2)

Among them, ϕj0,k is the scale function, ψj,k[n] is the
wavelet function, cj0[k] and dj[k] are the scale and wavelet
coefficients. Figure 2 shows the sonar image processed by Gaussian
filtering and wavelet transform.

3.2 Building a grayscale distribution model

The grayscale distribution model describes the distribution
of grayscale levels in sonar images, which helps identify targets
(Sun et al., 2019; Wang et al., 2022). Therefore, after removing the
noise from the image, a grayscale distribution model is established
by statistically analyzing the grayscale value distribution of each
pixel in the sonar image.

The detailed process for establishing a grayscale distribution
model is as follows:

(1) Remove noise.

This article employs denoising methods based on Gaussian
filtering andwavelet transformation for preprocessing sonar images,
ensuring the accuracy of the grayscale distribution model. This has
been completed in Section 3.1.

(2) Extract pixel grayscale value distribution.

Extracting grayscale values from denoised sonar images:
The grayscale value range for each pixel is [0, 255] (for an 8-bit

grayscale image).
Count the gray values of all pixels in the entire image to obtain

the gray histogram.
Formula:

H(i) = Count(gray(x,y) − i), i ∈ [0,255] (3)

Among them,H(i) represents the number of pixels at gray level i.

(3) Establish a grayscale distribution model.
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FIGURE 2
Sonar image denoising.

Based on the histogram statistical data, a gray value distribution
model is fitted, Calculate the following feature values through the
gray-level histogram.

①Mean value: The average value of overall brightness.

μ =
255

∑
i=0

i×H(i) (4)

②Variance: The degree of dispersion of grayscale values

σ2 =
255

∑
i=0
(i− μ)2 ×H(i) (5)

③Skewness: symmetry of distribution

γ1 =
1
σ3

255

∑
i=0
(i− μ)3 ×H(i) (6)

④Kurtosis: The degree of sharpness of a distribution.

γ2 =
1
σ4

255

∑
i=0
(i− μ)4 ×H(i) − 3 (7)

Then, the gray-level distribution model based on the mixture of
Gaussian distributions is expressed as:

P(x) =
k

∑
k=1

wk ×
1

√2πσk2
exp(
(x− μk)

2

2σ2k
) (8)

In order to distinguish the background and target in sonar
images, this article selects an appropriate grayscale threshold based
on grayscale distribution information, compares the grayscale
values of each pixel in the image, and achieves the goal of
target segmentation. Threshold segmentation is a commonly used
method in image processing, which is divided into two types:
global segmentation and local segmentation (Pare et al., 2020;

Abdel-Basset et al., 2021). The global threshold segmentation
approach is straightforward, user-friendly, and very computationally
efficient, which primarily consists of the maximum entropy
threshold segmentation method, Otsu’s method, and optimal
threshold method (Amiriebrahimabadi et al., 2024; Xie et al., 2019).
This article processes sonar images using the maximum entropy
threshold segmentation approach. To achieve image segmentation,
the ideal threshold is determined by maximizing the entropy of the
image. The specific formula steps of the algorithm are as follows:

When the sonar image is composed of a target image O with
pixel grayscale values lower than x and a background image P with
pixel values higher than x, the range of x values is 0–255. The
background entropy is:

Hp(x) = −
x

∑
i=0
(yi/yx) × log(yi/yx) (9)

The target entropy is:

H0(x) = −
L−1

∑
i=x+1
(yi/y255−x) × log(yi/y255−x) (10)

Among them, yx = ∑
x
i=0yi , y255−x = ∑

255
x yi ,i = 0,1, …,255,

yi represent the probability of pixels with grayscale values of i
appearing, and Hp(x) and H0(x) are measured in bits per pixel.

The entropy function Ψ1 is the sum of Hp(x) and H0(x). To
select the optimal threshold by maximizing the entropy function,
the formula is:

x∗=mrg max[ψ1(x)] (11)

The grayscale histogram that can be drawn for sonar data
collected from the network is shown in Figure 3.

The histogram displays the pixel distribution of each grayscale
level in the image, and by analyzing the histogram, the grayscale
distribution characteristics of the target and background can be
distinguished (Li et al., 2019; Guo et al., 2023). It can perform
grayscale distribution statistics and analysis on images, establish
grayscale distribution models, help identify grayscale features
of targets and backgrounds, and apply them to tasks such as
noise suppression, image enhancement, and object detection. The
maximum threshold segmentation can be achieved based on the
drawn grayscale histogram, as shown in Figure 4.

It can be seen that when the threshold is set to 50, the image
displays too much background noise, and the target area is also
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FIGURE 3
Grayscale histogram.

FIGURE 4
Implementation diagram of maximum entropy threshold
segmentation under different thresholds.

disturbed by many noise points, resulting in poor separation effect
between the target and the background. When the threshold is set
to 100, the image display effect is good, the target is well preserved,
and it can effectively separate the target and background. When the
threshold is set to 120, although the background noise is reduced,
there is still some noise present, and the details of the target begin
to be lost, especially in darker target areas that become difficult
to distinguish. When the threshold is set to 150, the background

FIGURE 5
Construction of CNN target recognition model flowchart.

noise is further reduced, but a large amount of information in the
target area is also lost, and the target details in the image cannot be
clearly displayed, resulting in poor overall performance. In contrast,
setting the threshold to 100 shows significant superiority, with
background noise effectively suppressed at this threshold, making
the target more prominent, and considering both target retention
and background noise comprehensively. A threshold of 100 can
minimize background noise while preserving target information,
resulting in the best display effect of the image.

3.3 Building a target recognition model

Convolutional neural networks are a type of deep learning
model that excels in processing image data. By simulating the
working principle of the human visual system, image features
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TABLE 1 Data size of model training set.

The sonar image data type Total number of samples Number of invalid samples Actual sample size

Seabed topography

Ups and downs 342 8 334

Sandbanks and Reefs 336 4 332

Canyons and Rift Valleys 232 6 226

Mountains and Plateaus 272 4 268

Specific goals

Shipwreck 201 2 199

Airplane 227 9 218

Subsea pipelines and cables 203 3 200

Halobios 305 12 293

Total 2,118 48 2070

FIGURE 6
Partial data of the dataset.

can be extracted layer by layer to achieve tasks such as image
classification, object detection, and semantic segmentation (Li et al.,
2021; Ketkar and Moolayil, 2021). Fully connected, pooling, and
convolutional layers make up its fundamental structure. Among
these, the pooling layer reduces and compresses the dimensionality
of data, the convolutional layer uses convolutional operations to
extract local information from the image, and the fully connected
layer is utilized for tasks involving classification or regression. At
present, CNNhas achieved significant results in image classification,
object detection, semantic segmentation, and other fields, greatly

surpassing traditional methods in image processing and computer
vision tasks (Krichen, 2023; Zhang et al., 2019; Huang et al., 2024).

In recent years, convolutional neural networks (CNN), as
a crucial tool in deep learning, have played a significant role
in the processing and application of sonar imaging. Due to
its pivotal role in underwater detection, target recognition, and
environmental modeling, sonar imaging, when combined with
CNN algorithms, can notably enhance the accuracy of target
recognition, segmentation capabilities, and the ability to adapt
to complex environments. However, this technology also faces
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TABLE 2 Experimental environment.

Hardware environment configuration Software environment configuration

Configuration items Model Configuration items Version

CPU i9-12900K Operating system Ubuntu 20.04 LTS

GPU RTX 4080 Frame TensorFlow 2.2.0

Memory 32 GB DDR4 Deep Learning Libraries Keras 2.3.1

Image processing library OpenCV 4.10.0

TABLE 3 Experimental results of various types of targets.

The sonar image data type Precision (%) Recall (%) F1 score

Seabed topography

Ups and downs 86.17 84.51 0.8533

Sandbanks and Reefs 84.31 82.52 0.8341

Canyons and Rift Valleys 87.22 83.22 0.8517

Mountains and Plateaus 93.14 96.27 0.9468

Specific goals

Shipwreck 89.36 91.20 0.9027

Airplane 87.14 87.46 0.8730

Subsea pipelines and cables 85.71 84.75 0.8523

Halobios 90.55 93.82 0.9216

Average value 87.95 87.97 0.8794

FIGURE 7
Model test confusion matrix.

certain limitations, including high computational costs, strong
data dependency, and a lack of interpretability regarding physical
mechanisms (Krithika and Jayanthi, 2024; Banu et al., 2024;
Ayaz et al., 2024; Lim et al., 2024).

This article chooses CNN as the basis for constructing a target
recognitionmodel, because CNN can automatically extract effective
features from the original sonar images and perform accurate target
classification, greatly improving the precision and efficiency of target
detection. It has strong robustness to changes in various sonar
images and can demonstrate good generalization ability on different
sonar image datasets, suitable for different underwater detection
environments.

Convolutional Neural Network (CNN) is a type of neural
network widely used in deep learning for image processing and
object recognition. By simulating the biological visual system,
CNN can effectively extract features from images and complete
object recognition tasks. The architecture of a standard CNN
for object recognition tasks typically includes several main
components: convolutional layers, pooling layers, fully connected
layers, etc.

In this article, VGG-16 CNN model is utilized to extract multi-
level features of sonar images, and its analysis is carried out. VGG-
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TABLE 4 Comparison of this article’s model with other models.

Model Precision (%) Recall (%) F1 score Average recognition speed (ms)

This article model 87.95 87.97 0.8794 37

CNN-Softpuls 63.47 65.28 0.5476 69

Visual Geometry Group Network 78.24 74.39 0.7391 46

16 is a typical CNN, which includes a 16 layer convolutional
layer, a complete connection layer, and a maximum soft layer. The
characteristic of this method lies in its relatively simple network
structure, deeper layers, consistent convolutional kernel size, and
increasing channel numbers in the feature map, thus possessing
good generalization ability and high recognition accuracy. In the
first two levels of VGG-16, based on the basic theory of CNN,
the network is improved by using the dropout algorithm and L2
regularization algorithm, so as to effectively suppress the “over
fitting” phenomenon. For the first layer of VGG-16, convolution
operations can be expressed as:

Gk(i, j) =
n

∑
k=1

1

∑
u=−1

1

∑
v=−1

αk(i− u, j− v)pk,l(u,v) + βk (12)

In Formula 1, i and j represent the size of the image.
Among them, Gk(i, j) represents the output of the first layer,
which represents the operation of the convolutional layer. The
maximization operation of the pooling layer can be expressed by the
following formula:

Gk(i, j) =max(αk(2i− u,2j− v)) (13)

In Formula 2, after convolution and pooling operations in the
first few layers, a certain size of feature map can be obtained. The
obtained feature map is transformed into high-dimensional vectors
as input to the fully connected layer. This transformation process is
represented as:

αk = F( {Gk }), k = 1,2,3,…n. (14)

In Formula 3, n represents the dimension size of the feature
map. The Activation function used by VGG-16 is softmax, and the
Cross entropy Loss function is used.The expression of theActivation
function is as follows:

ak = so ftmax(Gi) =
eGi

N

∑
i=1

eGi

(15)

In Formula 4, so ftmax(Gi) means Activation function. In
addition, the Cross entropy Loss function is expressed as follows:

F = −
N

∑
i=1

xi log ai (16)

Formula 5 represents the Loss function of VGG-16. In the
process of extracting sonar image features, the pre trained VGG-
16 model is first loaded and used as a feature extractor. The sonar
images are converted into appropriate formats and preprocessing

steps are applied to each sonar image. Subsequently, the VGG-
16 model is utilized to extract the features of each sonar image.
The first few convolutional layers of the model can extract lower
level features, such as edges and textures, while deeper layers can
extract higher level features, such as the shape and contour of the
object. Each extracted image feature vector is standardized and
normalized to ensure that they have the same scale and distribution.
Finally, dimensionality reduction techniques are applied to each
image feature vector, and other features are extracted from each
sonar image to provide grayscale histograms, texture features, and
shape features of the sonar features.

The focus of this article’s system design is on a target recognition
model based on convolutional neural networks.The training process
of the CNN model is roughly as follows: first, initialize the network
weights and biases, set hyperparameters such as learning rate, batch
size, and number of training rounds, and divide the sonar image
dataset into training and testing sets.

The image data in the dataset can be preprocessed according
to the previous method to obtain the denoised image and then
calculate the grayscale histogram. The most suitable threshold in
the maximum entropy threshold segmentation method can be
analyzed through the obtained grayscale histogram, and then the
data can be segmented using the maximum entropy threshold
segmentation method to obtain the enhanced image of the target
based on the obtained threshold. The enhanced image can be
used to train convolutional neural networks to improve the
model’s generalization ability and robustness, thereby improving
the precision and efficiency of object detection and recognition.
During the model training phase, unsupervised learning methods
can be used to initialize network parameters and generate initial
feature representations using the training set data. The weights
and biases of the network can be adjusted layer by layer using
backpropagation algorithms. The loss function usually uses cross
entropy loss function ormean square error function, combined with
optimization algorithms to update parameters. At the end of each
training round, the loss andprecision on the test set can be calculated
to monitor the training process and avoid overfitting. When the
training error converges to the preset value or reaches themaximum
number of training rounds, the training can be stopped to obtain
a well trained network model. In order to optimize the model, a
nonlinear excitation function Sigmoid function is introduced on
the basis of training error convergence to enhance the nonlinear
expression ability of the network. The flowchart for building the
model is shown in Figure 5.

It can preprocess, enhance, and segment sonar image data,
which is of great significance and importance for sonar image
target recognition models based on convolutional neural networks.
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It makes it easier for the model to learn useful features, prevent
overfitting, and improve the model’s generalization ability. This not
only enhances the robustness of the model during training, but
also enhances its precision and efficiency in practical applications,
making target recognition tasks more reliable and effective.

4 Experiment

4.1 Experimental plan design

In order to verify the effectiveness of the target recognition
and detection model based on grayscale distribution model
and computational intelligence for sonar data dynamic display
algorithm, simulation experiments were conducted to verify the
model’s target recognition of sonar image data. The specific
experiments are divided into the following parts:

(1) Data preparation: A set of 2,874 sonar image data of
various types of targets (pipelines, sunken ships, airplanes,
organisms, etc.) can be collected through the network. After
preprocessing operations such as normalization, denoising,
and labeling can be performed on the data in the dataset,
70% of it can be divided into a training set. The remaining
30% is divided into the test set and expanded by flipping,
mirroring, scaling, and rotating the training set. The number
of training set data obtained is shown in Table 1. Some datasets
are shown in Figure 6.

(2) Data augmentation: the grayscale distributionmodel proposed
earlier can be used to process the dataset, complete target
segmentation, and improve the generalization ability and
robustness of the target recognition model.

(3) Training model: the enhanced training set can be used to
train the model.

(4) Model evaluation: the trained model can be tested using test
set data to calculate recognition precision and other indicators
to complete the evaluation of the model.

4.2 Experimental environment

Theexperiment was deployed under theUnuntu 20.04 operating
system, and the main software and hardware environments
are shown in Table 2.

4.3 Experimental results and analysis

The test set data can be input into a trained CNNnetworkmodel
for testing, and the performance of the model can be evaluated
by calculating recognition precision, recall ratio, F1 score, and
other indicators. The precision refers to the proportion of samples
predicted by the model to be positive, but actually positive. Recall
rate refers to the proportion of samples that are actually positive
and correctly predicted by the model as positive. The F1 score is the
harmonic mean of precision and recall, and the formula is:

F1Score = 2× Precision×Recall
Precision+Recall

(17)

The detection results of the model for various types of targets
are shown in Table 3.

From Table 3, it can be seen that the CNN model has achieved
an precision rate of over 84% for target recognition of various
categories, with an average precision rate of 87.95%, indicating that
the model’s ability to recognize targets of different categories is
relatively stable. In terms of recall rate, the model has achieved a
recall rate of over 80% for all types of molds, with an average recall
rate of 87.97%. This means that the model has a high coverage of
true positive examples and can correctly identify most targets. From
the F1 scores in Table 3, it can be seen that the F1 scores of most
types of targets are between 0.85 and 0.95, with an average F1 score of
0.8794.This indicates that themodel has good balance in identifying
different types of targets.

The confusion matrix generated by the model for the detection
results of various types of targets is shown in Figure 7.

Tags 1-8 represent different types of identification targets,
including undulations, sandbars and reefs, canyons and rifts,
mountains and plateaus, sunken ships, airplanes, underwater
pipelines and cables, and marine organisms. The elements on the
diagonal represent the number of correctly predicted samples by
the model, while the elements on the non diagonal represent the
number of incorrectly predicted samples by the model. In Figure 7,
it can be seen that when the model identifies the first and second
types of targets, it is easy to confuse each other. However, overall,
the precision of the model’s recognition is relatively high, and
the number of errors in identifying various types of targets is
relatively small.

In order to verify the improvement of the CNN network
model’s target recognition performance by using a grayscale
distribution model for target segmentation of sonar image data,
this article compares the recognition precision, recall, F1 score,
and average recognition time required for each image between
the traditional CNN network model and the proposed model. The
results are shown in Table 4.

The proposed model outperforms traditional models in
precision, recall, F1 score, and recognition speed. It uses a grayscale
distribution model for target segmentation of sonar images and
inputs preprocessed data into a CNN for recognition, enhancing
feature extraction and precision. The grayscale model effectively
removes noise and redundant information, while the CNN improves
processing efficiency and precision. The average recognition time
per image is shorter.

5 Conclusion

This article explores a sonar data display algorithm using
grayscale distribution and computational intelligence, proposing a
CNN model for object detection. The grayscale distribution model
improves segmentation and enhances CNN training and accuracy.
Experiments show the proposedmodel surpasses traditional ones in
precision, recall, F1 score, and recognition speed.Traditional object
recognition models mainly include support vector machine (SVM),
random forest (RF), and K-nearest neighbor classifier (KNN), The
accuracy of traditional models (such as Otsu and SVM) is below
80%,The recall rate or F1 score of traditional models is relatively
low (below 0.7), and the recognition speed of other traditional
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algorithms is 25–30 m.The average precision rate reached 87.95%,
the average recall rate reached 87.97%, the average F1 score was
0.8794, and the average recognition speed was 37 m, which is
significantly higher than other models and has the potential to be
applied in practical sonar systems.This provides a more accurate
technical means for improving the target recognition ability of sonar
systems, achieving more intelligent sonar data processing, and for
target recognition of sonar data.This is of great significance for sonar
data dynamic display algorithms with high real-time requirements,
which can achieve timely and accurate display of the position and
status of underwater targets. However, in terms of object selection
for recognition, the classification proposed in this article is limited
and cannot cover all types included in the sonar data. Due to the
limitations of the experimental environment and the complexity of
sonar images, the training amount of the model is relatively small,
and the generalization ability of themodelmay be insufficient, which
may lead to the risk of overfitting. Therefore, it is necessary to
increase the types of target recognition in sonar images, collect as
much and richer sonar image data as possible, cover more types and
scenes, and diversify training data to solve these problems.

The dynamic display algorithm for sonar data, based on
grayscale distribution models and computational intelligence, holds
tremendous potential for future development. By incorporating
more advanced models, more powerful computational intelligence
algorithms, and smarter display strategies, the visualization effect
and information extraction efficiency of sonar data can be
significantly improved, bringing profound impacts to fields such as
underwater exploration, resource management, and environmental
protection.
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