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The wide-field electromagnetic (WFEM) method is widely used in resource
exploration in complex geological environments due to its effectiveness in
deep detection, interference resistance, and adaptability to various surface
conditions. Noise interference remains a significant challenge in areas with
high human activity, such as mining regions and urban environments. In these
regions, electromagnetic noise is often complex, non-periodic, and pseudo-
random, severely degrading the signal-to-noise ratio (SNR) and complicating
subsurface interpretation. Traditional denoising methods struggle to effectively
handle such complex, non-periodic noise. We propose a novel denoising
approach that combines Particle Swarm Optimization (PSO) and Grey Wolf
Optimization (GWO) to optimize a Convolutional Neural Network (CNN). This
hybrid algorithm enhances CNN’s ability to extract nonlinear features and
effectively separate multiple noise types, such as Gaussian white noise, impulse
noise, and attenuation noise. The method was tested on WFEM data from the
Sichuan Changning Block and the Shanxi Xinyuan Coal Mine area. Simulation
results demonstrate that the PSO-GWO-optimized CNN effectively handles
complex, non-periodic noise, improving signal clarity and successfully reducing
noise interference, thereby enhancing data quality and enabling more accurate
geological interpretations. The integration of CNN with PSO-GWO optimization
not only improves the SNR but also enhances interpretative accuracy in
resource exploration. The successful application of this method in regions
with strong electromagnetic interference highlights its broader applicability and
practicality.
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wide-field electromagnetic, Particle Swarm Optimization, Grey Wolf Optimization,
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1 Introduction

The Wide-Field Electromagnetic (WFEM) is a highly efficient
geophysical exploration method commonly used in resource
detection, such as shale gas and groundwater exploration.
This technology provides strong deep-detection capabilities,
high interference resistance, and adaptability to complex
surface conditions. However, variations in electromagnetic noise
characteristics across different geological blocks and exploration
types severely affect data quality, posing a primary challenge for
the effective application of WFEM technology (Zhu et al., 2022;
Tian et al., 2024; Giannino and Leucci, 2021).

In shale gas and groundwater exploration, noise sources and
characteristics vary by region, especially in areas with high human
activity, such as mining zones and urban environments, where
electromagnetic noise is complex and highly non-periodic (Wang
and Cao, 2022). These noise factors reduce the signal-to-noise
ratio (SNR), complicating the accurate interpretation of subsurface
geological structures. Traditional denoising methods have limited
effectiveness in handling complex, non-periodic, and pseudo-
random noise, making it crucial to enhance WFEM data SNR and
adaptability for various geological blocks in geophysical exploration
applications (Bryakin et al., 2024; Wang et al., 2024).

In recent years, the combination of optimization algorithms
with machine learning has offered new solutions for tackling
complex noise problems. Particle Swarm Optimization (PSO)
and Grey Wolf Optimization (GWO) have proven effective
in optimizing model parameters, significantly improving the
adaptability of denoising models (Kong et al., 2023; Amor et al.,
2023; Gomez-Cabrera and Escamilla-Ambrosio, 2022; Nguyen
and Wahab, 2023). Meanwhile, Convolutional Neural Networks
(CNNs), with their strong nonlinear feature extraction capabilities,
can effectively identify and separate valid signals amidst
complex noise backgrounds (Jayakarthik et al., 2024; Chaupal
and Rajendran, 2023; Ren et al., 2023; Xiang et al., 2022;
Kord et al., 2024; Birnie and Alkhalifah, 2022). The integration
of optimization algorithms and machine learning enables adaptive
optimization of denoising strategies, improving electromagnetic
data quality and geological interpretation accuracy (Li et al., 2024;
Veluchamy et al., 2023; Zhu et al., 2023).

To address these challenges, this study proposes an innovative
WFEM data denoising method that combines PSO and GWO to
optimize CNN. By leveraging CNN’s ability to extract nonlinear
features, the method effectively identifies and separates various
types of noise (such as Gaussian white noise, impulse noise,
and attenuation noise), enhancing denoising accuracy. The PSO-
GWO hybrid algorithm adjusts CNN hyperparameters, improving
model adaptability to diverse noise environments. A sample library
was created, covering shale gas and groundwater exploration
regions, from which typical signal features were extracted for noise
identification and removal using the PSO-GWO-optimized CNN
model. Simulation results indicate that this method significantly
outperforms traditional techniques in terms of SNR enhancement
and its ability to manage complex, non-periodic noise. Applied
in the Sichuan Changning Block for shale gas exploration and
the Shanxi Xinyuan Coal Mine for groundwater exploration, this
denoising approach has notably improved WFEM data quality and

geological interpretation reliability, providing a robust solution to
noise challenges in geophysical exploration.

2 Theoretical basis

2.1 Principles of WFEM methods and noise
analysis

2.1.1 Principles of WFEM methods
WFEM method is an innovative technique for artificial-

source frequency-domain electromagnetic depthmeasurement, first
introduced by Academician He Jishan. This method effectively
integrates the advantages of CSAMT’s artificial fields to reduce
field randomness, while also benefiting fromMELOS’s non-far-field
measurements.TheWFEM observation device is shown in Figure 1.

WFEM meticulously defines the formula for calculating
apparent resistivity, which is applicable across the entire field,
thus expanding the observational range and enhancing the speed,
precision, and efficiency of fieldwork. For a uniform surface, the
expression for the electric field of a horizontal electric dipole source
is given as follows (Equation 1). The apparent resistivity is then
computed based on this electric field, as detailed in Equation 2. The
relationship between the electric field and the voltage difference ,
necessary for the calculation, is shown explicitly in Equation 3.

The apparent resistivity over a wide field is expressed as:

Ex =
IdL
2πσr3
[1− 3 sin2φ+ e−ikr(1+ ikr)] (1)

ρa = KE−Ex
ΔVMN

I
1

FE−Ex(ikr)
(2)

KE−Ex =
2πr3

dL ·MN
,ΔVMN = Ex ·MN (3)

Where: 'I' denotes the supply current; 'dL' is the length of
the electric dipole source; 'i' represents the imaginary unit; 'k' is
the wavenumber of the uniform half-space; 'r' is the transmission
and reception distance, which is the distance from the observation
point to the center of the dipole; 'σ' is the conductivity; 'φ' is
the angle between the direction of the electric dipole source and
the radius vector from the source’s midpoint to the reception
point; 'ΔVMN ' is the observed potential difference; 'MN' is the
measurement electrode distance; 'KE-Ex ' is the device coefficient;
'FE-Ex ' is the electromagnetic response function. By conducting
measurements over a vast area, including both far-field and non-
far-field components, and observing parts of the artificial source
electromagnetic field, we can apply iterative calculations to extract
underground apparent resistivity information. This forms the
fundamental principle of WFEM.

2.1.2 Analysis of noise types and their effects on
electromagnetic signals

In electromagnetic exploration, noise significantly impacts
signal processing and target identification. Common noise types
include Gaussian white noise, impulse noise, decaying noise, square
wave noise, and triangular wave noise. This section analyzes the
characteristics of these five typical noise types in both the time and
frequency domains and their interference with primary frequency
information.
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FIGURE 1
WFEM observation device schematic diagram.

Gaussian White Noise: Gaussian white noise is a random
noise type with a flat power spectral density, following a Gaussian
distribution. Figure 2a shows that this noise causes random
fluctuations in the time domain, reducing the smoothness of
the signal.

Impulse Noise: Impulse noise appears as brief, high-
amplitude spikes. Figure 2b illustrates these sudden peaks in
the time domain, which disrupt the amplitude and transient
characteristics of the signal.

Decaying Noise: Decaying noise, often caused by power system
interference, typically occurs around 60 Hz. Figure 2c shows its
oscillatory waveform with decreasing amplitude over time.

Square Wave Noise: Square wave noise, a periodic noise, is
characterized by rapid transitions between high and low levels,
forming a regular alternating waveform. Figure 2d shows the
periodic nature of square wave noise, which introduces repeating
interference patterns in the time domain and alters the signal’s
frequency characteristics.

TriangularWave Noise: Triangular wave noise, another periodic
noise, exhibits a linear rise and fall in the time domain. Figure 2e
shows its smoother waveform compared to square wave noise,
but its periodic nature still impacts the signal. Triangular wave
noise significantly affects the signal’s frequency spectrum, similar to
square wave noise.

Each noise type has unique interference mechanisms:
Gaussian White Noise weakens frequency resolution due to
its flat spectrum. Impulse Noise causes high-amplitude, short-
duration disturbances, leading to frequency aliasing. Decaying
Noise enhances instability in specific frequency ranges, especially
around 60 Hz. Square and Triangular Wave Noise introduce
periodic changes in the frequency spectrum, altering signal
characteristics.

By analyzing these noise characteristics, we provide a
theoretical basis for developing noise suppression algorithms,
enhancing the accuracy and reliability of electromagnetic signal
processing.

2.2 Integration of optimization algorithms
and CNN

This study employs a hybrid approach combining Particle
SwarmOptimization (PSO) and GreyWolf Optimization (GWO) to
optimize the parameters of machine learning models for denoising
electromagnetic data across different geological blocks. PSO seeks to
find a global optimum by simulating collaborative behaviors within
a swarm, making it particularly effective for rapidly optimizing
nonlinear parameters, especially during the initial hyperparameter
tuning of machine learning models. The update equations for PSO
are as follows (Equations 4, 5):

vt+1i = w · v
t
i + c1 · r1 · (pi − x

t
i) + c2 · r2 · (g− x

t
i) (4)

xt+1i = x
t
i + v

t+1
i (5)

where ‘vi’ is the particle velocity, ‘xi’ is the particle position, ‘pi’ is the
particle’s historical best position, ‘g ’ is the global best position, ‘w’ is
the inertia weight, ‘c1’ and ‘c2’ are learning factors, and ‘r1’ and ‘r2’
are random numbers. d.

In contrast, GWO optimizes parameters by simulating the
hunting behavior of grey wolves, demonstrating strong global search
capabilities. It is especially suited for deep optimization in complex
noise environments. Its update equations are given as follows
(Equations 6, 7):

D⃗ = |C⃗ · X⃗leader − X⃗| (6)

X⃗new = X⃗leader − A⃗ · D⃗ (7)

where ‘D’ is the position vector, ‘C’ and ‘A’ are control parameters,
and ‘X leader ’ is the current best position.

The combination of PSO and GWO integrates the advantages of
fast convergence and robust global search. PSO performs an efficient
initial search, quickly approaching optimal solutions, while GWO
refines these solutions with detailed global searches in later stages,
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FIGURE 2
Time-domain analysis of noise types: (a) time-domain plot of Gaussian white noise, (b) time-domain plot of impulse noise, (c) time-domain plot of
decay noise, (d) time-domain plot of square wave noise, (e) time-domain plot of triangular wave noise. The x-axis in the plots represents time (in
seconds), and the y-axis represents amplitude (in millivolts, mv), showing how different noise types vary over time.

minimizing the risk of local optima. This hybrid approach allows
the model to adapt more effectively to diverse noise characteristics,
achieving optimal denoising performance.

Convolutional Neural Networks (CNNs) are deep feedforward
networks based on convolutional operations. Initially developed in
the 1980s with architectures like time delay networks and LeNet-
5, CNNs gained widespread use in the 21st century, with advances
in deep learning theory and computational hardware. Traditional
CNN architecture includes an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer. By
alternating convolutional and pooling layers, CNNs can achieve
higher training accuracy. Their primary strengths lie in their ability
to extract key features from large datasets without complex manual
feature extraction and their weight-sharing architecture, which
reduces parameter requirements and improves processing efficiency.
In this study, we use CNNs for signal-noise identification in
WFEMdata, adopting amulti-layer convolutional structure without
pooling layers.

The proposed denoising method, integrating PSO, GWO, and
CNN, is designed to address complex noise across various geological
regions. Compared to single optimization algorithms, this hybrid
approach offers several distinct advantages: First, the balance
between global and local optimization reduces the likelihood
of local optima, enhancing model adaptability in diverse noise
environments. Second, the combined algorithm exhibits greater
robustness against various noise types, enabling effective adaptation
to a wide range of geological conditions. Finally, the model
dynamically adjusts in complex conditions through parameter
optimization at different stages, significantly improving the signal-
to-noise ratio.

2.3 Technical approach

The proposed denoising method for WFEM data integrates
PSO-GWO-CNN and consists of seven main stages (Figure 3):
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FIGURE 3
Flow chart of denoising method using integrated PSO and GWO with CNN.

Data Preprocessing: Raw EM data is collected, and noise
characteristics are analyzed across geological blocks. The data is
standardized to minimize variability and noise-induced distortions.

Feature Extraction: Time-domain and frequency-domain
features are extracted to create a labeled dataset for training and
validation, highlighting key signal and noise characteristics.

CNN Model Construction: An optimized CNN architecture is
designed, with convolutional layers, fully connected layers, and a
tailored loss function (MSE or Cross-Entropy Loss) to distinguish
between noise and signal features.

PSO-GWOHybrid Optimization:
PSO conducts a global search to quickly identify optimal

configurations (kernel sizes, learning rates), aiding initial
hyperparameter tuning.

GWO refines the solutions by applying a local optimization
strategy, avoiding local optima and improving convergence.

PSO Parameters: The particle count and inertia weight (w)
balance exploration and refinement. Learning factors (c1, c2) affect
convergence speed.

GWO Parameters: Roles of alpha (α), beta (β), and delta (δ)
wolves guide the search, while control parameters (A, C) adjust
exploration and exploitation.

Training: Preprocessed data is fed into the CNN using
PSO-GWO-optimized hyperparameters. Weights are fine-tuned
via backpropagation to minimize the loss function and ensure
convergence.

Testing and Validation: Performance is assessed with SNR and
MSE, evaluating adaptability to different noise environments and
geological settings (e.g., Sichuan Changning Block for shale gas,
Shanxi Xinyuan Coal Mine for groundwater).

Deployment: The trained model is deployed in a real-
time geological survey system, processing WFEM data on-site.
Continuous feedback allows for iterative adjustments to handle
new noise types or geological complexities.

3 Application study of
electromagnetic data denoising
method based on integrated
optimization algorithms

3.1 Geological background and noise
characteristics

This section introduces the geological background and
noise characteristics of the study area, which serve as the
foundation for data acquisition and the construction of denoising
models for wideband electromagnetic methods. The geographical
and stratigraphic characteristics of different geological blocks
significantly influence the application of wideband electromagnetic
techniques. The Longmaxi Formation in the southern Changning
Block of Sichuan and the Xinyuan Coal Mine in the northwest
of the Qinshui Coalfield are typical exploration targets for shale
gas and groundwater, respectively. The geological features of each
block determine their electromagnetic response and noise sources,
requiring tailored denoising strategies for each region.

3.1.1 Shale gas exploration
The shale gas reservoir in the Longmaxi Formation is located in

the Sichuan Basin, as shown in Figure 4a. This formation consists
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FIGURE 4
Geographical Location and Survey Line Layout Map of Sichuan Changning Block and Xinyuan coal mine: (a) Map showing the Sichuan Basin in
southwestern China, (b) Detailed field source and line layout, (c)Map indicating the Xinyuan coal mine, (d) Survey line layout map of Xinyuan coal mine.

mainly of complex marine shale, including gray-black calcareous
shale and black shale interbedded with pyrite and calcareous bands,
exhibiting notably low resistivity.The burial depth ranges from3,000
to 6,000 m. Figure 4b shows the survey line layout, with multiple
survey lines deployed around well sites X1, X2, and X3 to support
comprehensive subsurface characterization.

3.1.2 Groundwater exploration
TheXinyuanCoalMine is located in the northwest of theQinshui

Coalfield, within the North China Carboniferous-Permian Basin, as
indicated in Figure 4c. The region is covered by Quaternary strata,
typical of loess hilly terrain. The main strata include Quaternary
gravel layers and Permian and Carboniferous formations. The survey
line layout for this block is shown in Figure 4d. Coal-bearing
strata primarily occur in the Shanxi and Taiyuan formations, which
exhibit relatively high resistivity. When saturated with groundwater,
the high mineralization of mine water results in lower resistivity.
There is a significant resistivity contrast between coal seams,

surrounding rocks, and water-rich zones, effectively mapped using
the deployed survey lines.

3.1.3 Noise characteristics
In shale gas and groundwater exploration, noise characteristics

vary significantly. In the shale gas blocks, noise is mainly caused
by topographic variations and industrial activities, while in the
groundwater blocks, natural terrain changes and mining activities
are the primary noise sources. To improve the signal-to-noise ratio
(SNR) of electromagnetic data, it is essential to design adaptive
denoising strategies tailored to the specific noise characteristics of
each geological block.

3.2 Simulation experiments on the impact
of noise types on electromagnetic signals

This section investigates the effects of different types of noise
on electromagnetic signals through simulation experiments. To
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FIGURE 5
Time-domain and frequency-domain characteristics of the 7-2 frequency group with Gaussian white noise: (a) Original signal in time domain, (b)
Gaussian noise in time domain, (c) Signal with Gaussian noise in time domain.

systematically evaluate the impact of noise on signal quality, five
noise types—Gaussianwhite noise, impulse noise, attenuation noise,
square wave noise, and triangular wave noise—are considered.Their
characteristics in both time and frequency domains are analyzed.

The noise modeling uses the following parameter settings:
Gaussian White Noise: Standard deviation of 0.5, simulating
moderate background noise. Attenuation Noise: Initial frequency
of 60 Hz, decay rate of 0.05, simulating typical interference from
power systems. Square Wave Noise: Period of 1 m, amplitude ±1,
simulating periodic equipment operation interference.

The simulation process consists of the following steps:
generating an electromagnetic signal as the baseline signal; adding
the five different types of noise to create signals under various noise
environments; and analyzing the interference characteristics of each
noise type through time-domain waveforms and frequency-domain
spectra. The results indicate that different types of noise lead to
distinct time-frequency characteristics, laying the groundwork for
further studies on the noise resilience of electromagnetic signals.

Based on the analysis of the noise types and their impact
on electromagnetic signals, the following conclusions are drawn:
Gaussian White Noise (Figure 5) exhibits a uniformly distributed
frequency spectrum. When added to the signal, it causes random
fluctuations in the time-domain waveform, diminishing the
signal’s regularity. In the frequency domain, the flat spectrum
leads to spectrum expansion, reducing the signal-to-noise ratio
(SNR) and making it more difficult to extract key frequency
components. Attenuation Noise (Figure 6) presents a decaying
sinusoidal oscillation in the time domain, with most energy
concentrated around 60 Hz and its harmonics. In the frequency
domain, it forms energy peaks. When the target signal’s main
frequency overlaps with these noise frequencies, the signal stability
is compromised. Square Wave Noise (Figure 7) has periodic voltage
switching characteristics, generating rich high-order harmonic
components in the frequency domain.This increases the complexity
of frequency spectrum analysis and weakens the ability to identify
high-frequency components of the signal.
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FIGURE 6
Time-domain and frequency-domain characteristics of the 7-2 frequency group with attenuation noise: (a) Original signal in time domain, (b)
attenuation noise in time domain, (c) Signal with attenuation noise in time domain.

Each type of noise interferes with the electromagnetic signal
in different ways: Gaussian white noise reduces frequency
resolution by uniformly covering the spectrum. Attenuation
noise selectively interferes by concentrating energy at specific
frequencies. Square wave noise impacts both high and low-to-
mid frequency components through its harmonic components,
complicating the identification of the signal’s frequency
structure.

3.3 Construction and training of machine
learning models with fusion optimization
algorithms

3.3.1 Data source, sample construction, and
noise type analysis

This study focuses on the Sichuan South Changning Block
as the research area, where 60 high-quality Class 1 data points
were collected. Figure 8 show two typical sampling points, where
the data quality is good, with low time-domain noise and
smooth frequency-domain curves. Each data point consists of 1800
samples with a sampling rate of 300 Hz. To analyze the impact
of different noise types on the signal, all collected data were

divided into 10 equal-length segments, generating a total of 600
data segments.

To simulate noise interference in real-world measurements, five
noise types—Gaussianwhite noise, impulse noise, attenuation noise,
square wave noise, and triangular wave noise—were introduced into
each data segment. Thirty sets of data samples were generated for
each noise type. After this process, each data segment with added
noise produced 180 samples, resulting in a total of 108,000 samples
from the 60 sampling points, thus constructing a comprehensive
dataset encompassing multiple noise types.

The generated dataset was divided into training and validation
sets in a 5:1 ratio, with the training set containing 90,000 samples
and the validation set containing 18,000 samples. All samples are
stored in a unified. dat file format. This simulation and sample
generation method, based on multiple noise types, successfully
created a dataset suitable for a variety of noisy environments,
providing reliable data support for subsequent signal processing and
analysis.

3.3.2 Multi-domain feature analysis
This section focuses on extracting key temporal statistical

features from pseudo-random signals to quantitatively identify
the signal-to-noise ratio (SNR). By analyzing parameters
such as the signal’s maximum value, peak-to-peak value,
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FIGURE 7
Time-domain and frequency-domain characteristics of the 7-2 frequency group with square wave noise: (a) Original signal in time domain, (b) square
wave noise in time domain, (c) Signal with square wave noise in time domain.

peak factor, and impulse factor, we aim to better understand
the relationship between wide-area electromagnetic signals
and noise.

Figure 9 presents a comparison between the original signal and
the signal after adding multiple types of noise. The blue curve
represents the original signal, while the red curve shows the signal
with combined noise, including Gaussian white noise, impulse
noise, attenuation noise, triangular wave noise, and square wave
noise. The comparison indicates that after the addition of noise, the
signal fluctuations are significantly amplified, with an increase in
amplitude peaks.

Figure 10 shows that the feature parameter values of the
noisy signal are higher than those of the pseudo-random signal,
which exhibits more stable and smaller amplitude values. In time-
domain statistical features, such as maximum value, peak-to-peak
value, peak factor, and impulse factor, significant differences in
signal characteristics can be effectively reflected. These parameters
show strong distinguishing ability in the sample library, accurately
differentiating between pseudo-random signals and noisy signals.
Through multi-level analysis of time-domain feature parameters,
rich information is provided for signal characterization. Using these

feature parameters in conjunction enhances the signal-to-noise
separation ability in clustering analysis, thus improving the accuracy
and effectiveness of noise identification.

3.3.3 Model training
To enhance the denoising performance of the model, we

combine Particle Swarm Optimization (PSO) and Grey Wolf
Optimization (GWO). These well-established optimization
algorithms each offer distinct advantages: PSO accelerates
initial hyperparameter optimization by exploring the search
space efficiently, while GWO refines solutions and avoids local
optima, ensuring better convergence and adaptability in complex
environments.

By leveraging the strengths of both, PSO quickly identifies
near-optimal solutions, and GWO fine-tunes them for robust
performance. This combined approach optimizes model
hyperparameters, significantly improving denoising accuracy.

The model construction and optimization process, shown
in Figure 11, starts with data preprocessing, followed by PSO-
based initial optimization, GWO refinement, CNN model
construction, and training. Figure 12 presents the convergence
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FIGURE 8
Type 1 points in Changning block: (a) Time series of the signal, (b) Frequency spectrum (1 s–1800 s), (c) Highlighted frequencies in the spectrum.

curves for PSO, GWO, and their combination, demonstrating
that the PSO-GWO strategy outperforms PSO alone in terms
of convergence speed and validation loss. This combined
optimization leads to lower validation loss and improved
stability during training, showing that the integrated approach
ensures higher accuracy and reliability in noisy electromagnetic
data processing.

We performed data preprocessing, including normalization,
feature extraction, and segmentation, before training the
Convolutional Neural Network (CNN). We used Mean Squared
Error (MSE) as the loss function, optimizing hyperparameters such
as learning rate, batch size, and epochs using the Adam optimizer
to accelerate convergence. Training and validation loss curves
were plotted to evaluate the model’s performance and check for
overfitting.

We compared the performance of different models (U-
Net, LSTM, CNN) in electromagnetic signal denoising,
as shown in Figure 13. The CNN consistently outperforms both
U-Net and LSTM, with lower loss curves, indicating superior
denoising performance and better generalization. This suggests
that the CNN model, optimized with PSO-GWO, provides

more stable and effective denoising results than the other
models.

3.4 Denoising analysis of the
fusion-optimized machine learning model
for WFEM data

This section evaluates the denoising performance of the
fusion-optimized machine learning model, focusing on its
effectiveness in improving geological interpretation resolution.
Through quantitativemetrics and visualization techniques, we assess
the model’s performance and its contribution to more accurate
geological interpretation.

3.4.1 Quantitative metrics and comparisons
To evaluate the performance of the denoising algorithms, we use

two key metrics: Signal-to-Noise Ratio (SNR) and Mean Squared
Error (MSE). The SNR measures the relative strength of the signal
compared to noise, and the MSE quantifies the deviation between
predicted and actual values, indicating the denoising accuracy.
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FIGURE 9
Feature parameters across different noise types over sample numbers: Maximum, peak-to-peak, peak factor, and impulse factor.

FIGURE 10
Time-domain comparison between the original signal and the signal with combined noise.

The proposed method was applied to 15 measurement points
from both shale gas and groundwater blocks. Table 1 presents SNR
and MSE values before and after denoising for LSTM, CNN, and
the optimized CNN (Opti-CNN). The results show that Opti-CNN
consistently outperforms other methods, achieving the highest SNR
and the lowest MSE.

Figure 14 compares the denoising performance of different
methods. The Opti-CNN method significantly improves signal
clarity and reduces denoising error, contributing to more precise
geological interpretations.

Figure 15 illustrates the denoising effects using PSO and GWO
integrated with CNN. Subfigures a and b display results for different
methods at two measurement points (Point 1 and Point 30),
while subfigures c, d, e, and f focus on results for the optimized
CNN at four other points (Point 13, 14, 19, and 24). The raw
data (black triangles) show significant fluctuations, especially in
the high-frequency range. After applying the LSTM (green stars),
fluctuations are reduced, but residual noise remains. The CNN
method (blue squares) improves smoothness, particularly in mid-
to-high frequencies. The optimized CNN (red circles) provides the
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FIGURE 11
Model construction and optimization flowchart.

FIGURE 12
Validation loss curves for PSO, GWO, and PSO + GWO optimization.

best performance, producing smooth curves that closely match the
original signal trend with minimal residual noise.

The integration of PSO and GWO significantly enhances
the CNN model by optimizing hyperparameters for improved
denoising. PSO explores the hyperparameter space quickly, while
GWO refines the model to avoid local optima, ensuring superior
denoising performance and better generalization.

3.4.2 Inversion results and analysis
To assess the practical effectiveness of the proposed model,

we apply a one-dimensional inversion algorithm to wide-
area electromagnetic data, comparing results before and after
denoising. Consistent conditions are maintained throughout the
inversion process:

Initial Model: A resistivity model is constructed based on
geological background information. Inversion Parameters: Iteration
count, damping coefficient, and regularization parameters are kept
constant to ensure consistency. Data Processing: Both raw and

denoised data undergo identical preprocessing steps (normalization
and frequency selection) to ensure reliable comparison.

Figure 16d shows the interpreted cross-sectional profile based
on apparent depth-apparent resistivity data from line EL8. The
profile reveals four low-resistivity zones, indicative of electrical
discontinuities, which are identified as fault structures based
on geological data. Figures 16a–c show inversion results from
conventional processing, CNN denoising, and the optimized CNN
model (PSO + GWO), respectively. A comparison with well log data
reveals discrepancies in resistivity depth for both conventional
processing and CNN-denoised results. However, the optimized
CNN model significantly enhances both vertical and horizontal
resolution, aligning better with well log data and improving
geological interpretation accuracy.

Similarly, Figures 17a, b show inversion results for the Changning
Block, following the same trend. The CNN-based denoising method
offers superior resolution and accuracy, refining inversion results and
better aligning with geological and well log data. This improves the
overall interpretation of electromagnetic survey data.
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FIGURE 13
Training and validation loss curves of U-Net, LSTM, and CNN.

TABLE 1 Denoising performance data.

Sample SNR
Noisy

MSE
Noisy

SNR
LSTM

MSE
LSTM

SNR
CNN

MSE
CNN

SNR
Opti-CNN

MSE
Opti-CNN

1 1.5623 0.015 8.8138 0.011827 9.4427 0.011394 10.128 0.010771

2 1.8543 0.0145 9.4046 0.010244 10.006 0.0095524 10.568 0.0092486

3 1.6370 0.014 8.3364 0.010388 8.9248 0.00988 9.8305 0.0090372

4 1.7253 0.0138 9.2303 0.010801 9.763 0.010383 10.486 0.010046

5 1.9183 0.0135 8.6388 0.010256 9.3568 0.0094441 10.161 0.0084678

6 1.8523 0.0138 9.2819 0.011051 10.249 0.01044 11.19 0.010116

7 1.9562 0.0139 9.4739 0.010901 10.375 0.010307 11.347 0.01016

8 1.6629 0.0141 9.5061 0.011559 10.115 0.011494 10.983 0.011

9 1.7821 0.014 8.6658 0.011063 9.2466 0.010279 10.109 0.010128

10 1.8326 0.0138 9.3064 0.011531 10.147 0.011075 11.031 0.010835

The denoised data enhances target layer identification and
anomaly detection. Specifically:

Shale Gas Block: The denoised inversion profile clearly
delineates the low-resistivity zones of the Longmaxi Formation,
providing a reliable basis for well placement and resource
assessment. Groundwater Block: The inversion results clearly
outline the distribution of aquifers, supporting groundwater
extraction, management, and helping decision-makers develop
more scientifically sound resource utilization plans.

These findings highlight the significant benefits of the fusion-
optimized CNN model (integrating PSO and GWO) in enhancing
inversion interpretation accuracy. The model improves data quality,

strengthens signal features, reduces fitting errors, and enhances the
ability to resolve subsurface structures. In conclusion, the fusion-
optimized CNN model not only improves the signal-to-noise ratio
of electromagnetic data but also substantially enhances the precision
of inversion results and the reliability of geological interpretations.

4 Discussion

In this study, we propose a denoising method for wideband
electromagnetic (WFEM) data, leveraging a hybrid optimization
algorithm combining Particle Swarm Optimization (PSO) and Grey
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FIGURE 14
Denoising Performance Comparison with SNR and MSE Metrics for Various Methods. (a) Denoising performance comparison, (b) SNR and MSE
comparison for denoising methods.

Wolf Optimization (GWO). This method is specifically designed to
address the complexities of noise in diverse geological environments.
By integrating the global search capabilities of PSO with the local
optimization strengths of GWO, the proposed approach enhances
the optimization of model parameters, significantly improving the
adaptability and accuracy of the denoising model under noisy
conditions.

4.1 Optimization method description and
scientific innovation

One of the key innovations of our approach lies in the
combination of PSO and GWO. Traditional denoising techniques
generally rely on static noise models or simple filteringmethods that
are ineffective when dealing with non-periodic or pseudo-random
noise. In contrast, the hybrid PSO-GWO algorithm efficiently
balances global exploration with local refinement. PSO accelerates
the search for potential solutions by rapidly identifying candidate
parameter configurations, while GWO fine-tunes these solutions
through a more detailed, local search, preventing the model from
falling into local optima.This unique hybrid strategy results in faster
convergence and a more robust solution, significantly improving
denoising accuracy in complex geological settings.

Furthermore, Convolutional Neural Networks (CNNs) enhance
this method by providing powerful nonlinear feature extraction
capabilities. CNNs are particularly effective in extractingmeaningful
features from complex and noisy data, ensuring the preservation
of signal integrity even in highly distorted environments. By
combining CNNs with the PSO-GWO optimization, the model
becomes adept at identifying and removing various types of
noise—such as Gaussian white noise, pulse noise, and attenuation

noise—resulting in substantial improvements in the signal-to-noise
ratio (SNR).

4.2 Comparison with previous research

Compared to existingmethods, our approach offers several clear
advantages. Most traditional techniques utilize single optimization
algorithms or basic filtering methods that struggle with complex
noise environments. In contrast, our hybrid PSO-GWO algorithm
integrates the advantages of both PSO and GWO, ensuring superior
robustness and adaptability. The combination of global and local
optimization allows for a more comprehensive search of the
parameter space, which is essential when dealingwith complex noise
patterns in wideband electromagnetic data.

Moreover, the introduction of CNNs distinguishes our method
from prior research. While CNNs have been widely applied in
other fields (Liu et al., 2023), their integration with PSO and GWO
for electromagnetic data denoising is a novel contribution. The
ability to adaptively extract features while optimizing parameters
with PSO and GWO provides a significant enhancement over
conventional techniques. This dual-layer optimization approach
allows our method to flexibly handle various types of noise, offering
a more precise and adaptable denoising solution.

4.3 Theoretical validation and performance

Simulation experiments conducted in this study validate the
theoretical basis of our model by demonstrating the effects
of different noise types on electromagnetic signals. Gaussian
white noise, pulse noise, and attenuation noise were shown to
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FIGURE 15
Impact of Integrating Optimization Algorithms (PSO + GWO) with CNN on the Denoising Effect of Measured Data. (a-f) show the resistivity vs.
frequency curves for measurement points 1, 30, 13, 14, 19, and 24, respectively.
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FIGURE 16
Electromagnetic Inversion Interpretation Profile of Xinyuan Coal Mine. (a) Electromagnetic inversion profile using conventional processing, (b)
Electromagnetic inversion profile with CNN denoising, (c) Electromagnetic inversion profile with optimized CNN model (PSO + GWO), (d)
Cross-sectional interpretation based on apparent depth-apparent resistivity data.

FIGURE 17
Electromagnetic Inversion Interpretation Profile of Changning block. (a) is the Electromagnetic Inversion Interpretation Profile of the Changning block
for survey line L1, and (b) is the Electromagnetic Inversion Interpretation Profile of the Changning block for survey line L2.

have distinct disruptive effects on signal characteristics. Gaussian
white noise introduces random fluctuations, pulse noise generates
transient high-amplitude spikes, and attenuation noise distorts
signal components at specific frequencies. Our optimization strategy
accounts for these unique noise characteristics, effectively enhancing
the denoising performance.

The introduction of a custom-built sample library and the use of
simulation experiments further bolster the robustness of the model.

This design not only improves the generalization capability of the
model but also ensures that the denoising method performs reliably
in real-world applications, even in the presence of complex and
diverse noise types.

This research represents a significant step forward in addressing
the challenges of electromagnetic data denoising in complex
geological environments. The hybrid PSO-GWO optimization
algorithm, combined with CNN-based feature extraction, provides
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a powerful and versatile solution for tackling various types of noise.
The ability to dynamically adjust model parameters based on noise
characteristics ensures that ourmethod can effectively handle a wide
range of noise environments. Our approach outperforms traditional
methods in both robustness and adaptability, making it a promising
tool for practical applications in geological exploration and other
fields that rely on electromagnetic data.

5 Conclusion

We introduced a novel denoising method for wideband
electromagnetic (WFEM) data based on a hybrid optimization
algorithm combining Particle Swarm Optimization (PSO) and Grey
Wolf Optimization (GWO). This method significantly enhances
the signal-to-noise ratio (SNR) in complex noisy environments,
thereby improving the accuracy and reliability of geological
exploration. By integrating the global search capabilities of PSO
with the local optimization strengths of GWO, our approach
offers an adaptive solution to the challenges posed by multi-
noise environments, effectively overcoming the limitations of
traditional methods in handling non-periodic and pseudo-
random noise.

We demonstrated demonstrates substantial improvements
over previous research in terms of both denoising precision
and adaptability, particularly across different geological settings.
It efficiently removes noise interference from various sources,
including industrial activities, natural terrain variations, and
environmental disturbances, making it more versatile in real-
world applications. This hybrid optimization algorithm stands
out by providing a robust solution to electromagnetic data
denoising, ensuring reliable results even in the presence of diverse
noise types.

With the experimental results, we showed that the combination
of PSO and GWO significantly improves the quality of
electromagnetic data, particularlywhen dealingwithGaussianwhite
noise, pulse noise, and attenuation noise. The method enhances the
SNR and preserves essential signal features, leading tomore accurate
geological structure interpretations. Moreover, the integration
of Convolutional Neural Networks (CNNs) further boosts the
model’s ability to extract nonlinear features, enabling the denoising
process to preserve the integrity of signals even in challenging noisy
environments.

Compared to traditional denoising techniques and previous
studies, our method’s ability to optimize hyperparameters through
PSO and GWO, combined with CNN’s feature extraction
capabilities, represents a significant advancement in the field. The
proposed approach not only improves the denoising performance
but also enhances the adaptability and generalization of the model,
making it a promising tool for diverse applications in geological
exploration and resource assessment.

In conclusion, this study presented a cutting-edge denoising
approach for wideband electromagnetic exploration. By addressing
complex noise challenges and optimizing both model parameters
and noise recognition strategies, the method lays a solid foundation
for future advancements in geological data processing. Its ability
to handle a wide range of noise environments ensures its
potential for practical applications in geological exploration,

resource management, and other fields that require high-quality
electromagnetic data interpretation.
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