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Hailstorms pose significant risks in Germany, calling for accurate forecasts and
warnings. This study explores the application of a convolutional neural network
(CNN) to predict daily hail-affected areas using radar-based hail footprints
from 2005 to 2019. The ML model utilizes 18 thermodynamic and dynamic
convection-related parameters derived from ERA5 reanalysis data. Feature
selection identifies seven key predictors, with a particular emphasis on the
convective available potential energy and bulk wind shear (CAPESHEAR). Model
performance is assessed against climatology- and persistence-based reference
forecasts, and sensitivity analyses using gradient-weighted class activation
mapping (Grad-CAM) are conducted to interpret the predictions. The CNN
model significantly outperforms the reference forecasts, achieving a Heidke Skill
Score (HSS) of up to 0.66 for large hail-affected areas. However, lower predictive
skill is observed on days with weak CAPESHEAR values or when hailstorms are
isolated. Sensitivity analysis highlights CAPESHEAR as the dominant predictor
influencing model decisions. These findings demonstrate the potential of ML-
based hail prediction using only convective environmental parameters. Given its
low computational demand once trained, this approach offers a promising tool
for operational forecasting. It would be desirable to extend this approach to a
more regional perspective and to include information on severity.
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1 Introduction

Severe convective storms (SCSs) can create various types of hazardous weather,
including hail, wind gusts, tornadoes, and heavy precipitation. Hail, in particular, can cause
significant damage to buildings, infrastructure, and agriculture. Both economic and insured
losses have substantially increased over recent years globally, with the highest increase in
Europe. For example, the insured losses inGermany causedmainly by hail during two recent
SCS series on 27/28 July 2013 and 10 June 2019 (Kunz et al., 2018; Wilhelm et al., 2021) sum
up to €2.7 bn and €0.75 bn, respectively (MunichRE, 2020). Comprehensive understanding
of the favorable environmental conditions for hailstorms is crucial to improve the accuracy
of hail predictions, facilitating timely and effective preventive actions to be taken.

There are two main challenges in improving hail forecasts based on numerical weather
prediction (NWP) models. First, the development of hail-producing SCSs involves complex
interactions of various dynamic and thermodynamic processes on a broad range of spatial
and temporal scales (e.g., frontal circulations, atmospheric convection, cloud microphysics)
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(Markowski and Richardson, 2011). The representation of the
underlying non-linear dynamics and scale-interactions in NWP
models is a challenge, as the relevant triggering and intensification
mechanisms for SCSs are not fully resolved by the observations
assimilated into the NWP models. Further, the related cloud
microphysics exhibit high complexity and are highly sensitive to
parameter variations (Wellmann et al., 2020). Also, the prediction
of hail requires two- or even three-moment cloud microphysics
parameterization schemes for mixed-phase clouds (e.g., Seifert and
Beheng, 2006; Khain et al., 2015), which are computationally too
expensive to be used in operational NWP or climate models.

Therefore, several studies rely on so-called ingredient-based
predictions using a combination of convection-related ambient
conditions as proxies that are derived from NWP data (Trapp et al.,
2011; Malečić et al., 2022; Torralba et al., 2023). On the large-
scale, parameters include the synoptic flow pattern, atmospheric
teleconnections, or different weather regimes (Aran et al., 2011;
Piper and Kunz, 2017; Kunz et al., 2020). With regard to the
prediction of hail, it has been noted that severe hailstorms,
producing hailstones with a diameter of at least 2 cm, typically
develop in conditions characterized by high levels of convective
available potential energy (CAPE) and 0–6 km bulk wind shear
(BULKSH). CAPE is directly linked to the strength of updrafts, while
vertical wind shear is decisive for the organization and structure of
the convective systems, such as single cells,multicells, supercells, and
mesoscale convective systems (Markowski and Richardson, 2011;
Púčik et al., 2015). Wind shear also determines the residence time
of the hail embryos in the updraft, and thus indirectly determines
the maximum size of the hailstones (Kumjian and Lombardo,
2020; Kumjian et al., 2021). Studies have also revealed that deep-
layer shear (DLS) and storm-relative helicity (SRH) significantly
influence the life cycle of SCSs, with long-lasting events occurring
exclusively under high SRH conditions (Kunz et al., 2018; 2020;
Wilhelm et al., 2023; Tonn et al., 2023).

The second major obstacle in improving hail predictions is
the lack of direct hail observations for evaluation purposes in
Germany and most other countries - except of France, northern
Italy, andCroatia, where high-density hailpad networks have been in
operation over several decades (Dessens et al., 2015; Manzato et al.,
2022).While geostationary satellites can indirectly detect potentially
hail-producing storms by capturing the overshooting tops of
cumulonimbus clouds (Punge and Kunz, 2016), they fall short in
precisely monitoring actual hail occurrences beneath the clouds.
Valuable information about (hail-producing) SCSs is provided
by weather radars, despite several potential artifacts such as
beam shielding and signal attenuation. In particular, weather
radar networks as deployed in Germany by the German Weather
Service (Deutscher Wetterdienst, DWD) enable the monitoring of
thunderstorm propagation, the evolution of their intensity, vertical
structure, and further properties because of their high spatial
and temporal resolutions and the large area under permanent
surveillance (Puskeiler et al., 2016; Wapler, 2017; Fluck et al., 2021).

In recent years, machine learning (ML) methods have been
successfully adopted to assess or predict thunderstorm and hail
occurrence by leveraging known relationships between hailstorms
and ambient conditions (Gagne et al., 2015; 2017; Gagne et al.,
2019; Czernecki et al., 2019; Pulukool et al., 2020; Leinonen et al.,
2022; Auliya et al., 2023; Ackermann et al., 2023). The majority

of ML models has focused on nowcasting to short-range forecasts,
i.e., typical lead times ranging from 12 to 36 h (Gagne et al.,
2019). This focus is mostly due to the significant challenge of
forecasting convection initiation and occurrence at longer lead
times without the support of NWP techniques (McGovern et al.,
2023). In recent research, different ML models have been used
to predict hail size or convective precipitation by taking related
environmental conditions from reanalysis data or ensemble forecast
in combination with data from remote sensing instruments, such
as radar reflectivity (Gagne et al., 2017; Czernecki et al., 2019;
Burke et al., 2020; Han et al., 2021; Leinonen et al., 2022;
Ackermann et al., 2023). Gagne et al. (2019), for example, found that
Convolutional Neural Networks (CNNs) exhibit superior predictive
performance compared to otherML techniques for the prediction of
hail events of at least 2.5 cm size based on numerical model outputs.
The CNN also identified correlations between the likelihood of
severe hail and convective environmental conditions. However, it is
important to note that the ML models in their study were trained
to predict hail sizes estimated from NWP model output rather than
actual hail size observations. Despite challenges in applying ML
techniques, such as a balanced data sample, which also needs to be
large enough to be divided into a training and a validation period,
the potential for ML applications in convection prediction is huge
and development has only just begun.

The purpose of this paper is to train a deep learning model for
deterministic predictions of the daily hail-affected area in Germany
using a combination of ambient conditions. The ambient conditions
are derived from gridded ERA5 reanalysis data (Hersbach et al.,
2020) from the European Centre for Medium-Range Weather
Forecasts (ECMWF). The hail-affected area is obtained from radar-
identified hail tracks over Germany using the radar network from
DWD (Puskeiler et al., 2016; Schmidberger, 2018). The study
addresses the following specific research questions:

1. What is the skill of an ML-based model to predict the daily
hail-affected area in Germany?

2. Which predictors contributemost to themodel’s skill, andwhat
is their relative importance within the ML model?

3. In which weather conditions does the ML model demonstrate
the highest or lowest predictive skill, and what are the
underlying reasons for this?

In Sections 2 and 3, we present detailed information about
the data and methods employed, including the setup of the
ML model. Following that, Sections 4–6 present the study’s
results. Though Section 4 focuses on a statistical analysis of
the hailstorm environment, Section 5 builds on this foundation
by comprehensively evaluating the skill of the developed ML
model. The insights obtained from this evaluation guide the
meteorological interpretations in Section 6, specifically focusing on
prediction errors. Section 7 summarizes the findings and gives some
ideas for future research.

2 Data description

In this study, two different proxy datasets were used to establish
a relationship between hail events and ambient condition: Tracks
of potential hailstorms derived from 3D radar reflectivity (Sec. 2.1)
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and ERA5 reanalysis from ECMWF (Sec. 2.2). We consider only the
summer half-year from April to September, when hail occurs most
frequently in Germany and Central Europe (Kunz, 2007) for the 15-
year period from 2005 to 2019. The study area extends from 44 to
56°N, and from 4 to 16°E, covering all of Germany.

2.1 Potential hailstorm tracks

Tracks of SCS are objectively obtained from the application of
the radar-based cell detection and tracking algorithm TRACE3D
(Handwerker, 2002). Though originally developed for spherical
coordinates from a single radar, TRACE3D is applied here in a
modified setup (Puskeiler et al., 2016) for 3D radar reflectivity
on a Cartesian grid. We used the so-called PZ-product with six
reflectivity classes (7, 19, 28, 37, 46, 55 dBZ) at twelve vertical levels
from DWD’s C-band radar network with a temporal resolution of
15 min and a spatial resolution of 2 km. The reason for using the PZ
product is the availability of data records since 2005.

TRACE3D essentially carries out two main steps: An initial
reflectivity threshold is set to identify and mark areas of intense
precipitation. Then, using a second threshold, it determines
the highest reflectivity value within this region, referred to as
“reflectivity core”. The second step involves linking these reflectivity
cores with their counterparts from the radar scan before. To
best identify potentially hail-producing cells, a lower threshold
of 55 dBZ is considered, regardless of the height above ground
(Puskeiler et al., 2016; Schmidberger, 2018). The tracking algorithm
computes complete tracks of SCSs with a high likelihood of hail
reaching the ground according to the evaluation with insurance
loss data (Puskeiler et al., 2016). Because of the uncertainty inherent
in both radar observations and the tracking algorithm, it cannot be
assured that each radar-identified track was actually associated with
hail on the ground. Therefore, the SCS tracks are hereafter referred
to as “potential” hail track.

The data provided for this study include information on the
geographical center point of the tracks, the average direction of
motion (ϕobs), velocity (vobs), as well as length and width. Note that
we only consider times when the reflectivity exceeds the 55 dBZ
threshold (Tonn et al., 2023). The entire SCS’s life cycles can be
considerably longer.

For the period 2005–2019, a total of 7,702 potential hail tracks
are identified. To estimate the potentially hail-affected area for each
track, we multiply the track’s length by its average width on the
spherical surface of the Earth (Figure 1). The estimated length of
the hail track is determined by the duration and moving direction
and velocity of SCSs from the Trace3D algorithm. The average
width is obtained by averaging the different width of detected radar
reflectivity cores of at least 55 dBZ along the track. Our main
focus is the daily aggregation of the potentially hail-affected area in
Germany. This area, which is highly relevant for potential damages,
serves as the target variable for our ML approach.

2.2 ERA5 reanalysis

The ERA5 reanalysis provides hourly estimates of atmospheric,
ocean, and land-surface variables. It is based on 4-dimensional

FIGURE 1
The polygon shows the area affected by a single hail streak on a
curved Earth surface, and the red dot is the centre of the hailstorm at a
certain time, θ shows the direction of the hail track.

variational analysis with the Integrated Forecasting System
(IFS) Cy41r2 (Hersbach et al., 2020; ECMWF, 2023). In this
study, ERA5 data are used on a regular latitude-longitude
grid of 0.25× 0.25°horizontal grid spacing. At each grid cell,
vertical profiles of pressure, temperature, specific humidity,
wind speed and direction are used to derive thermodynamic,
dynamic and stability parameters. The parameters for our
study are taken at 12 UTC and 18 UTC as hailstorms occur
most frequently during this time of the day in Germany
(Kunz, 2007; Fluck et al., 2021) which is characterized by the
maximumdiurnal heating. In our investigation, we primarily rely on
the 12UTC ERA5 fields as this point in time best characterizes the
convective environment prior to most hailstorm developments on
the same day.

3 Methodology

3.1 Selection of convective parameters

To include as much useful information about convective
environments as possible and to reduce the risk of overfitting, our
selection of variables accounts for correlations between different
convective parameters identified in the study of Wilhelm et al.
(2023).They found, for example, that dynamic parameter largely co-
vary (e.g., wind shear, storm-relative helicity) and both represent
favorable flow conditions for the formation of hailstorms. Based
on their findings, we consider environmental variables from
four different categories: dynamic parameters, thermodynamic
parameters, convective indices, and combined parameters. From
a total of around 40 variables, 18 atmospheric parameters are
considered as possible predictors in this study (Table 1). We
deliberately refrain fromusing radar data as predictors, as the goal of
this study is to develop ML models that can be applied to data from
NWP models and climate projections in future studies.
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TABLE 1 List of parameters derived from ERA5 and their corresponding abbreviations.

Group name Full name Abbreviation Unit

Dynamic parameters

500-hPa zonal wind U500 m s−1

Wind speed 6 km above ground VV6km m s−1

Bulk wind shear BULKSH m s−1

Thermodynamic parameters

850-hPa temperature T850 K

2-m temperature T2m K

850-hPa equivalent potential temperature THETAE850 K

Convective available potential energy CAPE J kg−1

Total column water TCW kg m−2

0°C -level height DEG0L m

700–500-hPa lapse rate LAPSE700500 K km−1

850-hPa relative humidity RH850 %

850-hPa specific humidity Q850 kg kg−1

Convective index

Vertical totals index VT K

Total totals index TT K

Surface lifted index SLI K

Combined parameters

CAPE×wind shear CAPESHEAR m3 s−3

Supercell composite Parameter SCP –

Significant hail parameter SHIP –

To characterize the dynamic environment, we used the wind
speed difference between 6 km and the surface (termed bulk wind
shear, BULKSH), wind speed 6 km above ground (VV6km) and
zonal wind at 500 hPa in our ML model. Wind speed and shear,
such as BULKSH, are critical for the organization of convective
systems in terms of single cells, multicells or supercells, the latter
being capable of producing the largest hailstones (Markowski
and Richardson, 2011). Results from Dennis and Kumjian (2017)
and Kumjian et al. (2021) showed that increased shear produces
increased hail mass due to three factors: (i) a larger updraft volume
over which microphysically relevant hail processes can operate; (ii)
increased hailstone residence times within the updraft; and (iii) a
larger potential embryo source region. Thermodynamic parameters
are highly relevant for the convective processes, the strength of
the updraft related to thermal instability, and the life cycle of the
cells (Markowski and Richardson, 2011; Wilhelm et al., 2023).
Therefore, we considered nine different thermodynamic quantities:
temperature and moisture at different vertical levels, total column
water, lapse rate, and CAPE. Temperature and moisture content
at different levels, and hence composite indices such as vertical
totals (VT) or total totals (TT), determine thermal stability at mid-
tropospheric levels. VT also describes conditional instability (Miller,

1975), often found in preconvective environments, and indicates
the presence of CAPE. Total column water feedbacks on both
updraft strength and supersaturated liquid water availability, both
of which increase hail probability and hail size, but in a non-linear
manner (Li et al., 2017). Lapse rate at mid-troposphere levels, e.g.,
between 700 and 500hPa (LAPSE700500), determines the stability of
the lower troposphere (Kunz et al., 2020). The water droplets are
taken through the lift of strong updraft to higher altitudes where
temperatures are below freezing, freeze and accumulate layers of ice,
eventually forming hailstones. CAPE largely controls the strength
of the updraft, with greater CAPE favouring storms that produce
larger hail. However, larger CAPE does not equate to larger hail
and the nuances of storm structure must be examined (Lin and
Kumjian, 2022). Composite parameters, such as CAPESHEAR, the
supercell composite parameter SCP (Thompson et al., 2003), or
the significant hail parameter SHIP (Allen et al., 2015), combine
convective parameters known to be conducive to SCS/hail and are
designed to capture severe hail environments.

According to several studies, both convective indices and
combined convective parameters are well suited for ingredient-
based predictions of SCSs (e.g., Haklander and Van Delden, 2003;
Kunz, 2007; Taszarek et al., 2020; Kunz et al., 2020). Kunz (2007),
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for example, showed that the Surface Lifted Index (SLI) exhibits
a high prediction skill for damaging hailstorms in southwestern
Germany. Westermayer et al. (2017) found that SLI is related to
the frequency of lightning within convective storms. Because it was
shown in several studies (e.g., Brooks et al., 2003; Púčik et al., 2015)
that large hail is most likely for the combination of high CAPE
and high DLS, we use the product of the square root of CAPE ×
BULKSH (CAPESHEAR).The supercell composite parameter (SCP)
highlights the co-existence of ingredients favoring SCSs on the basis
of CAPE, storm relative helicity and bulk wind difference over the
lower half of the storm depth.The significant hail parameter (SHIP),
which is the product of CAPE, humidity, instability, temperature
and wind shear, was often used to assess the likelihood and severity
of hailstorms (Allen et al., 2015; Prein and Holland, 2018). In the
research of Czernecki et al. (2019), this parameter improved the
performance of ML models trained to predict large hail events.
Overall, our selected 18 parameters show a large overlap to those
selected in their study.

3.2 ML model

Combining reanalysis data with radar-based remote sensing
and applying ML, particularly a CNN (Czernecki et al., 2019;
Gagne et al., 2019), shows a high potential for improving the
prediction of hailstorms, possibly outperforming conventional
statistical prediction methods. The CNN in this study consists of
a sequence of layers (Figure 2): a convolutional layer (Conv2D)
followed by max-pooling and then a dropout layer. Max-pooling
(MaxPool) is used to reduce the spatial dimensions of feature
maps by selecting the maximum value within a defined window.
Adding the dropout layer serves to reduce the risk of overfitting.
This sequence is repeated once, and a final convolutional layer is
added afterwards. All convolutional layers in this neural network
have a kernel size of 3× 3 and use the Rectified Linear Unit
(ReLU) activation function (Glorot et al., 2011). The ReLU function
interprets only the non-negative part of its argument, aligning with
the positive nature of hail-affected areas. The first and last two
convolutional layers have 32 and 64 filters, respectively. The input
data are both standardized using the Z-score normalization, such
that it has a mean of 0 and a standard deviation of 1.

The network incorporates two max-pooling layers to
downsample feature maps (atmospheric fields here), with a 2×
2 pooling size and a stride of 2, i.e., the filters are moved by
two grid points at each convolutional step. Two dropout layers
with a dropout rate of 0.2 are utilized, where the dropout rate
represents the fraction of features not being used. The first dense
layer with ReLU activation and the second dense layer without an
activation function have 64 and one nodes, respectively. Models
are trained using ‘Adam’ optimization (Kingma and Ba, 2014).
As a loss function and to estimate the best predictors, we use the
lowest Mean Absolute Error (Willmott and Matsuura, 2005) of the
hail-affected area.

The training and validation period includes all years from 2005
to 2017, whereas the testing period covers 2018–2019. The training
of the CNN is done in a cross-validation setup with 30 training
epochs. Cross-validation is performed iteratively: In a first loop,
the CNN model is trained on the 11-year period 2007–2017, and

the period 2005–2006 is taken for validation. The 2-year validation
period changes to 2006–2007 in the second loop, and the training
period of 11-year changes to 2008–2017 and 2005. The cross-
validation includes 11 iterations until all possible evaluation periods
are validated.

3.3 Verification measures

To evaluate the ML forecasts with respect to the hail-affected
area in Germany, we use the MAE as the central verification
metric. In addition, we decided to separately define individual
large hail events exceeding a minimum hail-affected area yielding
categorical forecasts for these events. In assessing non-probabilistic
forecasts for discrete variables, a common approach is categorical
verification (Murphy, 1996) based on contingency tables. The
contingency table classifies elements a− d based onwhether an event
was observed in the radar-derived tracks (Yes/No) and whether it
was predicted by the ML model (Yes/No): (a) number of correct
hits, (b) false alarms, (c) misses/surprise events and (d) correct
non-events.

While several verification measures exist for evaluating binary
events, there is no single perfect measure that captures all aspects of
the model’s robustness without compromising others. Hence, seven
verification measures and skill scores, derived from contingency
tables, were computed to evaluate the model performance for the
events (Table 2). The Critical Success Index (CSI) assesses the count
of accurate hits compared to all events taken from the forecast or
observations, i.e., leaving out many trivial correct non-events for
something as rare as hail. As a result, the CSI provides a measure of
the conditional probability of correct hits (Jolliffe and Stephenson,
2012; Czernecki et al., 2019). The Heidke Skill Score (HSS) shares
similarities with the proportion correct (PC), but uses the forecast
performance achieved by a random model as its baseline. The HSS
is appropriate for the verification of rare events (Wilks, 2011). An
HSS equal to 0 means that the skill of the model is as good as that
of a random model. The Peirce Skill Score (PSS) is similar to HSS,
while it is independent of the climatological event frequency. PSS is
somewhat biased toward the Probability of detection (POD),making
it more applicable for events that occurmore frequently (Woodcock,
1976).With the highest value of HSS, PSS, POD, as well as the lowest
False Alarm Ratio (FAR), the optimal threshold to distinguish small
and large hail events can be determined comprehensively.

4 Relation between hailstorms and
ambient conditions

During the study period, a total of 911 hail days and 1,591 non-
hail days (no track identified in the domain) are identified. Most of
the potential hail tracks occur during daytime (12–18 UTC), which
is in line with Kunz et al., 2009; Mohr and Kunz, 2013; Kunz et al.,
2020). Therefore, we consider the environmental conditions from
ERA5 at 12 UTC, but perform also comparisons for the 18
UTC fields.

In a first step, we analyse mean fields of environmental
parameters over Germany during all days and on hail days only with
the intention to identify spatial features favourable for hailstorms.
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FIGURE 2
Schematic structure of the convolutional neural network with different layers used in this study and the number of nodes in this ML model is omitted
(Ellipses).

TABLE 2 Verification measures and skill scores used for this study including their abbreviations, formulas and ranges Wilks (2011). n( = a+b+ c+d) is the
total number of samples.

Full name Abbreviation Formula Range

0 (no skill) Proportion correct/Accuracy PC a+d
n

[0,1]

1 (perfect model)
Critical success index CSI a

a+b+c
[0,1]

Probability of detection POD a
a+c

[0,1]

1 (perfect model)
Heidke skill score HSS 2(ad−bc)

(a+c)(c+d)+(a+b)(b+d)
[-1,1]

Peirce skill score PSS ad−bc
(a+c)(b+d)

[-1,1]

0 (perfect skill)
False alarm ratio FAR b

a+b
[0,1]

Probability of false detection PODF b
b+d

[0,1]

For the entire period 2005–2019 (Figure 3), hail hot-spots
occur mainly over southern Germany: the federal State of
Bavaria, Hessen, Baden-Württemberg andNorth Rhine-Westphalia.
Many climatological mean fields of convective parameters
are hardly geographically consistent with the climatology of
hail hot-spots. However, on actual hail days (i.e., at least one
identified potential hail track in the domain) some of these
parameters are significantly different from the climatological
mean state.

For example, Figure 4A illustrates the climatological mean
field of CAPESHEAR at 12 UTC (all days from April to
September 2005–2017), which will be identified later as the
best single predictor (see Sect. 6). Relatively low values of
CAPESHEAR are found in the northern part of Germany. The
area with larger CAPESHEAR values is mostly located in southern
Germany, especially in Baden-Württemberg and the southern part
of Bavaria. Here, the climatological mean CAPESHEAR locally
exceeds 1,500 m2 s−2 which has been identified as a critical
value for hail occurrence (Púčik et al., 2021). The reason for the
large difference between northern and southern Germany is the

climatologically lower temperature and lower moisture availability
in northern Germany.

To focus on the convective conditions prior to hail occurrence,
the mean field for hail days only is calculated (Figure 4B). Note,
that the magnitude of CAPESHEAR is dominated by CAPE because
of the much larger range of values compared to BULKSH. Higher
CAPESHEAR values can be seen in northern, central, and southern
Germany, but the spatial pattern with an increase from north
to south remains similar, which is consistent with the statement
that the hail frequency (Figure 3) in Germany generally increases
from north to south (Punge and Kunz, 2016; Puskeiler et al.,
2016). To further test our assumption that larger affected areas
are associated with larger values of CAPESHEAR, the hail-only
situation (Figure 4B) is subsampled and divided into three terciles
(large, medium, small) based on the values of the daily hail-
affected area. CAPESHEAR values over Germany (Figures 4C, D)
with near climatological values during the lower tercile events and
higher values during upper tercile events confirm this assumption.
Highest CAPESHEAR values occur over the mountain ranges in
Baden-Württemberg, Bavaria, and northern Hesse (Figures 3, 4D)

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1527391
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1527391

FIGURE 3
Accumulated hail-days derived from radar reflectivity of the DWD radar network over Germany from 2005 to 2019.

which is consistent with an observed climatologically high hailstorm
frequency at and downstream of these mountain ranges (Kunz and
Puskeiler, 2010; Fluck et al., 2021).

The mean fields of other thermodynamic or combined
parameters, such as CAPE, SHIP, or TT, show a distinct north-
to-south gradient (not shown), similar to that for CAPESHEAR.
In contrast, the variables that represent the general atmospheric
background, such as U500, T850, do not show a pronounced north-
to-south gradient for the mean field distributions (not shown).

The spatial distributions of the convection-related parameters
primarily indicate that the general prerequisites for SCSs are given.
However, they fall short in providing a robust relation to the hail-
affected areas. To scrutinize the relation between potential hail tracks
and convective ambient conditions, we correlate spatial fields of all
18 atmospheric parameters listed in Table 1 gridpoint-wise with the
daily hail-affected area. Table 3 shows the mean Spearman’s rank
correlation coefficients averaged over all gridpoints across Germany,
which is not only helpful to identify the parameters that are most
important for hailstorm prediction, but also gives some hints for the
later selection of single convective parameters that are potentially
most important for the ML model. Absolute correlation values are
less than 0.5 for all selected parameters. This is mainly due to the
fact that also non-hail days are included, which are more frequent
and thus dominate the correlation. As the dynamic parameters U500
and BULKSH are relevant only on days with any kind of instability
prevailing, their correlation coefficients are among the lowest of
all parameters. Note that low correlation values do not necessarily
imply that these parameters are unrelated to hailstorms on the local
scale, since this analysis focuses on the spatial mean correlation
between these parameters and the daily hail-affected areas, rather
than pinpointing the exact locations of individual hailstorms.

5 Model training and evaluation

To identify the best predictors for the CNN models out of
all 18 predictor variables, we used a stepwise feature selection
method. That is, we iteratively add predictors and always keep
the predictors yielding the lowest MAE, and eventually end up
with a combination of up to 7 parameters until the model
prediction rarely gets much improvement (Mohr et al., 2015;
McGovern et al., 2019; Quinting and Grams, 2021). The MAE
decreases continuously by around 10% from using the single
best predictor—CAPESHEAR—to the inclusion of 7 predictors
(Figure 5). For themodel, CAPESHEAR is themost important single
predictor for the hail-affected area during test period (Figure 5),
outperforming other convective parameters such as VT or TT. This
is presumably due to its consideration of both thermodynamic and
dynamic information of the environment. CAPESHEAR represents
a combination of CAPE and BULKSH, both of which are critical
factors in hail formation. CAPE quantifies the energy available for
convection, which can lead to strong updrafts necessary for hailstone
development (Battaglioli et al., 2023). Vertical wind shear, on the
other hand, contributes to storm organization and longevity by
separating updrafts and downdrafts, preventing storm weakening.
Their combined role enhances the potential for robust and sustained
convection, making it a significant predictor for hail occurrence
in central Europe (Kunz et al., 2020). The combination with
Q850, U500, BULKSH, and instability indices (VT, TT) yields
the best model in terms of the MAE. The performance improves
progressively with the number of predictors included, particularly
after consideration of the second best predictor, Q850. The MAEs
largely decrease once the second best predictor Q850 is selected,
as it serves as a proxy for low-level moisture, a critical ingredient
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FIGURE 4
Mean fields of CAPESHEAR during the hail season April–September for the training period from 2005 to 2017. (a) Mean field for all days and (b) without
non-hail days. (c) Mean for hail days below the lower tercile ranking of the daily affected area accumulation, and (d) for hail days above the upper
tercile ranking. The contoured black lines highlight where values of CAPESHEAR larger than 1,500 m2 s−2 indicate a tendency of very active
convection (Púčik et al., 2021).

for storm initiation and intensification. This is also likely due
to the fact that Q850 is not directly reflected by CAPESHEAR.
Therefore, this addition yields a relative improvement of 6% in
model performance. VV6km reflects the strength of upward motion
in the mid-troposphere, associated with the residence time of
hailstones in the supercooled layers, influencing hail growth; while
U500normaly indicatesmid-level flowpatterns, which can influence
storm propagation and organization. Including VV6km, U500,
and BULKSH reduces the MAE only slightly, as they are highly
correlated (Wilhelm et al., 2023).

Most of the important predictors describe the dynamical rather
than the thermodynamical characteristics of the environment. This
finding is in agreement with the studies of Westermayer et al.
(2017) and Kunz et al. (2020), who showed that dynamical proxies

are not only relevant for the prediction of hailstorms, but also
decisive for their persistence or the length of the streaks, respectively.
In addition, increased dynamical forcing is associatedwith either the
presence of a synoptic cold front or a nearby jet stream, both leading
to forced ascent of air masses. The study of Wilhelm et al. (2023)
indicates the high correlation between BULKSH and U500, while
BULKSH and U500 as single parameters have a very low prediction
skill for the hail-affected area (see Sect. 4). Using ERA5 reanalysis at
18 UTC instead of 12 UTC, the seven best predictors yield MAEs
comparable to those of the 12 UTC model (not shown). The 18
UTC ML model uses almost the same parameters, except for the
replacement of Q850 with RH850.

During the model training, a major challenge in the ML-based
prediction is the rare occurrence of hail events with a large effected
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TABLE 3 Spatial mean Spearman’s rank correlation coefficients between
daily hail-affected area and different convection-related parameters
from ERA5 at 12 UTC in Germany for the period 2005–2017. The values
of parameters are listed from positive to negative.

Parameters Correlation Parameters Correlation

THETAE850 0.315 VT 0.200

T850 0.300 TT 0.153

CAPESHEAR 0.295 BULKSH 0.068

TCW 0.271 LAPSE700500 0.068

T2m 0.266 U500 0.056

CAPE 0.265 VV6km 0.046

Q850 0.261 SCP 0.008

SHIP 0.247 RH850 −0.061

DEG0L 0.222 SLI −0.257

area. However, these events may be most impactful in terms of the
damage they might cause and thus reliable predictions are desirable.
Accordingly, we use a density-based weighting for regression tasks
introduced by Steininger et al. (2021). In brief, its main effect is
to give rare data points more influence on the model training
compared to common data points. The central parameter for the
density-based weighting is α, with α = 0 meaning that all data points
receive the sameweight andα ≥ 1meaning that themost uncommon
values receive much more weights than common values. For a
detailed description, the interested reader is referred to the original
publication by Steininger et al. (2021).

According to Figure 6A, which shows the daily hail affected
area predicted by the CNN models and the observational data
during the test period, non-hail days are most frequent. The figure
also clearly reveals that on individual days the affected area may
reach values up to 55,000 km2. In terms of MAE, α = 0.5 yields
a good compromise while marginally improving the ability of
the ML model to capture the observed most extreme events. The
very severe hail days in terms of large affected areas greater than
20,000 km2 are still not captured adequately by the ML model,
indicating a noteworthy limitation. Nevertheless, predictions for
spatial extents of ≤ 20,000 km2 using α = 0.5 show amoderate level
of improvement in terms of successful prediction on daily hail-
affected area with an overall better agreement with the observations.
By gradually increasing the α values from 0 to 1.5, the ML model
better detects extreme events on specific days (not shown), but at
the cost of significantly overestimating the prediction of non-hail
days. Overall, increasing α values results in higherMAE (Figure 6B).
Thus, one can see that the overprediction of non-hail events has a
largely negative impact on the overallMAE of the prediction. For the
remainder of this study, all results are shown for α = 0.5, for which
validation MAE is quasi the same as without weighting during the
model training.

It is noteworthy that the ML model using the ERA5 parameters
at 12 UTC exhibits a marginally higher performance for the

prediction of extreme events (larger hail affected area) compared
to the 18 UTC counterpart (see Supplementary Figure S1 in the
Appendix). However, the difference with respect to MAE between
these two CNN models is marginal (see Supplementary Figure S2).

To estimate the performance of the ML model, it is compared
with two simple non-ML reference models: Climatology-based
forecast and short-term persistence forecast (Murphy, 1992;
McGovern et al., 2023). The climatological forecast is taken here
as the 30-day running mean hail-affected area for the period
2005–2019. The persistence forecast takes the hail-affected area
from the previous day to predict the affected area for the current
day, a benchmark for measuring the skill of forecasts produced
by other methods, especially for very short-term forecasts. The
skills of the models are compared to the ML model forecast by
calculating the MAE between forecast and observations. Table 4
provides evidence that the predictive ability of the ML model is
clearly superior to that of the two trivial reference models. The
average MAE of 0.22 is an improvement of 54% over the persistence
model forecast and 65% over the climatological model. The poor
performance of the climatology-based model can be attributed to
the fact that it predicts a small hail-affected area on each day, while
strongly underestimating the affected area during severe events.
Since climatology-based model will have almost continuous low
values that verify withmany zeros and thenwith larger areas, leading
to a larger range of MAEs. Persistence-based model essentially has
many zero forecasts and then short blocks of larger hail-affected
areas. So at the beginning of occurrence of a hailstorm, the model
will forecast a zero, at the end, a considerable area and verifies with a
zero. The persistence model incorporates sequences of no hail days
with no significantly large contribution to MAE, giving an overall
better score.

Finally, categorical verification is applied to evaluate the
performance of the CNN model for small and large hail events.
Prior to identifying appropriate thresholds to distinguish between
small and large hail events on the basis of observational data, the
predictions of the CNN model are bias corrected by subtracting
the averaged difference between model prediction and observation
in the test period. After eliminating inherent biases (The averaged
difference of daily hail-affected area of −298km2) in the model,
the resulting thresholds more likely align with the observed value
of the hail-affected area. Figure 7A shows the different categorical
skill scores for the CNN model as a function of hail-affected
areas after the bias correction. For a threshold of 2,000km2 the
model exhibits high POD, high HSS, and high PSS while at the
same time keeping the FAR below 0.4. The optimal threshold to
separate between small and large events was found for a hail-
affected area of 1,740km2 (dark-red vertical line in Figure 7A).
At this threshold HSS and PSS are maximized, while at the same
time minimizing the FAR. For the above stated threshold, HSS
is 0.66, PSS is 0.69 and FAR is only 0.3. For the same threshold
of the hail-affected area, the HSSs of the forecast climatology
and the persistence forecast are 0.51 and 0.36, respectively. The
accuracy of the ML model was even found to be 88% with POD
= 0.78 and CSI = 0.58. Those skill scores are calculated from the
actual contingency table (Figure 7B) based on the number of hail
events. The ML model successfully identifies 56 hit cases (large hail-
affected area) and correctly recognizes 241 non-events (small hail-
affected area). However, it misses 16 large events and incorrectly
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FIGURE 5
Model performance (measured in MAE) for different combinations of convective predictors (see legend) at 12UTC using the method of the stepwise
feature selection. Standardized MAEs are unitless.

FIGURE 6
(a) Hail-affected area predicted from ambient conditions at 12UTC in the test period (2018–2019) during the hail season with α = 0.5; the blue solid line
is the ML prediction and the black dashed line is the observation for comparison. (b) Model performance in terms of MAE as a function of training
iterations (epochs) during the validation period with different values of α. MAEs are given for Z-normalized data and thus unitless.

TABLE 4 Summary of the performance measures for CNN, climatology
and persistence models. The MAEs are normalized (Z-normalization) and
thus unitless.

Name of model Range of MAEs Averaged MAE

CNN 0.20–0.30 0.22

Climatology model 0.40–0.82 0.63

Persistence model 0.46–0.50 0.48

classified 24 non-events. The slightly better model performance
taking ambient conditions at 18UTC is listed in the supplementary
data for comparison purposes (Supplementary Figure S3).

6 Interpretation of ML model

In this section, we compare situations during which the ML
model succeeds and fails in predicting large hail events in order
to better physically understand the different contributions of hail
predictors in terms of ML prediction.

6.1 Class activation mapping: A case study

Even if the ML model with seven parameters from ERA5
reanalyses has a high prediction skill overall, the question remains
during which ambient conditions CNNmodels can correctly predict
large hail-affected areas. A widely-used diagnostic to unveil the
relation of predictors and predictions is the gradient-weighted
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FIGURE 7
Categorical verification measures for large hail events during the test period (2018–2019). (a) Different skill scores (see legend and
description in Section 3.3) as a function of the threshold used to distinguish between small and large hail events. (b) Contingency table for the optimal
threshold of 1740 km2 (marked in panel (A) with a red vertical line). True: high affected-area day >1740 km2; False: little affected-area day <1740 km2.

class activation mapping (Chollet, 2021). This method is useful
to understand the causes leading to successful/failed predictions
of the accumulated hail-affected area. The Grad-CAM utilizes
gradient information from the last convolutional layer to generate
a coarse localisation map, which highlights important regions in
the input data for predicting how large the hail-affected area
will be on a certain day. By overlaying the coarse localisation
map with the features (Selvaraju et al., 2017), areas of particular
importance can be visually identified. The corresponding heatmaps
show where and which predictors have more significant weighting
in the combination of the predictors.

Two case studies for an incorrect and a correct prediction were
selected to better illustrate the problem at hand: 13 and 15 May 2018
(see Figure 8). During this period, a weak easterly flow on the south-
eastern flank of a blocking anticyclone prevailed over Germany,
in which an unstable air mass was encapsulated. The combination
of strong vertical wind shear and the advection of filaments of
potential vorticity associated with vertical lifting resulted in serial
clustering of several SCS including hailstorms (Mohr et al., 2020).
On 13 May (Panel a–h in Figure 8), CAPESHEAR (Figure 8G)
spatially matches the maximum value of the corresponding
activation heatmap (Figure 8H). This qualitatively good match
was found for other successfully-predicted hail-days in the test
period (not shown) and confirms CAPESHEAR being a good
predictor for the CNN models. Convective predictors like VT
(Figure 8E), TT (Figure 8F), or other environmental fields exhibit
varied contributions to the hail activation heatmaps. Most of
the time, regions with higher predictor values consistently align
with higher activation values. Note that the ML model predicts
daily hail-affected area totals without the specific hailstorm
location information. Still the activation heatmaps often exhibit
maximum values in regions where the actual hailstorms occurred

indicating that they could be used to predict the location of
hailstorms. Such an analysis, however, goes beyond the scope of
this study.

For 15 May 2018, the ML model encountered difficulties
in predicting hail events (Panel i–p in Figure 8), despite the
presence of large-scale atmospheric conditions similar to that
on 13 May (Mohr et al., 2020). SCS/hailstorms predominantly
impacted the northeastern region of Germany. Despite enhanced
BULKSH (Figure 8J) and VV6km (Figure 8K) near the hailstorms
environmental conditionswhere characterized by lowCAPESHEAR
(Figure 8O) in the area of the events. The ML model’s prediction
accuracy was comparably low in this case, as its prediction
was dominated by the low CAPESHEAR values. The model’s
highest activation (Figure 8P) was observed in the southwestern
corner, where CAPESHEAR was relatively high, leading to an
inaccurate prediction. This occurred despite favorable moisture
conditions (Q850, Figure 8L) and atmospheric instability (VT,
Figure 8M; TT; Figure 8N) being concentrated in central
Germany indicating a too strong reliance of the model on
CAPESHEAR.

Comparing the two case studies discussed, it is apparent that
on 13 May hailstorm events were largely confined to specific
geographical zones, primarily occurring between 12 and 16 UTC.
In contrast, on 15 May, characterized by an inaccurate ML model
prediction, hailstorms, while also concentrated between 12 and 15
UTC, exhibited a wider geographical distribution and had shorter
duration. The negative values in U500 near the observed hailstorms
are associated with the blocking in the middle troposphere,
leading to fewer severe organized convective systems (Mohr et al.,
2020). This highlights one synoptic pattern during which the ML
model has difficulties in predicting the hail affected area on a
specific day.
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FIGURE 8
Different ambient conditions (blue shading) at 12UTC for two case studies of a good forecast [13 May 2018; (a–h)] and a false alarm [15 May 2018;
(i–p)]. The 7 predictors (a–g; i–o) are indicated in the title of each subplot overlapped with shaded heatmaps of class activation (h, p). Pink polygons in
(h, p) represent the hail-affected area by every single hail track on that day. For VT, TT and CAPESHEAR only, the contoured areas are only favorable for
the active convective and the development of thunderstorms. The activation (in %) of the CNN (red shading and solid contours every 15%) demarcates
regions that hold significant relevance for the CNN decision-making.

6.2 Class activation mapping: Systematic
analysis

As mentioned previously, most successful predictions of the
hail-affected area are obtained when hailstorms occur in form
of spatial-temporal clusters. A statistical approach to identify

prevalent convective patterns for hailstorms (Kunz et al., 2020)
can improve our understanding of the interplay between prevailing
conditions and predictions of the hail-affected area. In total, 56
accurately predicted hailstorm cases and 16 false alarm cases,
along with their corresponding activation heatmaps, are analysed
in the following (Supplementary Figure S4). The results reveal
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no obvious differences in terms of mid-level wind, wind shear
(BULKSH, VV6km), and convective indices (VT, TT) between
the two categories. However, cases with correct predictions exhibit
notably higher CAPESHEAR, coupled with a large-scale westerly
zonal wind at 500 hPa over Germany. False alarm cases lack these
distinct features and show lower values of Q850, indicating less
humid atmospheric conditions. One explanation might be that
during hit cases, strong southerly winds, frequently associated with
the Western side of blocking systems or ridges, tend to be stronger.
In contrast, false alarms are often associated with the transition from
weak westerly to weak easterly winds, which may be related to the
weaker blocking systems. To conclude, if storms are sparse and occur
in the distant regions far away from the strong convective activity,
the CNNs struggle to correctly predict the affected area. Composite
maps during hit cases show strong southwesterly winds on the
Western side of upper-tropospheric ridges (not shown). Also it is
noteworthy that the gradients in the false alarm are much weaker.
So overall this indicates considerably weaker shear.

To quantify the significance of the seven predictors included
in the ML prediction model, spatial correlations were computed
between daily activation heatmaps and the corresponding
environment fields of the predictors (Figure 9). The objective is to
compare the contributions of individual predictors to the CNN
models’ prediction in both correct forecasts and false alarms.
For example, in the two case studies, the correlation matrix
between the activation heatmap and the predictors U500, Q850,
VT, TT, and CAPESHEAR shows relatively high correlation
coefficients of 0.33, 0.57, 0.43, 0.61, and 0.46, respectively, on 13
May 2018 (Marked in Figure 9). Conversely, on 15 May 2018, the
corresponding correlation coefficients are relatively low, measuring
only 0.3, 0.39, −0.11, 0.12, and 0.14. Upon examining hail events
categorized as correct or incorrect cases, it becomes clear that there
is large variability in the correlation coefficients between different
predictor fields and heatmaps.

The boxplots (Figure 10) illustrate the distribution of the
correlation coefficients between the activation heatmap and the
different non-normalized convection-related parameters on a daily
basis. It highlights a large variability of the correlation coefficients
in the range between around −0.75 and +0.75, which complicate
the prediction of the hail-affected area for individual events.
CAPESHEAR in Figure 10A shows on average a high correlation
with the activation heatmaps and a narrower distribution, which
reaffirms its potential as a reliable predictor in ML applications
for environmental conditions leading to hail. Conversely, the
correlation coefficients for U500 exhibit a broader range and on
average negative values. This indicates that CNN models can hardly
gain predictive information from upper-level atmospheric flow
solely, such as blocking, which indirectly affects the convective
predisposition by influencing atmospheric instability (Mohr et al.,
2019; Mohr et al., 2020). Hit cases (Figure 10A) experience stronger
westerly winds associatedwith the northern side of blocking systems
or ridges, while false alarm cases (Figure 10B) often show weak
easterly winds, potentially linked to the northern edge of low-
pressure systems.

Furthermore, the consistently higher correlation coefficients for
VT, TT, and CAPESHEAR for correct forecast events compared
to false alarm events intuitively confirm the role and importance
of these three parameters for the ML model’s predictive decisions.

Further improvements might be possible by splitting the domain
in multiple patches, for which different models have to be trained.
Separate models for smaller patches could potentially account for
the spatial variability of the hailstorms.

7 Conclusions and discussion

Adequate predictions ofwhen,where, andhow severe hailstorms
will occur still pose a major challenge. In current operational NWP
models hail is often not a default forecast parameter because it
requires complex 2- or 3-moment microphysics schemes that are
computationally very expensive. In addition, the transient nature of
hailstorms further hinders accurate prediction in current models,
and forecast errors can grow quickly (Snook et al., 2016). The
primary objective of this study is hence to identify the most suitable
predictors among a large set of convection-related variables for
building an ML model capable of predicting the daily hail-affected
area in Germany. The reference data are radar-derived hailstorm
estimates for the period from 2005 to 2019 during the summer half-
year from April to September. We divide the entire 15 years of ERA5
reanalysis and radar-identified potential hailstorm data into 13 years
for training and validation (2005–2017) and 2 years for testing
(2018–2019). Sensitivity experiments are carried out considering
different times of day and 18 different convective parameters as
potential predictors. These experiments lead to the identification of
a set of seven predictors at 12 UTC (and 18 UTC). In the following,
we provide answers to the questions raised in the Introduction:

1. The CNN model developed in this study offers potential to
provide forecasts of the hail-affected area in Germany. In
comparison to simple reference forecasts based on climatology
and persistence, the CNN model exhibits a significantly higher
skill measured here in terms of MAE of the hail-affected area.
For events with large affected areas of at least 1,740 km2, the
CNN model exhibits a HSS of 0.66, along with a reasonable
accuracy rate of 88% compared to the climatology-based (0.51
HSS) and persistence-based forecast (0.36 HSS), positioning
it as a valuable tool for hail prediction. We assume that the
prediction skill may even further increase after fine-tuning in
future work.

2. From the 18 pre-selected convective parameter candidates,
U500, BULKSH,VV6km,Q850, VT, TT, andCAPESHEARare
identified as the seven best predictors. Notably, CAPESHEAR
not only shows a high correlation with the hail affected area,
but also emerges as the best single predictor in the ML model.
Among the parameters representing atmospheric dynamics,
vertical wind shear plays an important role in the accuracy
of the model predictions. Higher values of VT and TT also
improve the ML model’s ability to successfully predict hail
events, most likely because these parameters account for the
atmospheric vertical instability during hail days. The inclusion
of humidity parameters further improve the ML performance.
Dynamical parameters, such as BULKSH and VV6km, are
also of importance in the predictor selection. Despite being
highly correlated with each other, the inclusion of both still
slightly improvemodel performance. On the other hand, U500
alone, representing the large-scale atmospheric circulation at

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1527391
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1527391

FIGURE 9
Correlation matrix between ambient predictors (Table 1) at 12 UTC and the activation heatmaps of 72 observed hail events. The left (right) is for 56
correct forecast events (16 false alarm events) in Figure 7B.

mid-troposphere levels, does not provide valuable predictive
information for the ML model. Although different layers
of wind-related parameters can benefit reflecting convective
environments, additional but highly correlated layers of
wind have been filtered out by using the stepwise feature
selection method.

3. For isolated hailstorms or a small number of storms on
a day in a weakly unstable environment, especially in
regions with highCAPESHEAR values far from corresponding
storm tracks, the ML model tends to produce inaccurate
predictions. Looking at the synoptic conditions for the hit
and false alarm cases, U500 shows noticeable differences
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FIGURE 10
Boxplots of the correlation matrix (Figure 9) between ambient predictors at 12 UTC and the activation heatmap of observed hail events for (a) correct
forecasts and (b) false alarm events.

between the two samples. The results indicate that during hit
cases, westerly winds, frequently associated with the northern
side of blocking systems or ridges, tend to be stronger.
In contrast, false alarms are often associated with weak
easterly winds, which may be related to the northern edge of
low-pressure systems.

A major limitation of the chosen approach here is that the
CNN model predictions only offer information on the integrated
hail-affected area but not on the localization of individual
hailstorms. Future studies could aim to develop ML models for
such predictions, for example, by training on individual patches
distributed across Germany. This would increase the model’s
potential to be used for operational forecasting and warnings. Also,
developing distinctMLmodels for different instability environments
would be a potential avenue for future research. Environments
with strong instability are typically dominated by well-defined
convective processes, while weak instability environments may
involve subtler dynamics, such as elevated convection or mesoscale
lifting mechanisms. Tailored models could better capture the
unique features of each regime, enhancing overall prediction
accuracy. However, a limiting factor would be the reduction of
the training and test data when splitting the events in different
instability environments. Also, the classification into different
instability environments would introduce strict thresholds which
may degrade the models’ ability to generalize. An alternative
approach would be the introduction of composite parameters
specifically designed for weak instability environments. Different
ML models for other optimization strategies could also be
explored, for example, random forests, gradient boosting machines,
or transformer-based architectures, might offer complementary
advantages by taking into account temporal dependencies. Overall,
the study shows promising results in the prediction skill of ML
models for the daily hail-affected area. To our knowledge, no
previous research has considered the spatial extent of hailstorms,
which is—in combination with hail sizes—most relevant for the
potential damage it may cause. Although the ML model can
still be optimized, the feature selection of relevant parameters as
well as the class activation mapping provide valuable insights for
predictions of hailstorm occurrence and can give hints on the
involved processes. Besides, it showcases how to combine CNNs

with NWP models to improve hailstorm predictions and derive
warnings in the future.
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