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Carbonate reservoirs characterized by fractures and caves exhibit a complex
spatial distribution and significant heterogeneity. The establishment of precise
and reliable three-dimensional geological models is imperative to elucidate
the influence mechanism of fracture and cave parameters on macroscopic
petrophysical properties from a micro scale. This is the foundation and
prerequisite for the efficient development of such reservoirs. In this paper, dual-
scale CT core scanning data is utilized to adjust the segmentation threshold
of high-resolution (small-scale) cores to the segmentation of low-resolution
(large-scale) cores. This approach enables the comprehensive characterization
of multi-scale porosity in large-scale cores and the realization of multi-scale
digital core fusion. A 3D fracture digital core model was generated using a
Slice-GAN neural network model and SEM images. A well-developed cave was
extracted from low-resolution CT data and used as a cave digital core. Through
model superposition, a multi-scale digital core containing fractures and caves
was constructed. The reliability of the constructed digital core was verified
based on four parameters: aperture distribution, coordination number, porosity,
and resistivity. The research outcomes establish a foundation for subsequent
simulations, which aim to assess the resistivity response of the digital core
under varied fracture size, angle, and cave size conditions. This provides a
technical foundation for advancing the fundamental theoretical research of
carbonate rocks.
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1 Introduction

Carbonate formations hold significant importance in global oil and gas resources
(Jiménez et al., 2024; Aghdam et al., 2024). Globally, the discovered large-scale carbonate
oil and gas fields are mainly concentrated in North America, the Middle East, Siberia
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and the Asia-Pacific region, and the data show that about 52% of
the world’s proven oil and gas reserves and 60% of the world’s
oil and gas production data show that about 52% of the world’s
proven oil and gas reserves and 60% of the world’s oil and
gas production are derived from carbonates (Wen et al., 2023;
Mahamuda et al., 2023; Ma et al., 2024). In recent years, carbonates
in China have become a key area in oil and gas exploration and
development, showing great potential and value. China’s carbonate
gas reserves have grown significantly over the past 2 decades and
are expected to account for 40% of total domestic reserves by 2030
(Loucks et al., 2023; Zhou et al., 2024). Carbonate oil and gas
reservoirs in China are mainly distributed in deep to ultra-deep
strata in Tarim, Sichuan and Ordos basins (Zhang et al., 2024),
with buried depths exceeding 4,500 m (Sun et al., 2023). The pore
structure of carbonate reservoir is much more complex than that of
clastic reservoir, mainly because carbonate reservoir is controlled by
sedimentation, diagenesis and tectonics, especially diagenesis. Later
diagenetic transformation (compaction, cementation, dissolution
and dolomitization) can lead to the increase or decrease of porosity,
and can also change the original pore geometry and distribution by
changing the original sediment mineral composition. So, carbonate
reservoirs are characterized by diverse pore types, complex pore
structure evolution patterns, strong heterogeneity, and low matrix
porosity and permeability (Tian et al., 2020; Yao et al., 2024).
Therefore, the petrophysical evaluation of carbonate rocks also faces
many technical and theoretical challenges, which need to be further
studied and tackled.

The exploration practice has confirmed that deep-ultra-deep
carbonate reservoirs are dominated by dolomite reservoirs and
tuff reservoirs containing fractures and caves (Lyu et al., 2024;
Shen et al., 2024). The spatial distribution of this type of reservoirs
is complex and non-homogeneous. Therefore, the establishment
of accurate and reliable three-dimensional geologic models is the
basis and prerequisite for the efficient development of this type
of reservoirs (Chi et al., 2022; Wang et al., 2024). Compared with
clastic reservoir, carbonate fracture and cave reservoirs are formed
by the superposition of karst and tectonic fracture and other late
modification effects, with holes, caves, and fractures as the main
reservoir space, and the development of their reservoirs is not
subject to the constraints of sedimentary isochronous interfaces
(Liu et al., 2021; Wang et al., 2021; Hou et al., 2013), and the spatial
distribution of the reservoirs is extremely complex and random.
Its reservoir development is not constrained by sedimentary
isochronous interfaces, and the spatial spreading of the reservoir is
highly complex and stochastic, so the traditional clastic reservoir
modeling technique is not applicable to this type of carbonate
reservoirs (Lai et al., 2022; Franck et al., 2023; Bisdom et al., 2014).
Moreover, the porosity of carbonate rocks is often accompanied
by the filling of clay and asphalt (Liu et al., 2022), which further
increases the variability of rock physical properties. These complex
pores, fractures and caves lead to great challenges in the effective
evaluation of carbonate reservoirs.

Accurate calculation of resistivity is an important basis for the
evaluation of physical property parameters of carbonate reservoirs.
However, experimental results show that due to the development
of fractures and caves in carbonate reservoirs, the resistivity usually
presents obvious non- Archie phenomenon (He et al., 2020), which
is because the Archie formula was proposed for clastic rocks, it is

necessary to meet the conditions of uniform spatial distribution of
porosity and saturation and isotropic electrical properties (Archie,
1952). Obviously, the evaluation of the electrical characteristics
of carbonate reservoirs cannot be described by the traditional
Archie equation. Although there are researches on the resistivity of
carbonate rocks at home and abroad (Wang et al., 2017; Tariq et al.,
2020; Tian et al., 2020), however, few studies have been conducted
to quantitatively study reservoir resistivity by constructing network
models combined with pore structure characteristics of carbonate
reservoir rocks. The characteristics of rock fractures and caves are
usually not considered (Xiong et al., 2018) or themodels constructed
are simple (Zhang et al., 2014), which cannot reflect the influence
of pore structure characteristics such as pore distribution and pore
ratio on reservoir resistivity in reservoirs with fractures and caves.

Therefore, for carbonate rocks, it is an important means to
improve reservoir evaluation accuracy to construct a multi-scale
digital core that comprehensively considers the characteristics of
pores, fractures and caves, and clarify the influence mechanism of
matrix pore, fracture and cave parameters on macroscopic rock
physical properties from the micro-scale. This paper describes in
detail the construction process of this multi-scale digital core, and
focuses on how to reflect the fracture and cave characteristics,
and verifies the reliability of the constructed model by combining
numerical simulation and experimental data comparison. The
implementation of this set of methods and technical processes
can not only effectively guide the construction and simulation of
carbonate rock digital cores in the study area, but also help to
promote the effective exploitation and utilization of carbonate rock
oil and gas resources.

2 Samples and methods

2.1 Preparation of samples

In this study, a carbonate rock sample fromDengying Formation
in X area of Sichuan Basin, China was selected. Three-dimensional
core images with different resolutions were obtained by X-ray CT
scanning of rock samples. Avizo software was used to divide the
core scanning samples into 300 × 300 × 300 voxel unit samples,
and one unit sample was selected for study. Core samples for
CT imaging included centimeter and millimeter plunger cores
(Figure 1), and centimeter plunger cores were cylinders with a
diameter of 2.54 cm and a height of 3.82. NMR experiment aperture
distribution analysis results show that the pore radius of the sample is
mainly distributed in the range of 5–600μm, and presents a “double
peak” feature, large-scale pores aremainly distributed in the range of
10–600μm, and small-scale pores aremainly distributed in the range
of 5–10 μm. It can reflect the large-scale structural characteristics
of the core (fractures, large pores, caves), so for low resolution
scanning, we qualitatively set the scanning resolution at 27μm, and
the scanning results are shown in Figure 1A. Under the condition
of low resolution, fractures, large pores, and caves in the rock can be
identified, but a large number of small pores are lost at the same time,
which will lead to calculation errors of key parameters such as pore
connectivity and throat size distribution, and the omission of small
pores will directly reduce the calculation results of total porosity,
thus affecting the calculation accuracy of reservoir parameters. To
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FIGURE 1
(A) Cross section and 3D of CT scan of centimeter scale plunger core. (B) Cross section and 3D of CT scan of millimeter scale plunger core.
Centimeter-scale plunger cores and millimeter-scale plunger cores with resolutions of 27 μm and 4 μm, respectively.

more accurately image the small pores in the core, a millimeter
plunger sample with a diameter of 4 mm and a height of 6 mm was
drilled in a 2.54 cm cylinder using a millimeter drill bit. Smaller
sample sizes have better X-ray penetration and can be imprinted
with higher-precision micron CT or even nanometer CT. Figure 1B
shows a high-precision micron CT scan image of a drilled 4 mm
plunger with a resolution of 4 μm. At higher resolution, micro-
fractures and smaller pores can be accurately identified, and the
boundaries of different mineral particles are more pronounced.

2.2 Construction of a multiscale digital
core based on dual-scale CT

The pore space in carbonate rocks mainly includes matrix
pores, fractures and caves. Matrix pores refer to interparticle
and intraparticle pores, mainly intergranular pores, which are
determined by diagenesis; fractures are larger voids caused by
stress and geological movements; and caves are larger voids formed
by chemical dissolution and other effects. In the study of digital
core construction, in order to simultaneously consider the effects
of matrix pores, fractures and caves on macroscopic physical
parameters in carbonate rocks, we need to construct digital cores of
matrix pores, fractures and caves, and then integrate the three kinds
of pore spaces by superposition.

Due to the wide range of pore size distribution in the matrix
pores of carbonate rocks, the pore space of carbonate rocks cannot
be fully characterized by X-ray CT scanning based on a single
resolution. Therefore, in this paper, we first refer to the multi-
scale fusion method of Cui et al. (2020), Liu et al. (2023) and
other researchers, and use the grayscale segmentation threshold
value of the high-resolution image to adjust the segmentation of
the low-resolution image, so that the multi-scale pore space of
the low-resolution image can be characterized more completely.
The basic process is based on the two different scales of CT scan
core image data obtained in the sample preparation stage, high-
resolution images correspond to small-size cores and low-resolution
images correspond to large-size cores, and then the original
grayscale image (Figure 2A) is processed by filtering (Figure 2B),
alignment (Figure 2C), threshold adjustment (Figure 2D) and

segmentation (Figure 2E), so that the pore information of the core
with different resolutions is fused to construct a multi-scale 3D
digital core (Figure 2F). The image filtering process can reduce
the influence of noise in the original gray-scale image; image
alignment can spatially align the image information of different
resolution cores, thus facilitating the purpose of fusing the small
pore information in the high-resolution cores into the large pores
in the low-resolution cores; and the purpose of image segmentation
is to distinguish the pores from the skeleton information in the
core image.

The pore characteristics of different resolution cores are
illustrated in Figure 3. A multi-scale digital core constructed based
on the data in this study area is shown in Figure 4. This multi-scale
core is a square intercepted from the multi-scale core after multi-
scale fusion. The square is intercepted for the purpose of facilitating
the processing and analysis of the data. This contributes to the
spatial utilization and standardization of the measurements. It also
facilitates the comparison of the data between different samples.

2.3 Multi-scale digital core construction
with fracture and cave

The lithology and pore structure of carbonate rocks are
extremely complex, and this complexity is manifested in the
development of multiple media such as matrix pores, fractures and
caves at different scales.The construction of multi-scale digital cores
has already laid the foundation for the study of matrix pores, but in
order to further study the response law ofmacro-physical properties
such as rock resistivity under the superposition of multiple effects
of fractures and caves, it is necessary to construct digital cores with
different fracture parameters and cave parameters on the basis of
multi-scale digital cores.

For the construction of fractures, in this study, the slice images
with more developed fractures in the SEM images (Figure 5A)
were selected and pore segmentation was performed in Avizo
(Jing et al., 2023) (Figure 5B), and the Slice-GAN neural network
model (Figures 5C, D) was used to generate the 3D fracture digital
cores (Figure 5E), and then the ones with regular shapes that
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FIGURE 2
(A) Grayscale images. (B) Binary images after image filtering. (C) Image registration (left resolution: 27 μm; right resolution: 4 μm). (D) Porosity-gray
distribution curve. (E) Red: poros, blue; skeleton. (F) Multi-scale digital core with 27 μm and 4 μm resolution pores. Multi-scale fusion process of
digital core.

FIGURE 3
Pore segmentation results of cores with different resolutions.

were easy to adjust were extracted as the final fracture digital
core model (Figure 5F).

Traditional 3D digital core model construction methods are
mainly divided into two types: physical experimental method (such
as X-ray CT scanning) and numerical reconstruction method (such
as simulated annealing method, process simulation method). The

former is limited by the contradiction between equipment resolution
and sample size, and the latter is difficult to reproduce complex pore
topology. With the development of deep learning technology, 3D
reconstruction methods based on generative adversarial networks
(GAN) have gradually emerged (Li et al., 2023; Wang et al.,
2023). Traditional 3D GAN algorithms generate volumetric data
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FIGURE 4
Reconstructed multi-scale digital core.

directly through 3D convolutions, but require extensive high-quality
3D training samples (Wu et al., 2017), which constrains their
application in petrophysical domains. Compared with 3D digital
core imaging data, which is difficult to obtain, imaging data such
as 2D scanning electron microscopy often has the advantages
of high efficiency and high precision, stronger phase recognition
ability, and wider application range. It is of great significance to
consider the construction of 3D images based on 2D imaging data.
Steve and Samuel (2021) proposed a generation adduction network
architecture Slice-GAN, which can build three-dimensional high-
fidelity images based on two-dimensional images. The advantage of
Slice-GAN algorithm is that it introduces spatial consistency loss
function to realize the coordinated mapping of two-dimensional
features and three-dimensional structures, laying a foundation for
the construction of three-dimensional images. Especially suitable
for small sample rock data. The fundamental algorithm of Slice-
GAN originates from Generative Adversarial Networks (GAN)
(Bostanabad, 2020). A GAN framework comprises two neural
networks (Arjovsky et al., 2017): a generator (G) that produces
synthetic samples (f), and a discriminator (D) that evaluates the
discrepancy between f and real samples (r). Through iterative
parameter updates during model training, the discrepancy between
f and r is progressively minimized. The principle of the Slice-
GAN algorithm is implemented by introducing a slicing step before
the generator (G) sends fake images to the discriminator (D)
(Figure 5C). For a generated three-dimensional volume with length
l voxels, during the training of discriminator D, slicing operations
are performed along the x, y, and z directions at l-voxel intervals to
obtain three fake two-dimensional slices fed back to D (Figure 5D).
Concurrently, real two-dimensional slices are sampled and input
to the discriminator, enabling D to learn equally from both real
and synthetic instances. Ultimately, the algorithm generates the final
three-dimensional volume under the condition that the discrepancy
between synthetic (f) and real (r) data is minimized (Steve and
Samuel, 2021).

Due to this study primarily aims to construct a three-
dimensional fractured digital rock model and integrate it into
multi-scale porous digital rocks for numerical simulations under
varying fracture parameters, it does not require extensive training
samples to validate model accuracy. The principal objective focuses
on successfully generating three-dimensional undulating fracture
geometries. In this study, Slice-GAN demonstrates significant
applicability. In comparison with the planar fracture configurations
constructed by Liu et al. (2023), the Slice-GAN-based fractures
exhibit undulating characteristics that better alignwith fundamental
geological principles, more closely resembling natural fracture
morphologies.

For the construction of the caves, this study extracted a better-
developed cave in the low-resolution (large-scale) CT scan data.
In carbonate reservoirs, more caves are developed, and single or
multiple caves can be extracted by visualizing the location of the
caves through three-dimensional imaging of the CT scan data. After
finding the location of a cave, the discrete and isolated small pores
around the cave are removed, and the smooth and single cave is
retained as the cave digital core (Figure 6).

By restricting the constructed fracture digital cores and
extracted cave digital cores to the middle of the grid of
multi-scale matrix pore digital cores, a multi-scale digital core
model with fracture and cave can be obtained (Figure 7). By
scaling up or down and adjusting the angle, we can obtain
digital cores of fractures and caves with different fracture sizes,
different fracture angles and different cave sizes. This will lay
an important foundation for the study of the macroscopic
physical response of carbonate rocks under different fracture and
cave parameters.

2.4 Principles of rock resistivity simulation
by the finite element method

For a current in steady state, the following relation exists
between current density ⃑j and charge density ρ according to the
continuity equation of the current (Equation 1):

∇ · ⃑j+
∂ρ
∂t
= 0, (1)

Further based on the relationship between current density and
electric field strength, combined with conductivity σ (Equation 2):

∇ · ⃑j = ∇ · (σE⃑) = 0, (2)

In general, the conductivity is a constant, and since E⃑ = ∇U, the
above equation can be morphed to:

σ∇2U = 0, (3)

Equation 3 is the Laplace equation (Song et al., 2014), and
solving the Laplace equation under the condition of applying a
stable electric field e to the homogeneous model, the corresponding
electric potential, and thus the conductivity, can be calculated.
However, for 3D digital cores, there are multiphase conductivities
of the skeleton and fluid in the core, and the complex pore
structure results in a complicated shape of the calculation area,
making it difficult to find an exact solution to the problem.
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FIGURE 5
(A) Original SEM image. (B) Fracture segmentation. (C) Sampling from training data of Slice-GAN (real slices). (D) Generation and Slicing (fake slices). (E)
Reconstruction of digital core. (F) Extracted 3D fracture body. Digital core construction for fracture.

FIGURE 6
(A) Finding a cave. (B) Remove the pores around the cave. (C) Cave. Cave digital core extraction.

To address this problem, the finite element method (FEM) is
commonly used in 3D digital core simulations (Calo et al., 2011).
The FEM method is based on the variational principle, given the
conductivity of each component of the core, the variational method
is used to convert the electric field problem into a problem of
solving the very small value of the overall energy En function of
the digital core.

En = 1
2
∫epσpqeqd3r, (4)

where p and q correspond to the x and y components of the
electric field e, and σpq denotes the conductivity tensor normal to
the xoy plane. r denotes the node number, and each voxel cell in the
digital core possesses nodes numbered from 1 to 8.

The voltage function U is expressed as:

U(x,y,z) = Nrur, (5)

where ur denotes the voltage at the r-node. Nr −Nr(x,y,z) is a
trilinear interpolation function of the voxel internal coordinates (x,
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FIGURE 7
(A) GAN reconstruction fracture. (B) Multi-scale digital core with fracture. (C) Cave extracted by CT. (D) Multi-scale digital core with cave. (E)
Multi-scale digital core with fracture and cave. Multi-scale digital core containing fractures and caves.

y, z) to the shape matrix (Equation 6):

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

N1 = (1− x)(1− y)(1− z)
N2 = x(1− y)(1− z)
N3 = xy(1− z)
N4 = (1− x)y(1− z)
N5 = (1− x)(1− y)z
N6 = x(1− y)z
N7 = xyz
N8 = (1− x)yz

(6)

For a given voxel, the component of the electric field e in its p-
direction is expressed as:

ep(x,y,z) = −
∂U(x,y,z)

∂xp
, (7)

Substituting Equation 5 into Equation 7, the components
transform into:

ep(x,y,z) = −
∂
∂xp
[Nrur] = −[

∂Nr

∂xp
]ur, (8)

Substitute Equation 8 into Equation 4, get Equation 9:

En = 1
2
ur[∫nTprspqnqsd3r]us, (9)

where us is the nodal voltage within the voxel cell that is centrally
symmetric to node r. In the finite element method, the single voxel
energy En is expressed as (Equation 10):

En = 1
2
urDrsus, (10)

Drs is a strength matrix with a specification of eight rows and
eight columns in the finite element method. According to the
variational principle, the problem of solving the voltage distribution
on each pixel is transformed into the problem of solving the energy
extremum of the system. When En of any node um takes an
extreme value, its partial derivative should be equal to 0 or the limit
is close to 0:

∂En
∂um
= 0. (11)

By solving Equation 11, the power consumed by the whole
system can be obtained by finally summing up the minimum energy
of all voxel points. Then the resistivity of the core can be obtained
by dividing the difference between the current direction of the
core and the voltage at the inlet and outlet ends by the current
density. Regarding the present study, the principle of the above
method, i.e., the process, is realized by COMSOL physical field
simulation software (Xie et al., 2023).

3 Results and discussion

3.1 Consistency analysis of digital core and
NMR data

Quantification and characterization of the pore structure of
multi-scale digital cores based on Aviao image processing software
and comparison with the results of NMR experiments can indirectly
indicate whether the model is reliable or not. Using the algorithm of
the PNMmodule of Aviao software, the distribution of coordination
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FIGURE 8
Distribution of coordination number of the model.

number (the number of individual pores in a state of connection
with their neighboring pores), the distribution of pore radius, and
the porosity of the pore networkmodel can be obtained. Comparing
the quantified coordination number, pore radius and porosity of
the multi-scale digital core with the NMR experiment of this
sample core, we can analyze whether the multi-scale digital core has
reliability.

As shown in Figures 8, 9, the pore radius of the low-resolution
pore network model is basically distributed in 10–600 μm, with an
average pore radius of 46.5 μm, which mainly describes the pore
characteristics of the dissolution pores; the pore radius of the high-
resolution pore network model is basically distributed in 1–40 μm,
with an average pore radius of 7.3 μm, which mainly describes the
pore characteristics of the matrix pores. The pore network model
pore radius distribution of the multi-scale digital core after multi-
scale fusion generally follows the bimodal distribution, which is in
good agreement with the pore radius distribution extracted from
the NMR experimental data, and contains both pores and cavities,
which is in line with the multi-scale characteristics of the pore
distribution of pore-type carbonate rocks.The coordination number
of the pore network model is mainly distributed between 0 and
5, and the percentage of pores with a coordination number of 0
in the pore network of low-resolution digital cores is 57%, which
indicates that the connectivity is poor, and the consistency of the
distribution of the coordination number of the pore network of
high-resolution digital cores and multi-scale digital cores is better,
which also indicates that the large-scale digital cores with a low
resolution directly can not accurately characterize the pore structure
of the reservoir, which reflects the importance of the multi-scale
fusion. The importance of multi-scale fusion is demonstrated. The
porosity of the sample core is 4.26% in the NMR experiment, and
the porosity of the multi-scale digital core model is 4.09%, which
further shows that the multi-scale digital core and the NMR data are
in good agreement, and the pore structure of the reservoir can be
more accurately characterized.

FIGURE 9
Pore radius distribution of the model.

3.2 Consistency analysis between
experimental and simulated values of
resistivity

Importing the reconstructed multi-scale digital core into
COMSOL multiphysics field simulation software for resistivity
simulation and comparing it with the experimental resistivity results
can show whether the rock physics simulation is reliable. The basic
process of resistivity simulation based on COMSOL is as follows:
importing the multi-scale digital core, defining the resistivity of
the material (the data can be found according to the rock type),
configuring the current input, configuring the boundary conditions
and voltage source, and running the resistivity simulation.

The digital core was constructed as a 300 × 300 × 300 grid
(Figure 10A), each grid to correspond to each voxel of the digital
core. Each cell within the grid corresponds to a different component
assigned a different conductivity, and after applying an external
electric field E, the voltage distribution of the model is calculated
using the finite element method so that the resistivity is finally
derived from the relationship between voltage and current, and the
potential distribution and current flow paths during the calculation
of resistivity by COMSOL are shown in Figures 10B, C. In order to
facilitate the comparison with the experimental data, after obtaining
the resistivity of the core, the resistivity increase coefficient of the
rock can be calculated by Equation 12:

I =
Rt

Ro
= b
Snw
. (12)

where, I is the coefficient of resistivity increase; Rt is the rock
resistivity; Ro is the resistivity of the rock at 100% water content; b is
a constant related to lithology; and n is the saturation index.

Figure 11 shows the resistivity increasing coefficients of rock
under different water saturation conditions calculated by using
the finite element method module in COMSOL. The numerical
simulation results are in good agreement with the experimental
results. The average relative error is 9.4% and the correlation
coefficient (R2) is 0.88. Combined with the results of the above
comparative analysis of pore size distribution, coordination number
and porosity, we believe that the constructed multi-scale digital core
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FIGURE 10
(A) Grid diagram. (B) Potential distribution diagram. (C) Current flow diagram. Mesh diagram and potential-current diagram in COMSOL.

FIGURE 11
Numerical simulation results of resistivity index of rock core.

model has a strong reliability, and the process method of digital
core submission is reasonable. Based on the constructed digital core,
it can lay a good foundation for the subsequent simulation and
evaluation of carbonate rock physical property parameters.

4 Conclusion

(1) Multi-scale digital core construction was realized based on
dual-scale core CT core scanning data and multi-scale fusion
technology.

(2) A 3D fracture digital core model was generated based on
scanning electron microscope images and Slice-GAN neural
network model, and a better-developed cave were extracted

from low-resolution CT data as cave digital cores, and
multi-scale digital cores containing fractures and caves were
constructed by model superposition.

(3) Comparing the pore size distribution, coordination number,
porosity and resistivity of the multi-scale digital core with
the experimental data, the reliability of the constructed digital
core is verified. The research results can lay the foundation for
the next step to realize the simulation of the response law of
resistivity of the digital core under the conditions of different
fracture sizes, different fracture angles and different cave sizes,
which will provide technical support for the basic theoretical
research of carbonate rocks.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

GL: Writing – review and editing, Writing – original draft.
JZ: Writing – original draft, Writing – review and editing. YL:
Data curation, Investigation, Writing – review and editing. ZX:
Data curation, Investigation, Writing – review and editing. SC:
Data curation, Investigation, Writing – review and editing. BW:
Formal Analysis, Investigation, Methodology, Writing – review
and editing. CZ: Formal Analysis, Investigation, Methodology,
Writing – review and editing. YM: Formal Analysis, Investigation,
Methodology, Writing – review and editing. YX: Data curation,
Investigation, Software, Writing – review and editing. LX: Data
curation, Investigation, Software, Writing – review and editing.
JS: Data curation, Investigation, Software, Writing – review and
editing. ZH:Data curation, Investigation, Software,Writing – review
and editing.

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2025.1528829
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1528829

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This
work was supported by the National Natural Science
Foundation of China (No. 42174143), Petrochina Science
and Technology Project “Multi-Physical Field High-precision
Oil and Gas Geophysical Exploration Technology and
Equipment” Project “Research on Multi-physical Field Joint
Monitoring and Evaluation Method of Oil and Gas Reservoirs”
(No. 2023ZZ05), and Scientific Research and Technology
Development Project of CNPC Well Logging Co., LTD. “Well
Logging Reservoir and Geology Research” (No. CNLC 2024-
8B04).

Acknowledgments

This paper has been strongly supported by the engineers
of CNPC Logging Co., Ltd. and the scholars of China
University of Petroleum (East China). Thank you again for
your efforts.

Conflict of interest

Authors GL, JZ, ZX, SC, BW, CZ, YM, YX, and ZH were
employed by China Petroleum Logging Company Limited.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from
PetroChina Company Limited. The funder had the following
involvement in the study: study design, data collection,
interpretation of data, and data analysis. The authors declare that
this study received funding fromCNPCWell Logging Co., LTD.The
funder had the following involvement in the study: data collection,
financial support, the writing of this article, and the decision to
submit it for publication.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Aghdam, A. M., Riahi, S., and Khani, O. (2024). Experimental study of the effect
of oil polarity on smart waterflooding in carbonate reservoirs. Sci. Rep. 14 (1), 22190.
doi:10.1038/s41598-024-72604-8

Archie, G. E. (1952). Classificationof carbonate reservoir rocks and petrophysical
considerations. AAPG Bull. 36 (2), 278–298. doi:10.1306/3d9343f7-16b1-11d7-
8645000102c1865d

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv Prepr. arXiv
1701, 07875. doi:10.48550/arXiv.1701.07875

Bisdom, K., Cauthier, M. D. B., Bertotti, G., and Hardebol, N. (2014). Calibrating
discrete fracture-network models with a carbonate three-dimensional outcrop fracture
network: implications for naturally fractured reservoir modeling. AAPG Bull. 98 (7),
1351–1376. doi:10.1306/02031413060

Bostanabad, R. (2020). Reconstruction of 3D microstructures from 2D images via
transfer learning. Computer-Aided Des. 128, 102906. doi:10.1016/j.cad.2020.102906

Calo, M. V., Pardo, D., and Paszyński, R. M. (2011). Goal-oriented self-adaptive hp
finite element simulation of 3D DC borehole resistivity simulations. Procedia Comput.
Sci. 4 (C), 1485–1495. doi:10.1016/j.procs.2011.04.161

Chi, P., Sun, J. M.,Wang, Z. Y., Ju, R., Wei, B., and Duan, Y. (2022). Simulation of flow
characteristics and development of permeability model in fractured-vuggy carbonate
reservoir. J. Petroleum Sci. Eng. 219, 111098. doi:10.1016/j.petrol.2022.111098

Cui, L. K., Sun, J. M., Yan, W. C., and Dong, H. M. (2020). Multi-scale and multi-
component digital core construction and elastic property simulation. Appl. Geophys.
17, 26–36. doi:10.1007/s11770-019-0789-7

Franck, K. A. K., Lin, P., Xiao, W., Wang, Z., Mulashani, A. K., James, F., et al.
(2023). Identification of karst cavities from 2D seismic wave impedance images based
on gradient-boosting decision trees algorithms (GBDT): case of ordovician fracture-
vuggy carbonate reservoir, tahe oilfield, tarim basin, China. Energies 16 (2), 643.
doi:10.3390/en16020643

He, J. H., Li, M., Zhou, K., Yang, Y., Xie, B., et al. (2020). Effects of vugs on
resistivity of vuggy carbonate reservoirs. Petroleum Explor. and Dev. 47 (3), 527–535.
doi:10.1016/s1876-3804(20)60070-2

Hou, J. G., Ma, X. Q., and Hu, X. Y. (2013). Key issues of 3D geological modeling of
paleokarst-cave carbonate reservoir.Geol. J. ChinaUniv. 19 (01), 64–69. Available online
at: https://geology.nju.edu.cn/EN/abstract/abstract9493.shtml

Jiménez, G., Latiff, A. H. A., Habel, B. W., and Poppelreiter, M. (2024).
Effective application of geological process modeling for unravelling carbonate
build-up complexity: a case study from the EX-Carbonate build-up in central
Luconia Province, Malaysia [J]. Mar. Petroleum Geol. 170, 107117–107117.
doi:10.1016/j.marpetgeo.2024.107117

Jing, H., Dan, H., Shan, H., and Liu, X. (2023). Investigation on three-dimensional
void mesostructures and geometries in porous asphalt mixture based on computed
tomography (CT) images and Avizo.Materials 16 (23), 7426. doi:10.3390/ma16237426

Lai, F. Q., Liu, Y. J., and Zhang, H. J. (2022). Fracturing propertiesmodel of deep shale
gas reservoir based on digital core simulation. J. China Univ. Petroleum Edition Nat. Sci.
46 (05), 1–11. doi:10.3969/j.issn.1673-5005.2022.05.001

Li, X. B., Li, B. K., Liu, F. Z., Li, T., and Nie, X. (2023). Advances in the application
of deep learning methods to digital rock technology. Adv. Geo-Energy Res. 8 (1), 5–18.
doi:10.46690/ager.2023.04.02

Liu, S. G., Li, Z. Q., Deng, B., Sun,W., Ding, Y., et al. (2022). Occurrence morphology
of bitumen in Dengying Formation deep and ultra-deep carbonate reservoirs of the
Sichuan Basin and its indicating significance to oil and gas reservoirs. Nat. Gas. Ind. B
9 (1), 73–83. doi:10.1016/j.ngib.2022.01.001

Liu, Y. J., Lai, F. Q., Zhang, H. J., ZhouJie, T., Yifei, W., Xiaotian, Z., et al. (2021). A
novel mineral composition inversion method of deep shale gas reservoir in Western
Chongqing. J. Petroleum Sci. Eng. 202, 108528. doi:10.1016/j.petrol.2021.108528

Liu, Y. J.,Wang, H. T., Lai, F. Q.,Wang, R., Zhang, H., Zhang, X., et al. (2023). Analysis
of influencing factors of Poisson’s ratio in deep shale gas reservoir based on digital core
simulation. Petrophysics 64 (01), 67–79. doi:10.30632/pjv64n1-2023a5

Loucks, R. G., Reed, R. M., Zeng, H. L., and Periwal, P. (2023). Carbonate
sedimentation and reservoirs associated with a volcanic mound in an open-
marine, deep-water, drowned platform setting, Elaine field area, Upper Cretaceous
Anacacho Formation, South Texas U.S.A. Mar. Petroleum Geol. 154, 106314.
doi:10.1016/j.marpetgeo.2023.106314

Lyu, X., Ju, B., Wang, B., Wu, X., and Ding, Y. (2024). Mechanism, mode, and
prediction of karst caves collapse in the deepmarine carbonate fracture-cavity reservoir.
Mar. Petroleum Geol. 167, 106978. doi:10.1016/j.marpetgeo.2024.106978

Ma, Y. S., Cai, X. Y., Li,M.W., Li, H., Zhu, D., Qiu, N., et al. (2024). Research advances
on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1528829
https://doi.org/10.1038/s41598-024-72604-8
https://doi.org/10.1306/3d9343f7-16b1-11d7-8645000102c1865d
https://doi.org/10.1306/3d9343f7-16b1-11d7-8645000102c1865d
https://doi.org/10.48550/arXiv.1701.07875
https://doi.org/10.1306/02031413060
https://doi.org/10.1016/j.cad.2020.102906
https://doi.org/10.1016/j.procs.2011.04.161
https://doi.org/10.1016/j.petrol.2022.111098
https://doi.org/10.1007/s11770-019-0789-7
https://doi.org/10.3390/en16020643
https://doi.org/10.1016/s1876-3804(20)60070-2
https://geology.nju.edu.cn/EN/abstract/abstract9493.shtml
https://doi.org/10.1016/j.marpetgeo.2024.107117
https://doi.org/10.3390/ma16237426
https://doi.org/10.3969/j.issn.1673-5005.2022.05.001
https://doi.org/10.46690/ager.2023.04.02
https://doi.org/10.1016/j.ngib.2022.01.001
https://doi.org/10.1016/j.petrol.2021.108528
https://doi.org/10.30632/pjv64n1-2023a5
https://doi.org/10.1016/j.marpetgeo.2023.106314
https://doi.org/10.1016/j.marpetgeo.2024.106978
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1528829

and gas development methods of deep and ultra-deep marine carbonates. Petroleum
Explor. Dev. Online 51 (4), 795–812. doi:10.1016/s1876-3804(24)60507-0

Mahamuda,A., Ajayi, O. E., Adesina,M.A., andAsiedu,D.K. (2023).The implication
of sedimentary facies, petrography, and palynofacies of shales and carbonates of theOti-
Pendjari and Kwahu-Bombouaka Groups on the hydrocarbon potential of the Voltaian
Basin of Ghana. Arabian J. Geosciences 16 (10), 558. doi:10.1007/s12517-023-11671-z

Shen, A. J., Hu, A. P., and Qiao, Z. F. (2024). Development and preservation
mechanism of deep and ultra-deep carbonate reservoirs. Sci. Sin. (Terrae). 54 (11),
3403–3420. doi:10.1007/s11430-023-1417-8

Song, Y. J., Li, X. J., and Tang, X. M. (2014). Matrix-conducting resistivity model for
clean sands based on connectivity conductance theory and HB equation. J. China Univ.
Petroleum Ed. Nat. Sci. 38 (05), 66–74. doi:10.3969/j.issn.1673-5005.2014.05.009

Steve, K., and Samuel, S. C. (2021). Generating three-dimensional structures from
a two-dimensional slice with generative adversarial network-based dimensionality
expansion. Nat. Mach. Intell. 3 (4), 299–305. doi:10.1038/s42256-021-00322-1

Sun, T. J., Luo, X. P., Mi, W. T., Woods, A., Chiarella, D., Qing, H., et al. (2023).
Characterization of ultra-deeply buried middle Triassic Leikoupo marine carbonate
petroleum system in theWestern Sichuan depression, China.Mar. Petroleum Geol. 150,
106099. doi:10.1016/j.marpetgeo.2023.106099

Tariq, Z., Mahmoud, M., Al-Youssef, H., and Rasheed Khan, M. (2020). Carbonate
rocks resistivity determination using dual and triple porosity conductivity models.
Petroleum 6 (01), 35–42. doi:10.1016/j.petlm.2019.04.005

Tian, H., Wang, G. W., and Wang, K. W. (2020). Study on the effect of pore
structure on resistivity of carbonate reservoirs. Chin. J. Geophys. 63 (11), 4232–4243.
doi:10.6038/cjg2020O0110

Wang, B., Wang, J., and Liu, Y. (2023). 3D carbonate digital rock reconstruction
by self-attention network and GAN structure. Appl. Sci. 13 (24), 13006.
doi:10.3390/app132413006

Wang, B.W., Zhang, S.D., and Ji, R. (2017). Application ofmicroscope high resolution
LWD resistivity image logging in carbonate reservoir in Sichuan Basin. Well Logging
Technol. 41 (3), 358–363. doi:10.16489/j.issn.1004-1338.2017.03.020

Wang, Q., Zhang, Y. T., and Zhang, J. (2024). Advance in geological modeling
methods of fracture-cavity carbonate reservoirs. Mar. Orig. Pet. Geol. 29 (01), 99–112.
doi:10.3969/j.issn.1672-9854.2024.01.009

Wang, R. Y., Hu, Z. Q., and Zhou, T. (2021). Characteristics of fractures
and their significance for reservoirs in Wufeng - longmaxi shale, Sichuan
Basin and its periphery. Oil and Gas Geol. 42 (6), 1295–1306. doi:10.11743/
ogg20210605

Wen, Y. C., Hou, J. R., Xiao, X. L., Qu, M., Zhao, Y. J., et al. (2023).
Utilization mechanism of foam flooding and distribution situation of residual
oil in fractured-vuggy carbonate reservoirs. Petroleum Sci. 20 (3), 1620–1639.
doi:10.1016/j.petsci.2022.11.020

Wu, J. J., Zhang, C. K., and Xue, T. F. (2017). Learning a probabilistic latent
space of object shapes via 3D generative-adversarial modeling. Arxiv. 1610.07584.
doi:10.48550/arXiv.1610.07584

Xie, J., Cui, Y. A., and Chen, H. (2023). 3D DC resistivity numerical modeling
by natural-infinite element coupling method. Chin. J. Geophys. 66 (06), 2670–2684.
doi:10.6038/cjg2022Q0064

Xiong, J., Zhang, C. Y., and Liu, X. J. (2018). “The influence of confining
pressure on the cementation index m and the saturation index n of carbonate
reservoir,” inBeijing: 2018 international geophysical conference, 1228–1231. doi:10.6038/
cjg2022Q0064

Yao, Y. T., Zeng, L. B., Dong, S. Q., Huang, C., Cao, D., Mao, Z., et al.
(2024). Using seismic methods to detect connectivity of fracture networks
controlled by strike-slip faults in ultra-deep carbonate reservoirs: a case study
in northern tarim basin, China. J. Struct. Geol. 180, 105060. doi:10.1016/j.jsg.2024.
105060

Zhang, Z. H., Gao, C. Q., and Gao, Y. D. (2014). Theoretical simulation
and analysis factors of resistivity in vuggy reservoir. J. Southwest Petroleum
Univ. Sci. and Technol. Ed. 36 (2), 79–84. doi:10.11885/j.issn.1674-5086.
2012.08.30.14

Zhang, Z. L., Zhao, L. Z., Zhang, D. W., Li, Q., Chen, H., Wen, L.,
et al. (2024). Diagenetic evolution and cementation mechanism in deep
Carbonate reservoirs: a case study of Dengying Fm. 2 in Penglai, Sichuan
Basin, China. Mar. Petroleum Geol. 170, 107084. doi:10.1016/j.marpetgeo.
2024.107084

Zhou, J. G., Xu, Z. H., and Huang, S. W. (2024). Frontiers and trends in the research
on carbonate sedimentology and reservoir geology.Oil and Gas Geol. 45 (04), 929–953.
doi:10.11743/ogg20240404

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1528829
https://doi.org/10.1016/s1876-3804(24)60507-0
https://doi.org/10.1007/s12517-023-11671-z
https://doi.org/10.1007/s11430-023-1417-8
https://doi.org/10.3969/j.issn.1673-5005.2014.05.009
https://doi.org/10.1038/s42256-021-00322-1
https://doi.org/10.1016/j.marpetgeo.2023.106099
https://doi.org/10.1016/j.petlm.2019.04.005
https://doi.org/10.6038/cjg2020O0110
https://doi.org/10.3390/app132413006
https://doi.org/10.16489/j.issn.1004-1338.2017.03.020
https://doi.org/10.3969/j.issn.1672-9854.2024.01.009
https://doi.org/10.11743/ogg20210605
https://doi.org/10.11743/ogg20210605
https://doi.org/10.1016/j.petsci.2022.11.020
https://doi.org/10.48550/arXiv.1610.07584
https://doi.org/10.6038/cjg2022Q0064
https://doi.org/10.6038/cjg2022Q0064
https://doi.org/10.6038/cjg2022Q0064
https://doi.org/10.1016/j.jsg.2024.105060
https://doi.org/10.1016/j.jsg.2024.105060
https://doi.org/10.11885/j.issn.1674-5086.2012.08.30.14
https://doi.org/10.11885/j.issn.1674-5086.2012.08.30.14
https://doi.org/10.1016/j.marpetgeo.2024.107084
https://doi.org/10.1016/j.marpetgeo.2024.107084
https://doi.org/10.11743/ogg20240404
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Samples and methods
	2.1 Preparation of samples
	2.2 Construction of a multiscale digital core based on dual-scale CT
	2.3 Multi-scale digital core construction with fracture and cave
	2.4 Principles of rock resistivity simulation by the finite element method

	3 Results and discussion
	3.1 Consistency analysis of digital core and NMR data
	3.2 Consistency analysis between experimental and simulated values of resistivity

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

