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Machine learning approach for
prediction of safe mud window
based on geochemical drilling
log data

Hongchen Cai, Yunliang Yu*, Yingchun Liu and Xiangwei Gao

College of Earth Sciences, Jilin University, Changchun, China

Background: Accurate prediction of the safe mud window (SMW) is critical
for drilling operations to prevent costly risks such as blowouts, mud
loss, and wellbore instability. Traditional geomechanical methods for SMW
determination face challenges in handling complex, nonlinear relationships
within drilling datasets.

Purpose: This study aims to develop robust machine learning (ML) models to
predict two key SMW parameters—Mud Pressure below shear failure (MWsf) and
tensile failure (MWtf)—using geochemical drilling log data from Middle Eastern
carbonate reservoirs.

Methods: Hybrid ML models combining Least Squares Support Vector Machine
(LSSVM) and Multilayer Perceptron (MLP) with optimization algorithms (Gray
Wolf Optimization, GWO; Grasshopper Optimization Algorithm, GOA) were
trained on 2,820 data points from three wells. Input variables included drilling
time, caliper, weight on bit, flow rate, and rheological properties. Model
performance was evaluated using RMSE, R2, and cross-validation.

Results: The LSSVM-GWO model outperformed others, achieving RMSE values
of 58.01 (MWsf) and 95.42 (MWtf) with R2 > 0.99. Flow speed, rotor solids, and
fan readings strongly influenced MWsf, while WOB, gel strengths, and flow rate
impacted MWtf. Generalization testing on a third well confirmed robustness
(RMSE: 50.26 for MWsf, 70.89 for MWtf).

Conclusion: The LSSVM-GWO framework provides a reliable, data-driven
solution for SMW prediction, enabling safer and more efficient drilling
operations. This approach reduces operational risks and highlights the potential
of hybrid ML models in reservoir management.

KEYWORDS

safe mud window, LSSVM/GWO-GOA, hybrid machine learning, mud pressure below
shear failure (MWsf), mud pressure below tensile failure (MWtf)

1 Introduction

The concept of a safe mud window (SMW) is of utmost importance in the drilling
industry, as it defines a range of mud weights that are safe for drilling operations (Li et al.,
2016). Ensuring thatmudweight is within this range is essential to avoid accidents, maintain
efficient drilling, and prevent damage to the formation of the wellbore walls (Fu et al., 2022).
Reservoir geomechanics is an important science in developing andoptimizing drilling paths,

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1529320
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1529320&domain=pdf&date_stamp=2025-03-22
mailto:yuyunliang@jlu.edu.cn
mailto:yuyunliang@jlu.edu.cn
https://doi.org/10.3389/feart.2025.1529320
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1529320/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1529320/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1529320/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1529320/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cai et al. 10.3389/feart.2025.1529320

TABLE 1 Displays records concerning the historical background of research carried out in SMW prediction.

Author Date Origin Input parameters R2 Model

Maleki et al 2014 Iran-Australia Uniaxial compressive strength (SMW), PP, friction
angle (ϕ)

— Mohr-Coulomb, Hoek-Brown and Mogi-Coulomb

Aslannezhad et al 2016 Iran Measure depth (MD), caliper (CP), mud pressure
(PM), well azimuth (AZ), well inclination (WI), PP,
overburden stress (S), Poisson’s ratio (ʋ)

— Mohr-Coulomb and Mogi-Coulomb

Zahiri et al 2019 Iran Young modulus (Y), vertical stress (SH), maximum
horizontal stress (SHmax), minimum horizontal
stress (SHmin), SMW, ʋ

0.9329 SVM-RBF

Tewari et al 2019 Norway MD, rate of penetration (ROP), weight on bit
(WOB), torque (TQ), round per minute (RPM),
standpipe pressure (SPP), flow rate (FR), total gas
(TG), inclination (IN), AZ, PP, ϕ

0.9990 ANN, SVR, RF

Phan et al 2020 Worldwide MD, IN, AZ, SH, SHmax, SHmin, PP, Y, ʋ, tensile
strength (TS), permeability (K), Biot’s coefficient,
Skempton’s coefficient, time (t)

0.9890 DT, LR, RF, ANN, ET

Gowida et al 2022 Middle East Formation bulk density (RHOB), sonic data (DTC
and DTS), gamma-ray log (GR), neutron logging
(NPHI), and caliper logs (CALI)

0.9500 ANN

reservoir planning, determination of reservoir pressure, and
characterization of rock and reservoir properties (Abdelghany et al.,
2021). One of its subsets is drilling pressure control, which is
directly affected by pore pressure (PP) and fracture pressure (FP)
(McWhorter et al., 2021). The determination of SMW is closely
linked to PP and FP and plays a key role in drilling cost,
mud loss, drilling fractures, in situ stress, drilling time, blowout,
and casing collapse (CC) (Gowida et al., 2022). To determine
SMW, it is important to establish the safe window, which is
the distance between PP and FP and represents the safe point
of SMW (Al-Nutaifi, 2019; Jafarizadeh et al., 2022)—exceeding
FP results in mud loss, while pressure lower than PP leads
to blow out. Hence, determining SMW is a vital factor in
drilling operations that can greatly enhance drilling efficiency (Al-
Nutaifi, 2019). Reecently many ML and DL techniques are come
to solve many problem in different fields like; the inndustry,
medicine, etc (Ghorbani et al., 2022; Ghorbani et al., 2023a;
Ghorbani et al., 2023b; Lu et al., 2024). Different methods, including
geomechanical and artificial intelligence methods (e.g., Bayesian
Optimization, genetic algorithms), have been utilized by researchers
to determine SMW, though their comparative efficacy in this context
remains understudied.

Maleki et al. (2014) conducted a study to investigate the accuracy
of three different failure criterion methods - Hoek-Brown, Mohr-
Coulomb, and Mogi-Coulomb in predicting the SMW in two wells
located in Iran and one well in Australia. The Mogi-Coulomb
method showed higher accuracy in predicting failure than the other
twomethods, which could be attributed to considering intermediate
stress in this method. This study provided valuable insights into
selecting appropriate failure criterion methods for predicting SMW,
which ensures wellbore stability in the oil industry (Maleki et al.,
2014). Aslannezhad et al. (2016) investigated the estimation of well

stability and SMW in Iran using the Mohr-Coulomb and Mogi-
Coulomb failure criterion methods. They utilized well slope and
azimuth changes to determine the lower and upper limits of mud
pressure and well stability. Their study showed that both methods
performed well in estimating well resistance and SMW, with the
most stable drilling condition and highest SMW observed at a well
slope of 30 and azimuth of 90 and 270. This study provided useful
information for optimizing drilling operations and minimizing
drilling-related issues (Aslannezhad et al., 2016). Zahiri et al. (2019)
utilized the support vector machine with radial basis function
(SVM-RBF) algorithm to calculate SMW based on data from three
wells in Iran. They showed that this method is highly accurate in
predicting SMW, with a coefficient of determination of 0.9329 and
mean squared error (MSE) of 4.36. The authors emphasized using
diverse and abundant data to improve the model’s accuracy. This
study highlighted the potential of machine learning algorithms in
predicting SMW,which can significantly improve drilling operations
(Zahiri et al., 2019). Tewari (2019) compared the performance of
several algorithms - artificial neural network (ANN), support vector
regression (SVR), and random forest (RF) - in predicting SMW in
a well located in the Norwegian Sea. The random forest algorithm
performed best, with the highest R2 of 0.9990 and the lowest root
mean squared error (RMSE) of 0.0079. This study demonstrated
the effectiveness of machine learning algorithms in predicting MW,
which can help optimize drilling operations and reduce associated
costs (Tewari, 2019). Phan et al. (2020) conducted a study to estimate
time-dependent SMW using various methods, including decision
tree (DT), linear regression (LR), RF, ANN, and extra trees (ET).
They showed that the trained neural network had the highest
accuracy in predicting SMW, with an R2 of 0.998 and MSE of 0.043.
The authors suggested that this method can be used to predict
SMW accurately, which is critical in ensuring the safety and stability

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1529320
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cai et al. 10.3389/feart.2025.1529320

FIGURE 1
Flowchart diagram for prediction of the SMW.

FIGURE 2
Illustration of the MLP algorithm.

of the drilling operation (Phan et al., 2020). Gowida et al. (2022)
utilized artificial neural network methods to predict SMW in the
Middle East using various petrophysical data, including sonic data,
formation bulk density, neutron log, gamma ray log, and caliper
reports, obtained from experiments and drilling operations. The
proposed model showed a high accuracy of more than 92% and

a mean absolute percentage error (MAPE) of 0.53% in predicting
SMW, highlighting its cost-effectiveness and potential for use in
multiple wells. This study provided valuable insights into using
artificial neural networks to predict SMW and improve drilling
operations (Gowida et al., 2022). Reports related to the history of
research in the field of SMW prediction are reported in Table 1.
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FIGURE 3
Illustration of the hierarchy of the GOW algorithm.

While existing studies demonstrate the utility of machine
learning in SMW prediction, this study advances the field
by integrating optimization algorithms (GWO/GOA) with
LSSVM/MLP to address critical limitations. For instance,
Zahiri et al. (2019) achieved an R2 of 0.9329 using SVM-RBF,
whereas Tewari (2019) reported R2 = 0.9990with RF.However, these
methods often struggle with noise, nonlinearity, or generalization
across diverse datasets. The proposed LSSVM-GWO hybrid
achieves comparable or superior accuracy (R2 > 0.99 for both
MWsf and MWtf) while explicitly addressing overfitting via k-
fold validation and optimizing hyperparameters through GWO.
Unlike ANN-based approaches (e.g., Gowida et al., 2022: R2 =
0.95), LSSVM-GWO requires fewer computational resources and
handles small datasetsmore effectively.However, the dependency on
parameter tuning via metaheuristics and the need for geochemical-
specific training data remain limitations relative to simpler
empirical models.

To detect SMW based on the prediction of MWsf and MWtf,
this study utilized a variety of input parameters including drilling
time (t), caliper (cP), weight on bit (WOB), flow rate (Q),
retort solid (RS), fan 600/fan 300 (F600/F300), gel10min/gel10s
(G10min/G10s), pump discharge pressure (Pw), and rotations
per minute (RPM). Different machine-learning techniques were
combined to achieve this goal, specifically LSSVM-GWO, MLP-
GWO, LSSVM-GOA, and MLP-GOA. The dataset used for analysis
consisted of 2,820 data points obtained from three wells (V1,
V2, and V3) located in a carbonate oil field in the Middle East.
Statistical evaluation of the models indicated that the LSSVM-
GWO method outperformed the other techniques in predicting
SMW. In the oil industry, accurate prediction of SMW is important
to mitigate operational risks such as flow loss and blowouts.
Precise SMW prediction helps optimize the mud window and
prevents costly errors. This study’s utilization of machine learning
techniques presents a promising approach to SMW prediction, as
it allows for simultaneous analysis of multiple input parameters.

This facilitates the identification of correlations between these
parameters and enhances the accuracy of predictions. While prior
studies have demonstrated the efficacy of individual ML algorithms
(e.g., SVM-RBF, RF) in SMW prediction, this work introduces a
hybrid approach combining LSSVM with metaheuristic optimizers
(GWO/GOA). Unlike conventional geomechanical models (e.g.,
Mohr-Coulomb), which rely on deterministic relationships and
often overlook nonlinear interactions, our method leverages ML
to capture complex patterns in geochemical and operational data.
Furthermore, the integration of GWO optimizes hyperparameters
(e.g., regularization, kernel width) to enhance generalization,
addressing limitations such as overfitting in RF and computational
inefficiency in ANN.

2 Materials and methods

In order to visually represent the methodologies and procedures
outlined in this research paper, we utilize the flowchart presented
in Figure 1. The flowchart is a graphical depiction of the sequential
steps involved in the analysis process. Initially, data is collected
from three distinct wells (V1, V2, and V3) located within an oil
field in the Middle East. Following data collection, a normalization
process is employed (Equation 1), as detailed in the flowchart.
The construction of artificial intelligence hybrid models, namely
LSSVM-GWO, MLP-GWO, LSSVM-GOA, and MLP-GOA, is then
undertaken utilizing the information obtained from wells V1 and
V2. The primary objective of these models is to predict two
significant parameters, MWsf and MWtf, ultimately providing a
forecast for SMW. To ensure the integrity of the subsequent data
analysis, the collected data from the two wells is divided into three
subsets: a training set, a testing set, and a validation set. Employing
the k-fold method, a technique designed to prevent overfitting
further safeguards the accuracy and reliability of the analysis.
Statistical error analysis is subsequently conducted to assess the
results’ quality and effectiveness. Once the most optimal algorithm,
LSSVM-GWO, is identified, the data acquired from well V3 is
incorporated to expand and enhance the algorithm’s generalizability.
The extended algorithm is then thoroughly evaluated to determine
its efficacy and performance.

Prior to applying for theMLmodels, the dataset underwentmin-
max normalization to scale input features within the range [0, 1].
This preprocessing step ensures uniform contribution of variables
to the model, calculated as (Equation 1):

xnorm =
x− xmin

xmax − xmin
(1)

where xmin and xmax are the minimum and maximum values of
each feature.

2.1 Least squares support vector machine
(LSSVM)

One of the most effective methods based on statistical
models is the LSSVM method. LSSVM is an improved version
of the Support Vector Machine (SVM) method (Han et al.,
2019). The SVM method traditionally requires significant effort
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FIGURE 4
Flowchart diagram of LSSVM-GOA/GWO models for predicting MWsf and MWtf to determine SMW.

TABLE 2 Determination control parameters for combining the LSSVM with GOA and GWOmodels.

LSSVM GOA LSSVM GWO

Parameter Amount Parameter Amount Parameter Amount Parameter Amount

σ2 0.5347 Grasshopper’s No. 35 σ2 0.5846 Best score α

y 1.9864 No. of iteration 33 y 1.96587 No. of search agents 35

K-fold Dim 6

2r 654 No. of iteration 100

γ 4.325 Best pos Des. position

and extensive calculations to solve problems (Lin et al., 2011).
However, introducing LSSVM has facilitated the resolution of
complex problems and achieving acceptable results. Consequently,
researchers now prefer using the new LSSVMmethod instead of the

classic SVM method to address challenging issues and problems.
LSSVM establishes a suitable relationship between input and
output parameters (Zhang and Zhang, 2016). The input parameters
determine the collection points required to achieve the desired

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1529320
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cai et al. 10.3389/feart.2025.1529320

FIGURE 5
Flowchart diagram of MLP-GOA/GWO models for predicting MWsf and MWtf to determine SMW.

TABLE 3 Determination of control parameters for combining the MLP with GOA and GWOmodels.

MLP GOA MLP GWO

Parameter Amount Parameter Amount Parameter Amount Parameter Amount

Act. Function (output) Purlin Grasshopper’s No. 35 Act. Function (output) Purlin Best score α

Act. Function (input) Tensing No. of iteration 33 Act. Function (input) Tensing No. of search agents 35

No. of neuron 11 K-fold No. of neuron 11 Dim 6

Parameter Amount 2r 654 Parameter Amount No. of iteration 100

γ 4.325 Best pos Des. position

output. The relationship between the input and output parameters
is expressed by Equation 2.

Minimize = 1
2
ωTω+

γ
2

l

∑
k=1

e2k,yk[ω
Tφ(xk) + b] = 1− ek,k = 1,…,N

(2)

The regularization parameter, γ, plays an important role
in determining the balance between minimizing fitting errors

and achieving smoothness. In addition, ek represents the error
variable. The optimization problem presented in Equation 1 is
solved using Lagrange multipliers, and its solution is provided
as follows (Equation 3):

y(x) = sign[
N

∑
k=1

αkykk(x,xk) + b] (3)
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FIGURE 6
K-fold diagram for prediction of MWsf and MWtf to determine SMW.

The transformation equation, as presented in reference, is
provided below (Equation 4):

δ(w,b,a,e) = 1
2
ωTω+ 1

2
γ

n

∑
i=1
(e2i ) −

n

∑
i=1

ai(ωTφ(xk) + b+ ei − yi) (4)

The “Ʈ” represents the kernel matrix. The specific values of its
elements are defined in Equation 5.

Ʈi,k = φ(xi)φ(xj) = k(xi,xj) (5)

The expression provided states that K represents the kernel
function. Specifically, in the case of the Radial Basis Function (RBF),
it is defined as Equation 6:

k(xi,xj) = exp(
−(xi,xj)

σ2
) (6)

Finally, the obtained LSSVM model for prediction relationship
is derived as Equation 7:

f(x) =
n

∑
i=1

qik(xi,xj) + s (7)

In this context, the “resulted solution” refers to the values of
(qi, s). However, the specific methodology or equations leading
to the determination of these solutions should be provided in the
given text.

2.2 Multilayer perceptron (MLP)

Feedforward Neural Networks (FNNs) are extensively utilized
neural network models known for their advanced parallel layer

structures that enable effective perception and prediction of
computationalmodels (Zhang et al., 2022). Among the various types
of FNNs, the Multilayer Perceptron (MLP) has gained significant
attention in the literature due to its widespread applications across
diverse fields (Shi et al., 2025b; Yang, 2023). The MLP excels in
learning generalized internal representations of complex nonlinear
mappings. Its architecture comprises multiple layers, including
input, output, and hidden layers. Figure 2 illustrates the fundamental
structure of an MLP. Within the MLP, nodes perform essential
operations such as summation and activation. The weighted sums
of inputs are calculated using Equation 8.

Sj =
n

∑
i=1

wi,jIi + bj (8)

where the variable n represents the number of input nodes, wi,j
denotes the weight of the link connecting the ith node in the input
layer to the jth node in the hidden layer, bj signifies the bias value
associated with the jth hidden node, and Ii corresponds to the ith
input. Following the calculation of the weighted sums, the activation
process is initiated using the values obtained from the equation.

Equation 9 represents the most commonly used activation
function in MLPs: the sigmoid function.

F(x)j =
1

1+ e−Sj
(9)

Subsequently, the final output of the MLP is determined
by applying Equation 10 to the computed outputs of
each neuron in the hidden layer.
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TABLE 5 Determination of statical parameters based on testing, training,
and validation results based on V1 and V2 well data sets for prediction of
MWsf by four HML.

Split dataset Model RMSE NRMSE R2

Train

LSSVM-GWO 59.0683 0.0065 0.9945

LSSVM-GOA 94.2088 0.0096 0.9859

MLP-GWO 116.3840 0.0114 0.9787

MLP-GOA 73.8633 0.0090 0.9914

Test

LSSVM-GWO 58.0146 0.0193 0.9929

LSSVM-GOA 96.5005 0.0322 0.9807

MLP-GWO 143.2446 0.0330 0.9609

MLP-GOA 76.3236 0.0249 0.9879

Validation

LSSVM-GWO 56.8794 0.0245 0.9903

LSSVM-GOA 99.8325 0.0413 0.9687

MLP-GWO 149.3651 0.0569 0.9324

MLP-GOA 75.6826 0.0326 0.9822

TABLE 6 Determination of statical parameters based on testing, training,
and validation results based on V1 and V2 well data sets for prediction of
MWtf by four HML.

Split dataset Model RMSE NRMSE R2

Train

LSSVM-GWO 81.1199 0.0103 0.9970

LSSVM-GOA 117.2848 0.0121 0.9533

MLP-GWO 173.5546 0.0165 0.9054

MLP-GOA 106.2710 0.0116 0.9613

Test

LSSVM-GWO 95.4179 0.0141 0.9932

LSSVM-GOA 166.7383 0.0226 0.9877

MLP-GWO 194.4367 0.0259 0.9853

MLP-GOA 160.2793 0.0225 0.9902

Validation

LSSVM-GWO 72.6857 0.0203 0.9932

LSSVM-GOA 147.3639 0.0374 0.9724

MLP-GWO 183.5562 0.0445 0.9580

MLP-GOA 125.4720 0.0337 0.9796

yj = F(x)j(
n

∑
i=1

wi,jIi + bj) (10)

It is evident from the equations that the weights and biases play
an important role in shaping the characteristics of theMLP. Optimal
values for the weights and biases need to be determined to achieve

maximum performance in capturing the relationship between input
and output variables.

2.3 Grey wolf optimization algorithm
(GWO)

The grey wolf (GW), occupying the apex predator position
in the food chain, demonstrates a strong propensity for group
living. Each individual within the population assumes a specific
role, contributing to establishing a strict social hierarchy, as
illustrated in Figure 3.

The first tier of this hierarchical structure comprises the highest-
ranking leader of the grey wolves, referred to as ∝ (Tu et al.,
2019). This ∝ individual holds the primary responsibility for
making critical decisions about hunting strategies, habitat selection,
and other relevant factors. Subsequently, the second tier consists
of subordinate leaders within the grey wolf pack, β individuals
(Xie et al., 2020). Their principal role involves managing the
pack’s leadership, coordinating group activities, and fostering
collaborations with other wolf packs (Prakash and Viswanathan,
2021; Wang et al., 2024). Within the third tier, we find the
δ individuals, primarily tasked with monitoring the territorial
boundaries, warning the wolf pack of potential dangers, and
displaying care towards weaker or wounded members of the pack.
Finally, the fourth tier encompasses the lowest-ranking individuals
within the population, denoted as ω wolves. Despite their seemingly
less prominent role, these omega wolves are indispensable in
maintaining balance within the population’s internal relations. The
leadership hierarchy of wolves plays a pivotal role in the hunting
process. Initially, the grey wolves engage in search and tracking of
prey. Subsequently, the alpha grey wolf leads the pack in encircling
the prey from all directions. The alpha wolf then commands the
beta and delta wolves to initiate the attack on the prey. If the
prey manages to escape, the remaining wolves, situated at the rear,
continue the pursuit and resume the attack (Cai et al., 2019; Shi et al.,
2024). Ultimately, the grey wolves strive to capture their prey
successfully.

The GWO simulates wolves’ leadership hierarchy and predatory
behavior, harnessing their innate abilities such as searching,
encircling, hunting, and other predation activities to optimize
solutions. Assuming a population size of N wolves and a search area
of d, the position of the ith wolf can be represented as Zi = (Zi1,
Zi2, Zi3, …, Zid). To mathematically model the social hierarchy of
wolves, the fittest solution is designated as the ∝ wolf. In contrast,
the second and third-best solutions are assigned as β and δ wolves,
respectively. The remaining candidate solutions are considered as
ω wolves. The prey’s position corresponds to the wolf ’s location
in the algorithm. The encircling behavior of grey wolves can be
mathematically formulated as shown in Equations 11, 12.

ϵ = |2ri ×ZP(t) −Zc(t)| (11)

Z(t+ 1) = ZP(t) − (2ar2 − 2(1−
1

∂max
))× F (12)

In the given context, where t represents the current iteration,
Zp(t) signifies the position vector of the prey, and ZP(t) denotes the
position vector of a grey wolf.
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FIGURE 7
Cross-plot diagram for prediction of MWsf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C) MLP-GWO, (D) MLP-GOA.

FIGURE 8
Cross-plot diagram for prediction of MWtf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C) MLP-GWO, (D) MLP-GOA.

When grey wolves successfully capture prey, the hunting process
involves several steps. Firstly, the α wolf assumes the lead role,
guiding the other wolves to encircle the prey. Subsequently, the α

wolf coordinates the β and δ wolves to execute the capture of the
prey. Given that the α, β, and δ wolves are in closest proximity to the
prey, the location of the prey can be determined by their respective
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FIGURE 9
Relative error diagram versus data number for prediction of MWsf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C)
MLP-GWO, (D) MLP-GOA.

FIGURE 10
Relative error diagram versus data number for prediction of MWtf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C)
MLP-GWO, (D) MLP-GOA.
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FIGURE 11
Histogram diagram versus for prediction of MWsf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C) MLP-GWO,
(D) MLP-GOA.

positions. The mathematical model representing this process is as
Equations 13–19:

ϵα = |(2ri)1 ×Zα(t) −Zc(t)| (13)

ϵβ = |(2ri)2 ×Zβ(t) −Zc(t)| (14)

ϵδ = |(2ri)3 ×Zδ(t) −Zc(t)| (15)

Z1 = Zα(t) − (2ar2 − 2(1−
1

∂max
))× Fα (16)

Z2 = Zβ(t) − (2ar2 − 2(1−
1

∂max
))× Fβ (17)

Z3 = Zδ(t) − (2ar2 − 2(1−
1

∂max
))× Fδ (18)

Z(t+ 1) =
Z1 +Z2 +Z3

3
(19)

The distance between the position vectors Z(t) and the α, β,
and ω wolves is calculated using Equations 12–17. Subsequently,

the calculation of the movement of the wolves towards the prey is
determined by Equation 19.

2.4 Grasshopper optimization algorithm
(GOA)

Grasshoppers belong to the insect species and are recognized
as pests due to the damage they inflict on crops (Amaireh et al.,
2022). Despite their seemingly solitary nature, grasshoppers are one
of the largest animal groups on Earth and can threaten farmers.
One remarkable aspect of their behavior is their social tendencies,
which manifest during both their early stages of development and
adulthood (Shukla, 2021). Millions of grasshopper larvae exhibit
synchronized movement, resembling rolling behavior, as they
voraciously consume plants along their path. Grasshoppers exhibit
slow movements and short strides as their distinguishing features.

In contrast, mature grasshopper communities exhibit short
and sudden movements. A prominent characteristic of their
social behavior is the search for food resources. Inspired
by the natural behavior of grasshoppers, the GOA logically
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FIGURE 12
Histogram diagram versus for prediction of MWtf based on test dataset by four HML models: (A) LSSVM-GWO, (B) LSSVM-GOA, (C) MLP-GWO,
(D) MLP-GOA.

divides the search process into two phases: exploration and
exploitation (Sui et al., 2020).

During the exploration phase, search agents are encouraged
to make abrupt movements, while in the exploitation phase,
they tend to focus on local movements. The mathematical model
simulating grasshopper social behavior is described by the following
Equation 20:

Zi =Mi +Ni +Oi (20)

where Zi is the location of the grasshopper, Mi represents the
influence of wind, Ni denotes social interaction, and Oi corresponds
to the gravitational effect on the grasshopper (r1, r2, and r3
are between 0–1). To introduce randomness, the equation is
modified as Equation 21:

Zi = r1
n

∑
j=1

s(|Zj −Zi| ×
Zj −Zi

|Zj −Zi|
)− r2g ̂eg − r3g ̂ew (21)

The symbol g represents the gravitational constant, while the
symbol êg represents a unit vector that indicates the direction
towards the center of the Earth. The you represent a constant
displacement, and êw represents a unit vector perpendicular to the
wind’s direction.

2.5 LSSVM-GOA/GWA algorithm

The flowchart diagrams displayed in Figure 4 provide a
comprehensive visual representation of the sequential steps
inherent in the LSSVM-GOA/GWO models. These models
rely on the precise manipulation of control parameters within
the LSSVM RBF kernel function, as they are paramount in
achieving optimal prediction performance for LSSVM SMW.
Determining these important control parameters is accomplished
by leveraging the capabilities of either a GOA or GWO optimizer.
The specific control parameters that the GOA or GWO algorithms
have determined to be the best for use in the LSSVM model
are listed in Table 2, along with the associated RBF control
parameters.

2.6 MLP-GOA/GWA algorithm

Figure 5 presents meticulously crafted flowchart diagrams,
providing a comprehensive visual representation of the step-by-step
processes intrinsic to the MLP-GOA/GWO models. These models
rely extensively on the precise manipulation of control parameters
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FIGURE 13
Error diagram for prediction of MWsf based on test dataset by four HML models.

within the MLP function, as they hold utmost significance in
achieving the highest level of prediction performance forMLPSMW.
These important control parameters are determined by harnessing
the advanced capabilities of either a GOA or GWO optimizer. To
further enhance the implementation of the MLP algorithm, Table 3
outlines and enumerates the specific control parameters
identified as optimal by the GOA or GWO algorithms in the
MLP algorithm.

While the control parameters (e.g., σ2, γ, iteration counts,
population sizes) listed in Tables 2 and 3 were optimized using
GWO/GOA, their sensitivity was evaluated through iterative tuning.
For instance, varying σ2 in the LSSVM kernel by ±20% resulted
in RMSE fluctuations of <5%, indicating robustness to minor
deviations. Similarly, increasing the number of grasshoppers or
wolves beyond 35 marginally improved accuracy (<1% R2 gain)
at the cost of computational efficiency. The selected parameters
represent a balance between performance and practicality. Future
work could explore dynamic parameter adaptation for further
optimization.

2.7 K-fold cross-validation (KFCV)

The KFCV is a widely utilized technique in the field of machine
learning, particularly for numerical datasets. It is an effective
method for evaluating and fine-tuning models (Cheng et al., 2022;
Pannakkong et al., 2022). This technique involves dividing the
dataset into K subsets, or folds, enabling the iterative training and
evaluation of themodel on different subsets. By assessing themodel’s
performance acrossmultiple validation sets, KFCVprovides a robust
measure of its effectiveness and generalizability. It aids in optimizing
hyperparameters, reducing the risk of overfitting, and gaining
valuable insights into the model’s behavior (Ziggah et al., 2019).
Moreover, this technique maximizes data utilization and effectively
addresses performance variability, making it an indispensable tool
for assessing and comparing model performance on numerical
datasets. The flowchart representation of the k-fold validation
process is visually depicted in Figure 6.

A stratified 10-fold cross-validation was employed to ensure
balanced representation of data subsets.The dataset was partitioned
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FIGURE 14
Error diagram for versus for prediction of MWtf based on test dataset by four HML models.

into 10 folds, with 9 folds used for training and one for validation
iteratively. Stratification preserved the distribution of MWsf and
MWtf targets across folds, avoiding skewed evaluations. Model
performance metrics were averaged across all folds to assess
generalizability. This approach minimizes overfitting by validating
the model on distinct subsets, ensuring robustness against data
variability. Figure 6 illustrates the KFCV workflow, emphasizing the
iterative cycle of training, validation, and aggregation. Each fold’s
validation results contribute to a consolidated performance metric,
aligning with best practices for model evaluation in geochemical
drilling applications.

3 Data gathering for model
construction

In order to forecast the commonly used geochemical drilling
parameter SMW utilizing the combined methods LSSVM-GWO,

MLP-GWO, LSSVM-GOA, andMLP-GOA data sets linked to three
wells V1, V2, and V3 in one of the oil fields in the Middle East
have been employed. Due to the V1 well’s size and distribution,
hybrid artificial intelligence models have been created using this
well’s data. The information about well V1 contains 901 data with
a 0.2 m interval; the information about well V2 contains 983 data
with a 0.2 m interval; and the information about well V3 contains
936 data with a 0.2 m interval. 70% of the data fromwells V1 and V2
were randomly chosen to be the train data set, 15% the test data set,
and the remaining 15% the validation data to develop these models.

Table 4 reports the information and purity related to the
data values used in this article, which include LSSVM-GWO,
MLP-GWO, LSSVM-GOA, and MLP-GOA. Certain data variables
hold immense significance when forecasting and determining the
properties of SMW. These data variables include drilling time (t),
caliper (cP), weight on bit (WOB), flow rate (Q), retort solid (RS), fan
600/fan 300 (F600/F300), gel10min/gel10s (G10min/G10s), pump
discharge pressure (Pw), and rotations per minute (RPM).
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FIGURE 15
Heat diagram for determination of the effect of each variable for prediction MWtf and MWtf to determine SMW based on four HML models.

In addition to the data above, two specific border mud
pressures below shear failure (MWsf) and mud pressure below
tensile failure (MWtf) are also important in determining SMW
properties. These two parameters indicate the maximum pressure
the drilling mud can withstand before breaking down, which
is essential in determining the characteristics and behavior of
SMW during drilling operations. Therefore, selecting and analyzing
these data variables are critical in predicting and determining the
properties of SMW.

4 Discussion of results and
comparison methods

This article uses LSSVM-GWO,MLP-GWO, LSSVM-GOA, and
MLP-GOA methods to forecast the SMW. To assess and compare
the performance of these artificial intelligence methods, we utilize
a benchmark equation and statistical techniques, presented as
Equations 22–24. Detailed reports regarding training, testing, and
validation data outcomes are provided in Tables 5, 6. Based on
these tables, the outcomes of the subsets associated with training,
testing, and validation have been bifurcated into MWsf and MWtf
divisions. One of the key rationales for incorporating the upper
and lower limits of mud pressure as two parameters in this
study stems from the fact that the SMW value resides between
these two thresholds of mud pressure. Consequently, this article
employs artificial intelligence techniques to leverage both significant
parameters effectively.

RMSE = √ 1
n

n

∑
i=1
(SMWM.i − SMWP.i)

2 (22)

NRMSE =
√ 1

n
∑n

i=1
(SMWM.i − SMWP.i)

2

SMWM.max − SMWM.min
(23)

R2 = 1−
∑N

i=1
(SMWM.i − SMWP.i)

2

∑N
i=1
(SMWP.i −

∑nI=1SMWM.i

n
)
2 (24)

The outcomes of the training, test, and validation datasets
for predicting MWtf and MWsf using four hybrid machine
learning models (LSSVM-GWO, MLP-GWO, LSSVM-GOA, and
MLP-GOA) are provided in Tables 5, 6. The two most relevant
parameters, R2 and RMSE, are employed to establish a suitable
criterion for comparing these methods. R2 and RMSE are influential
and significant metrics for evaluating and contrasting the models.
Analyzing the findings in Table 5 reveals that the LSSVM-GWO
model exhibits superior accuracy in predicting MWsf compared
to the LSSVM-GOA, MLP-GWO, and MLP-GOA models. The
LSSVM-GWO algorithm yields the following results: RMSE =
59.0683 and R2 = 0.9945 for the training set, RMSE = 58.0146 and
R2 = 0.9929 for the test set, and RMSE = 56.8794 and R2 = 0.9903
for the validation set. Furthermore, Table 6 also illustrates that the
LSSVM-GWO model demonstrates higher accuracy in predicting
MWtf than the LSSVM-GOA, MLP-GWO, and MLP-GOA models.
The results indicate that for the training set, the LSSVM-GWO
algorithm achieves RMSE = 81.1199 and R2 = 0.9970, while for the
test set, it attains RMSE = 95.4179 and R2 = 0.9929. Lastly, for the
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FIGURE 16
Cross plot diagram for prediction of (A) MWsf and (B) MWtf to generalize and develop LSSVM-GWO based on V3 well’s dataset.

TABLE 7 Determination of statical parameters for prediction of MWsf
and MWtf to generalize and develop LSSVM-GWO based on V3
well’s dataset.

Prediction Model RMSE NRMSE R2

MWsf LSSVM-GWO 50.2601 0.0069 0.9933

MWtf LSSVM-GWO 70.8868 0.0083 0.9921

validation set, the LSSVM-GWO algorithm yields RMSE = 72.6857
and R2 = 0.9932.

One of the important aspects of evaluating mathematical
forecasting methods lies in using statistical metrics, such as R2,
to assess their performance. Figure 7 provides insights into the
graphical analysis conducted for predicting MWsf using the test
dataset. Through an examination of the R2 value and the proximity
of the predicted points to the trendline in the cross-plot of measured
and predicted values, it becomes apparent that the LSSVM-GWO

algorithm exhibits superior accuracy compared to the MLP-GWO,
LSSVM-GOA, and MLP-GOA algorithms. Similarly, Figure 8 offers
a glimpse into the analysis for predictingMWtf using the test dataset.
By evaluating the R2 value and the proximity of the predicted points
to the trendline in the cross-plot, it is evident that the LSSVM-
GWO algorithm outperforms the MLP-GWO, LSSVM-GOA, and
MLP-GOA algorithms in terms of accuracy.

Figures 9, 10 present the relative error diagrams for predicting
MWsf and MWtf using the test dataset and four HML models,
namely LSSVM-GWO, MLP-GWO, LSSVM-GOA, and MLP-
GOA. These figures illustrate the error ranges associated with
each algorithm, allowing for a comprehensive comparison. In
Figure 9, the error ranges for the LSSVM-GWO, MLP-GWO,
LSSVM-GOA, and MLP-GOA algorithms are [−4.643–5.006],
[−19.017–25.878], [−31.441–30.964], and [−17.015–10.821],
respectively. Similarly, Figure 10 displays the error ranges for
the LSSVM-GWO, MLP-GWO, LSSVM-GOA, and MLP-GOA
algorithms as [−4.927–9.149], [−26.817–15.624], [−32.664–30.451],
and [−18.124–19.033], respectively. The LSSVM-GWO model
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achieves R2 > 0.99 for bothMWsf andMWtf, surpassing standalone
ML methods like SVM-RBF (R2 = 0.9329; Zahiri et al., 2019) and
ANN (R2 = 0.998; Phan et al., 2020). This improvement stems from
GWO’s ability to optimize LSSVM parameters (e.g., kernel width,
regularization), enabling robust handling of noise and nonlinearity
in drilling data. Additionally, unlike conventional geomechanical
models (e.g., Mogi-Coulomb), which require explicit stress-strain
relationships, our data-driven approach adapts to heterogeneous
formations without prior assumptions. These figures demonstrate
that LSSVM-GWO algorithm exhibits a higher level of performance
accuracy with a lower error area compared to others. However,
further improvements might be achievable through advanced
hyperparameter tuning techniques like Bayesian Optimization,
which systematically balances exploration and exploitation while
avoiding local optima.

Figures 11, 12 illustrate the histograms of MWsf and MWtf
prediction errors obtained from four robust HML models: LSSVM-
GWO, MLP-GWO, LSSVM-GOA, and MLP-GOA. The histogram
shows that the MWsf prediction errors exhibit a symmetric
distribution centered around zero. Notably, for the LSSVM-GWO
algorithm, the error distribution appears to follow a normal
distribution. However, the statistical error distributions of the other
algorithms, MLP-GWO, LSSVM-GOA, and MLP-GOA, display
non-normal patterns when observed through a scan view.

Based on the graphical information presented in Figures 13, 14,
as well as the data provided in Tables 5, 6, the evaluation of MWsf
and MWtf prediction using four HML algorithms (LSSVM-GWO,
MLP-GWO, LSSVM-GOA, and MLP-GOA) reveals contrasting
outcomes for the performance metrics of RMSE and R2. These
figures demonstrate that an increase in R2 corresponds to a
decrease in RMSE, indicating a stronger correlation between the
predicted and actual values of MWsf and MWtf. Consequently, a
lower RMSE signifies a smaller average error in the predictions.
The findings support the conclusion that the LSSVM-GWO
algorithm outperforms the MLP-GWO, LSSVM-GOA, and MLP-
GOA algorithms regarding MWsf and MWtf prediction accuracy.
The higher R2 values and lower RMSE values associated with
the LSSVM-GWO algorithm validate its superior performance
compared to the other algorithms. Therefore, the comparative
analysis establishes the following accuracy ranking: LSSVM-GWO
>MLP-GOA > LSSVM-GOA > MLP-GWO.

5 Evaluation, generalization, and
development algorithm

Pearson’s correlation coefficient (R) is a widely used statistical
measure for assessing the relationship between input-independent
and output-dependent variables, such as MWsf and MWtf. This R,
which ranges from −1 to +1, provides insights into the strength
and direction of the correlation between the variables. A value of
+1 indicates a strong positive correlation, −1 indicates a strong
negative correlation, and a value close to 0 suggests a weak or
no significant correlation. Equation 25 outlines the calculation
of R, enabling researchers to evaluate the linear association
between two variables quantitatively. By utilizing R, researchers
can determine the extent to which changes in one variable are
linked to changes in another variable, thereby assessing the impact

of input-independent variables on the output-dependent variables,
MWsf and MWtf.

R =
∑n

i=1
(θi − θ)(∂i − ∂)

√∑n
i=1
(θi − θ)

2√∑n
i=1
(∂i − ∂)

2
(25)

Theheatmap in Figure 15 provides a valuable tool for comparing
the R and gaining insights into the relationships between the input
variables and MWsf and MWtf.

The analysis of MWsf reveals several significant correlations
with the input variables. There are negative correlations with MD,
cP, WOB, and Q, indicating an inverse relationship with MWsf.
Conversely, positive correlations are observed with t, Rs, F600/F300,
G10min/G10s, Pw, and RPM (see Equation 26). Based on R, the
variables Q, RS, and F600/F300 have a higher impact on MWsf.

MWs f ∝
t,Rs,F600/F300,G10min/G10s,Pw,RPM

MD,cP,WOB,Q
(26)

Significant correlations regarding MWtf are observed with the
input variables. Negative correlations with cP, WOB, Q, Pw, and
RPM indicate an inverse relationship withMWtf. Conversely, positive
correlations are observed with MD, t, Rs, F600/F300, G10min/G10s,
Pw, and RPM (see Equation 27). Based on R, the variables WOB, Q,
Rs, F600/F300, and G10min/G10s have a higher impact on MWtf.

MWt f ∝
MD, t,Rs,F600/F300,G10min/G10s

cP,WOB,Q,Pw,RPM
(27)

When analyzing the hybrid artificial intelligence algorithms
LSSVM-GWO, MLP-GWO, LSSVM-GOA, and MLP-GOA for
predicting the two key parameters MWtf and MWtf and obtaining
the prediction of SMW, it was found that the LSSVM-GWO
algorithm outperforms the others in terms of accuracy. Initially,
these algorithms were developed using data from two wells, V1
and V2. However, to generalize and improve the LSSVM-GWO
algorithmand evaluate its accuracy for anotherwell, namelyV3, data
from well V3 were utilized. The results obtained for this algorithm
are displayed in Figure 16 and Table 7. These findings demonstrate
that the algorithm effectively predicts the important parameters
MWtf and MWtf, ultimately providing an accurate estimation of
SMW (RMSEMWsf = 50.2601 and RMSEMWtf = 70.8868). This is
particularly significant in the drilling industry as it helps mitigate
costs arising from losses or casing collapses due to incorrect or
delayed identification of SMW. To further validate the LSSVM-
GWO model’s reliability, well V3 data (n = 936) were used to test
generalization. Figure 16 shows minimal deviation (RMSE <70 Psi),
confirming the model’s robustness even for wells not included in
training. Outliers in V3 (e.g., MWsf > 9,000 Psi) were linked to rare
geological conditions (e.g., abrupt caliper changes), which future
work could address by incorporating real-time lithology data.

6 Future work

In this article, the best algorithm for predicting a safe mud
window is LSSVM-GWO. We suggest that this algorithm can be
used for important studies, such as thermodynamic constitutive
modeling (Bai et al., 2025a; Bai et al., 2025b), graph neural networks
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and collaborative filtering (Shi et al., 2025a), and visual question
answering (Han et al., 2025). Additionally, it shows potential for
enhancing vehicle dynamics and control systems (Cao et al., 2024;
Li et al., 2020a; Li et al., 2021a; Li et al., 2020b; Li et al., 2021b; Li et al.,
2020c; Li et al., 2020d;Ma et al., 2022; Xie et al., 2023; Xie et al., 2024),
as well as environmental modeling and optimization (Yang et al.,
2011; Zhao et al., 2012; Zhiquan et al., 2015). Furthermore, the
algorithm can be applied to combustion control and optimization
(Gao et al., 2017) and biomedical research (Yuan et al., 2009).

7 Limitation

While the LSSVM-GWO algorithm demonstrated superior
performance, this study has several limitations. First, the model’s
generalizability relies heavily on the quality and representativeness
of the geochemical drilling log data from Middle Eastern carbonate
reservoirs, which may not fully capture geological variability in other
regions. Second, the computational complexity of hybridizing LSSVM
with optimization algorithms like GWO/GOA could pose challenges
for real-time applications in large-scale drilling operations.Third, the
study assumes consistent availability of all input parameters (e.g.,
retort solids, fan readings) during drilling, which may not always
be feasible in field conditions. Additionally, the model’s performance
is contingent on the hyperparameters selected for optimization (e.g.,
kernel functions, population size), requiring careful tuning that may
demand domain expertise. Finally, the lack of explicit integration
with physics-based geomechanical models limits interpretability of
themachine learningoutputs for operational decision-making. Future
work should address these limitations by testing the algorithm on
diverse geological formations, optimizing computational efficiency,
and hybridizing data-driven approaches with mechanistic models to
enhance robustness and transparency.

8 Conclusion and recommendation

In order to determine the value of the safe mud window
(SMW), a comprehensive analysis was conducted using data from
three wells (V1, V2, and V3) located in an oil field in the Middle
East. The primary objective of this analysis was to predict the
parameters MWsf and MWtf by considering various variables,
including drilling time (t), caliper (cP), weight on bit (WOB), flow rate
(Q), retort solids (RS), fan 600/fan 300 (F600/F300), gel10min/gel10s
(G10min/G10s), pump discharge pressure (Pw), and rotations per
minute (RPM). To achieve this, a combination of machine learning
algorithms, namely Least Squares Support Vector Machine (LSSVM)
and Multilayer Perceptron (MLP) networks, along with optimization
techniques such asGrayWolf Optimization (GWO) andGrasshopper
Optimization Algorithm (GOA), were employed. The performance
of four algorithms, LSSVM-GWO, MLP-GWO, LSSVM-GOA, and
MLP-GOA, was thoroughly analyzed, revealing that the LSSVM-
GWO algorithm exhibited superior accuracy compared to the others.
The calculated error values for the test data in the LSSVM-GWO
algorithm were RMSE (MWsf) = 58.0146 with an R2 value of 0.9929
andRMSE(MWtf)=95.4179withanR2 valueof 0.9932.Furthermore,
the accuracy of the LSSVM-GWO algorithm was maintained when
data from an additional well (V3) was used to develop and generalize

the algorithm. The LSSVM-GWO hybrid algorithm offers several
advantages: enhanced accuracy, parameter-free optimization, faster
convergence, and versatility. Pearson correlation analysis revealed
significant associations between MWsf and the input variables. The
analysis demonstrated several noteworthy correlations with the input
variables for MWsf. Negative correlations were observed with MD,
cP, WOB, and Q, indicating an inverse relationship with MWsf.
Conversely, positive correlations were observedwith t, Rs, F600/F300,
G10min/G10s, Pw, and RPM. Based on the correlation coefficients,
the variables Q, RS, and F600/F300 have a higher impact on MWsf.
RegardingMWtf, significant correlationswith the input variableswere
observed. Negative correlations were found with cP, WOB, Q, Pw,
and RPM, indicating an inverse relationship with MWtf. Conversely,
positive correlations were observed with MD, t, Rs, F600/F300,
G10min/G10s, Pw, and RPM. Based on the correlation coefficients,
the variables WOB, Q, Rs, F600/F300, and G10min/G10s have a
higher impact on MWtf. Future research should focus on expanding
the applicability of the LSSVM-GWO algorithm to diverse reservoir
types (e.g., shale, sandstone) to validate its robustness across varying
geological conditions. Integrating real-timedrilling data streams, such
as downhole sensormeasurements or seismic attributes, could further
refine predictions. Enhancing computational efficiency through
lightweight model architectures or parallel processing frameworks
would enable real-time SMW estimation during drilling operations.
Additionally, exploring hybrid models that combine LSSVM-GWO
with deep learning techniques (e.g., convolutional neural networks)
or physics-informed constraints could improve interpretability and
generalization. Investigating the impact of environmental factors,
such as temperature gradients or formation heterogeneity, on SMW
prediction accuracy also merits attention. Finally, deploying the
algorithm in cloud-based platforms for collaborative, multi-well
analysis could optimize reservoir management strategies at scale.
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Nomenclature

ANN Artificial neural networks

AZ Well azimuth

CALI Caliper logs

CC Casing collapse

CP Caliper

DT Decision tree

DTC Sonic data

ET Extra trees

F600/F300 Fan 600/fan 300

FNN Feedforward neural networks

FP Fracture pressure

FR Flow rate

G10min/G10s Gel10min/gel10s

GR Gamma-ray log

GW Grey wolf

GWO Grey wolf optimization algorithm

IN Inclination

K Represents the kernel function

LR Linear regression

LSSVM Least squares support vector machine

MD Measure depth

Mi Represents the influence of smw

MLP Multilayer perceptron

MW Mud weight

MWsf Mud pressure below shear failure

MWtf Mud pressure below tensile failure

Ni Denotes social interaction

NPHI Neutron logging

Oi Corresponds to the gravitational effect on the grasshopper

PM Mud pressure

PP Pore pressure

Pw Pump discharge pressure

Q Flow rate

R Pearson’s correlation coefficient

R2 Correlation coefficient

RBF Radial basis function

RF Random forest

RHOB Formation bulk density

RMSE Root mean squared error

ROP Rate of penetration

RPM Rotations per minute

RS Retort solid

S Overburden stress

SH Vertical stress

SHmax Maximum horizontal stress

SHmin Minimum horizontal stress

SMW Safe mud window

SPP Standpipe pressure

SVM Support vector machine

SVR Support vector regression

t Drilling time

Ʈ Represents the kernel matrix

TG Total gas

TQ Torque

TS Tensile strength

SMW Uniaxial compressive strength

ʋ Poisson’s ratio

WI Well inclination

WOB Weight on bit

Y Young modulus

γ Regularization parameter

σ2 Control parameter

ϕ Friction angle
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