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Introduction: The distribution of sediment grain size in streams and rivers is
often quantified by the median grain size (D50), a key metric for understanding
and predicting hydrologic and biogeochemical function of streams and rivers.
Manual D50 measurements are time-consuming and ignore larger grains, while
approaches to model D50 based on catchment characteristics may over-
generalize and miss site-scale heterogeneity. Machine learning-enabled object
detection methods like You Only Look Once (YOLO) provides an alternative that
enables estimation of D50 that is faster than manual measurements and more
site-specific than predictions based on catchment characteristics.

Methods: To understand the potential role of object detection methods for
improving understanding of D50, we compared D50 estimates made manually,
predicted from catchment characteristics, and using a YOLO-enabled approach
across the Yakima River Basin.

Results: We found distinct differences between methods for D50 averages and
variability, and relationships between D50 estimates and basin characteristics.

Discussion: We discuss the advantages and limitations of object detection
methods versus current methods, and explore potential future directions to
combine D50 methods to better estimate spatiotemporal variation of D50, and
improve incorporation into basin-scale models.

KEYWORDS

grain size distribution, streambed, machine learning, object detection, methods
comparison

1 Introduction

The grain size distribution (GSD) of sediments in streams and rivers, often represented
by the median of the GSD (D50), plays many important roles that regulate fluvial hydrology
and biogeochemistry, and their interactions. Grains ranging from clays to boulders control
the locations and rates of groundwater-surface water exchange, which can influence stream
metabolism, as well as gas (e.g., oxygen and carbon dioxide) and solute sources, fate, and
transport (Glaser et al., 2020; Gomez-Velez et al., 2015; Harvey et al., 2011; Mori et al., 2017;
Son et al., 2022; Xia et al., 2017). Because of these roles, GSD is a key metric for predicting
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hydraulic conductivity (Wang et al., 2017), flow resistance
(Rickenmann and Recking, 2011), microbial respiration and
denitrification in streambeds (Buser-Young et al., 2023;
Son et al., 2022), and parameterizing hydromorphological models
(Lepesqueur et al., 2019). However, constraints on accurate
assessment of D50 values at the basin scale, including uncertainty
and bias associated with methods used to estimate D50 and the
spatially and temporally sparse nature of current D50 data, limit our
ability to accurately parameterize the models used to predict key
basin functions.

Historic methods for determining D50 involve destructive
sampling followed by manual counting or sieving procedures (Folk,
1966; Wolman, 1954). While these methods provide direct, site-
specific measurements, they are time/labor-intensive with limited
reproducibility and subject to variability depending on methods
used (e.g., Lopez-Garcia et al., 2021; Poullet et al., 2019), making
it difficult to provide sufficient spatiotemporal resolution needed
to understand basin-scale heterogeneity of D50 (Mair et al., 2024).
Manual methods also generally favor measuring smaller grains
and ignore grains over a specific size cut-off, limiting the ability
to characterize large grains. Recently developed methods such as
processed-based and machine learning models have been used to
estimate D50 values using basin characteristics from regional to
continental scales (Abeshu et al., 2022; Gomez-Velez and Harvey,
2014; Ren et al., 2020). Both statistical andmachine-learningmodel-
basedmethods described above provide the advantage of continuous
spatial coverage and eliminate the need for sample collection and
analysis. However, these methods rely on assumed relationships
that may have difficulty accounting for the high heterogeneity
in predictor variables at smaller (site-to-reach) scales. Moreover,
differences between methods or users can lead to high variability in
D50 estimates (e.g., Faustini and Kaufmann, 2007).

Advances in object detection hold promise for bridging the
gap between manual methods, which accurately characterize
D50 across a small set of samples but are difficult to scale
up to basin-scale, and watershed characteristics-based estimates,
which provide large-scale estimates at the expense of site-scale
accuracy. Object detection methods ingest images of sediments,
and process them to estimate grain sizes, which can then be
used to construct GSDs (Chang and Chung, 2012; Detert and
Weitbrecht, 2020; Lang et al., 2021; Purinton and Bookhagen, 2019).
Segmentation-based object detection approaches are increasingly
coupled with machine learning algorithms to advance these
methodologies (e.g., Chen et al., 2024; Detert and Weitbrecht,
2012; Purinton and Bookhagen, 2019; Steer et al., 2022), and have
been shown to agree well with manual measurement methods
(Stähly et al., 2017; Steer et al., 2022). They have several advantages
over manual measurements which are highly localized in space,
including non-destructive sampling, higher throughput, potential
to automate analyses, and improved reproducibility. In addition,
as estimates are based directly on information collected at a
site, object detection-based D50 estimates contain more site-
specific information compared to predictions based on catchment
characteristics. Object detection methods may, therefore, fill a
need for improved resolution and accuracy between physical
and catchment characteristics-based methods. However, object
detection methods remain sensitive to common environmental
interferences to image processing such as shadows, water, and

non-grain objects, are limited to surface sediments, and are
susceptible to issues with image quality (e.g., non-vertical angles,
glare, and blur).

In this study, we explore D50 estimates made using a
process that includes themachine learning-enabled object detection
algorithm called “You Only Look Once” (YOLO), described in
detail in Chen et al. (2024), in comparison to other methods for
estimating D50 across river basins. YOLO is one of a growing
suite of machine learning image-based tools used in the process
of estimating D50 (e.g., Buscombe, 2020; Chen et al., 2022;
Mair et al., 2024) that holds potential to overcome limitations of
other methods used to measure or estimate D50 described above.
YOLO presents several potential advantages over other current
object detection approaches, including rapid image processing,
robustness to common environmental interferences like shadows,
static and flowing water, and non-sediment-grain objects, and initial
parameterization from a collection of public datasets, reducing the
model’s prediction bias towards a specific location (Chen et al.,
2024). To evaluate the utility of object detection methods for
estimating D50, we analyzed 161 images collected on the banks of
streams/rivers across 40 sites throughout the Yakima River Basin
(YRB, Washington, United States). We compared D50 estimates
enabled by YOLO object detection of these photos to manual D50
measurements made by the United States Geological Survey and
D50 estimates predicted from catchment characteristics across the
YRB. By exploring similarities and differences in average values,
variance, and relationships to catchment characteristics, we revealed
advantages and limitations of YOLO-enabled D50 estimation at the
basin scale.

2 Methods

2.1 Site description and image collection

We selected 40 sites spread across the YRB in southern
Washington State, United States to represent a range of D50 values
across gradients of latitude, elevation, land use, and stream order
(Strahler, 1964). The YRB is a 15,523 km2 catchment characterized
primarily by forests and grassland (28% and 26% respectively),
as well as agriculture (15%) and a developed urban areas (3%)
(Stroud Water Research Center, 2023). Streamflow throughout the
YRB is regulated by five reservoirs storing approximately a
third of annual runoff as well as considerable withdrawals for
irrigation (Vano et al., 2010). Our sites span the headwaters to
the main stem of the Yakima River, representing 2nd–7th order
streams (Figure 1). The sites capture a wide range of grain sizes
from small rocks and finer grains (Figure 1B) to large cobbles
(Figure 1C). We also included one image collected nearby on the
Columbia River (Figure 1A).

During a sampling campaign in 2021, we collected 161 images
used for estimatingD50 at sites previously selected to encompass the
range of biophysical and hydrologic characteristics found within the
YRB, as determined via clustering analysis described in Fulton et al.
(2022). For these photoswe focused onmaterials that were obviously
riverbed sediments (i.e., those that would normally be underwater
during normal/seasonally high water, not the shoreline soils that
would only be underwater during a large flood). The photo sites
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FIGURE 1
(A) A map of the Yakima River Basin (YRB) and sites where images used in this study were collected. Example photos (B,C) show the use of a quadrat to
define the area of analysis for the YOLO object detection model, with (B) as an example of a streambed with smaller rocks/sand grains and (C) as an
example of a streambed with larger cobbles.

were selected between the water’s edge and the upper “scour line.”
The scour line can be subjective, but typically there are obvious
soils above it and little to no soil below it. Below the scour line,
sediments are exposed due to water removing (i.e., scouring) soil.
Photo locations selected were visually representative of the site’s
general exposed sediments, based on the professional judgment of
the sampling team, and relatively flat. Photos were taken at one
or more locations at each site, during the day. At each location,
a 0.8 m × 0.8 m white polyvinyl chloride pipe quadrat serving as
the spatial reference frame was placed on the sediment, and photos
were taken covering the area enclosed in the quadrat. At 34 of 40
sites, we collected multiple images to assess intra-site variability
(ranging from 2 to 11). Original images are published as a data
package stored on the ESS-DIVE repository (Fulton et al., 2022).
We note that images are not capable of capturing information on
grain size below the surface, which limits the ability to understand
how grain sizes aggregate or change below the surface layer. Previous
studies have shown changes in D50 with depth, including in sandy-
bottom systems (e.g., Poullet et al., 2019), indicating this is an
important consideration, though outside the scope of the current
study’s methods. We also note that all methods compared in this
study exclusively investigate surface sediments.

Prior to modeling, we visually assessed all images for
potential environmental interferences, including shadows, wetting,
sediment/biofilm obscuring grain edges, non-grain objects, and

plants. Images were graded into one of four categories based on
presence/absence of the above interferences: “Yes” (no substantial
interference expected), “Maybe” (generally clear grains, but
some potential interference”) and “No” (substantial interference
expected). Grading is a subjective process and was therefore
conducted by a single grader in a single session, with an average
labor burden of 30 s per image.

2.2 Object detection-based D50 estimates

The object detection-based D50 estimates presented in this
study are based on a machine learning modeling approach outlined
in Chen et al. (2024). Briefly, we retrained You Look Only Once
(YOLO, version 5) (Redmon et al., 2016) using 11,977 labels of
grains collected from 9 typical stream environments using code
accessed from https://github.com/ultralytics/yolov5 to identify
grains as objects. Grains for training images were manually labeled
by three annotators, then evaluated and corrected as necessary
by a single annotator prior to ingestion by the model. Because
speed of detection was not of concern in this study, we used the
extra large-scale YOLO neural network. The structure of the YOLO
neural networks are mainly connections of multiple convolutional
neural networks (Zhang et al., 1990), modified bottleneck cross
stage partial networks (Wang et al., 2019), spatial pyramid pooling
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fast layers (He et al., 2014), upsampling layers, and concatenated
layers (https://pytorch.org/docs/stable/generated/torch.cat.html),
where the full network included 476 layers and 87 million trainable
parameters. We derived initial parameter values from a pre-trained
network using the public YOLO COCO 128 datasets (accessed from
https://cocodataset.org/).Themodel used a 59/8/33% split of images
for training/validation/testing.

For each photo, we only considered the region within the
quadrat, where each pixel along the vertical and horizontal lines
of the quadrat represented a height and width. When pixels were
averaged between height and width, we obtained an average image
resolution ranging from 0.1 to 0.7 mm/pixel. Based on the model
reported by Chen et al. (2024), we found a maximum ratio of
detectable grain size to image resolution of 13 (average of 9,
minimum of 4), meaning identifying a grain taking up less than
13 pixels could be affected by photo resolution. In our images, this
suggests resolution could play a role for grain sizes ∼9.1 mm (13
pixels ∗ 0.7 mm/pixel, our coarsest image resolution) or smaller.
Chen et al. (2024) also reported that resolution varied linearly with
camera height, where images taken less than 2 m above the ground
would have a resolution of 0.7 mm/pixel or finer. For analyzed
images (excluding training images), the model identified grains
ranging from 1 to 955 mm. Grains were detected as individual
objects by the YOLO model, which draws a bounding box around
each object. The diagonal lengths of all detected objects were then
used to estimate an area-weighted GSD, which we used to estimate a
D50 value for each image. We refer to the D50 estimates made using
this approach as the “YOLO” approach for simplicity throughout this
manuscript, though we note that YOLO is not capable of directly
estimating D50 but rather is one part of the process described in this
section. Using labeled grains scaled to mm, we generated GSDs, and
then calculated D50 values from each GSD. These data are publicly
available on the ESS-DIVE repository (Regier et al., 2023), and a full
description of our YOLO approach, including a detailed explanation
of advantages and disadvantages can be found in Chen et al. (2024).

2.3 Manual D50 measurements and
catchment characteristics-based D50
predictions

We gathered public data for D50 measurements made by the
US Geological Survey (USGS) at 11 sites within the YRB (Figure 1)
to represent manual sampling D50 values. Data were downloaded
using the dataRetrieval R package (De Cicco et al., 2018) using
parameter codes 80164–80169 which represent the percent of bed
sediments sampled from the surface passing through sieves with
different pore sizes, as described by Guy (1969). We calculated
D50 values by plotting the relationships between sieve size and
percent of bed sediment, then linearly interpolating between 1)
the sieve size <50% closest to 50% and 2) the sieve size >50%
closest to 50%. Because of the limited number of sites represented
for manual D50 measurements relative to YOLO-enabled and
catchment characteristics-based predictions, we included all sites,
whether co-located with YOLO sites or not, in our analysis. We note
that lack of co-location is a potential limitation of our analysis, and
discuss this in the limitations section of the discussion.

We used two existing continental-scale D50 products to
represent catchment characteristics-based D50 estimates for the
YRB.TheNetworks with Exchange and Subsurface Storage (NEXSS)
model uses D50 data from the National Rivers and Streams
Assessment and the Wadeable Stream Assessment (https://www.
epa.gov/national-aquatic-resource-surveys/nrsa) to predict the
NHDPLUS catchment-scale D50 values using a multi-linear model
(Gomez-Velez et al., 2015), and we refer to these estimates as
“NEXSS” from here on for simplicity. The predictor variables used
by NEXSS include drainage area, channel slope, mean annual
discharge, elevation and mean annual precipitation (Gomez-
Velez et al., 2015). We also included D50 estimates produced by
Abeshu et al. (2022), who used D50 data from 2577 USGS gage
stations, and 300 locations from the U.S. Army Corps of Engineers
(Gaines and Priestas, 2016; Schwarz et al., 2018), which we refer to
as “Abeshu” from here on. The final predicted Abeshu model used
11 catchment-scale predictors, including topography (basin slope,
elevation, channel length, channel slope), hydro-climate (runoff,
snow, aridity, wet days, temperature, and contact time), and erosion
variables. We collected D50 estimates for all 40 sites used for the
YOLO model for both NEXSS and Abeshu methods. We do not
report model performance metrics for NEXSS or Abeshu methods
due to differences in data types used to assess model performance,
making it difficult to directly compare performancemetrics between
NEXSS, Abeshu, and YOLO methods. The four methods used to
measure or estimate D50 values are summarized in Table 1.

2.4 Basin characteristics

To evaluate the relationships between D50 estimates and
basin/stream variables, we collected watershed characteristics
following methods in Gomez-Velez et al. (2015) and Abeshu et al.
(2022). We present variables at two spatial resolutions for each site
based on NHDPLUS nomenclature: basin-scale, which represents
the total upstream drainage area for each NHD stream reach,
and catchment-scale, which represents the smallest NHDPLUS
catchment drainage area associated with each NHD stream reach.
We selected one land-cover metric (percent urban land cover),
two catchment metrics (mean catchment elevation and catchment
area), two stream characteristics (total stream length and average
stream slope) and two climate parameters (precipitation as snow
and potential evapotranspiration) as variables that may relate to the
spatial variability of D50 across watersheds.

2.5 Statistics

All spatial and statistical analyses were conducted in R
v4.0.5 (R Core Team, 2021). Model performance was assessed by
Chen et al. (2024), and presented briefly here for context. Goodness-
of-fit using Nash-Sutcliffe (NSE, a measure of goodness-of-fit to
a least-squares regression line) in preference to R2, as NSE is
associated with variance from the 1:1 line rather than variance from
a best-fit line (e.g., Regier et al., 2022), was 0.98. We quantified
the error associated with YOLO predictions using mean absolute
relative error (MARE) normalized to the average D50 value, with
a final model MARE of 6.65%. For additional model performance
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TABLE 1 comparison of methods used to estimate D50 values for the YRB and methodological characteristics.

Method Approach Inputs Limitations Spatial extent

USGS Manual sieving sediments grains >2 mm point

NEXSS Model catchment characteristics Model generalizations catchment-scale

Abeshu Model catchment characteristics Model generalizations catchment-scale

YOLO Object detection images obscured/small (<1 mm) grains 0.8 m × 0.8 m

statistics, please refer to Chen et al. (2024). All significance tests
were based on a p-value threshold of 0.05. In order to compare the
distributions of D50 values to a common reference distribution, we
included a distribution of D50 values for sites across the continental
United States originally presented in Figure 1D of Abeshu et al.
(2022), which we first digitized (https://apps.automeris.io/wpd/),
then normalized to a total count of 100 in order to scale to the
magnitude of our sample size. Statistical differences between group
means were assessed using Wilcoxon tests which are more robust to
non-normal distributions than parametric alternatives. Correlations
between variables were calculated using Spearman’s rho (r). Prior
to correlation calculations, all variables were normalized using the
Yeo-Johnson transformation from the bestNormalize R package
(Peterson, 2021), which is capable of handling negative values.
Spatial analysis to determine straight-line distances between sites,
which we selected in preference to flowline distance for simplicity,
and the main stem of the Yakima River was conducted using the sf
R package (Pebesma, 2018).

3 Results

3.1 Comparison to existing D50 estimates

Figure 2 compares the fourmethods used tomeasure or estimate
D50 across the YRB (Table 1). We observed significant (p-values
<0.05) differences in median D50 values (Figure 2A), with the
difference between YOLO and NEXSS being the least significant (p
= 0.025), while all remaining comparisons were highly significant
(p < 0.0001). YOLO-enabled D50 estimates were highest, followed
by the two catchment characteristics-based methods, and USGS
D50 measurements having the lowest mean D50 (mean D50 values
of 108, 21.4, 1.2, and 0.2 mm, respectively, Table 2). Variance
also differed markedly between estimation methods, with standard
deviations of 68.4, 26.9, and 0.7, and 0.2 for YOLO, NEXSS, Abeshu,
and USGS, respectively (Table 2).

To better understand how distributions of D50 produced by
each estimation method compare, we plotted estimates for the
YRB relative to a distribution of D50 values collected from 2,577
stations presented in Abeshu et al. (2022) across the continental US
(CONUS) in Figure 2B. We note that while the continental-scale
distribution represents a wide range of elevations and gradients,
the YRB is composed primarily of high-gradient, high-elevation
streams (Supplementary Figure S1). As such, we expected that
YRB sites would have larger grains relative to the continental-
scale distribution. All methods except USGS skewed to the right

relative to the CONUS distribution, while USGS measurements
skewed left (Figure 2B). Both Abeshu and YOLO-enabled estimates
followed generally unimodal distributions, while USGS estimates
did not follow a clear distribution (likely due to limited sample size).
NEXSS estimates represented a generally bimodal distribution, with
notable outliers at very small D50 values, with a minimum value
of 0.005 mm (5 µm), which was well below the lower limit of the
CONUS distribution.

We next explored how each method’s estimates changed with
stream order (Figure 2C). Based on geomorphology, we expected
that lower-order streamswould generally have larger grains, and that
grain size would generally decrease as stream order increased due to
downstream fining (e.g., Menting et al., 2015). Consistent with this
theory, the highest stream order corresponded to the lowest D50
values for all methods with the exception of USGS, which showed
a general increase in D50 from lowest to highest stream order.
However, we only observed consistently monotonic relationships
across stream orders 2-6 for YOLO, but not any of the othermethods
(Figure 2C). For Abeshu, we observe decreasing trends from stream
order 2 to stream order 4, then increasing D50 values from stream
order 4 to stream order 6. In contrast, NEXSS estimates show
increasing D50 values from stream order 2 to 5, and then a decrease
from5 to 6. Similar toAbeshu, USGSD50 values showed aU-shaped
pattern from 2nd to 5th order streams (Figure 2C).

3.2 Relationships to basin characteristics

Next, we investigated how the characteristics across the
watershed related spatially to D50 values for the four methods
included in this study. To understand broad spatial variation with
general basin characteristics, we plotted D50 values across the YRB
for each D50 source (Figure 3). All methods presented different
spatial patterns, which we visualized as above and below median
values for simplicity. Higher (above median) Abeshu D50 estimates
generally clustered in the northern part of the basin, but also along
the Satus tributary in the southwest. Similarly, higher NEXSS D50
values cluster consistently in the northern half of the basin, with
highest values clustered along the northernmost tributary sampled.
In contrast, YOLO-enabled estimates were spatially distributed,
with highest D50 values on tributaries in the middle of the
basin. Consistent with Figure 2C, the 7th order site located in
the far southeast corner of the basin is below median for both
catchment characteristics-based methods and YOLO, but is above
median for USGS (Figure 3).
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FIGURE 2
A comparison of D50 estimates across the four methods included in this study (see Table 1 for a summary of these methods). Values are presented as a
direct comparison (A) as boxplots, with significant differences shown based on Wilcoxon pairwise tests (∗∗∗∗ = p < 0.001), (B) a comparison of
distributions for each of the four methods (in color) relative to a standard distribution of D50 measurements (in gray) across the continental US,
originally presented in Abeshu et al. (2022), with all values log2-transformed to improve visualization, and (C) the distribution of D50 estimates across
stream orders for each of the four methods. Note: vertical axes are different scales to improve visibility of each dataset. Figure 2C with a common
y-axis is presented in Supplementary Figure S2 for reference.

TABLE 2 summary statistics for the different methods used to estimate
D50 values in Table 1.

Method D50 mean (mm) D50 standard deviation
(mm)

USGS 0.2 0.2

NEXSS 21.4 26.9

Abeshu 1.2 0.7

YOLO 108 68.4

To quantitatively explore these relationships, we
compared differences in latitude, longitude, and straight-
line distance from the main stem of the Yakima River
for all sites in Figure 3 between above-median and
below-median D50 values (Supplementary Figure S3). For distance
from the main stem of the Yakima River, YOLO was the
only method of the four that showed significant differences

(p = 0.03) between above-median and below-median values
(Supplementary Figure S3), where above-median D50 sites were
considerably farther from the main stem of the Yakima River
(median: 15.6 km) compared to below-median D50 sites (median:
1.8 km). For both Abeshu and NEXSS, above-median D50 values
were located at more northern latitudes and more western
longitudes, while above-median D50 values were located at
more western longitudes for YOLO (all p-values <0.05). Neither
YOLO nor USGS D50 values showed significant relationships
to latitude (Supplementary Figure S3).

To better understand how D50 estimates related to each other
and catchment properties, we examined correlations between D50
estimates and basin characteristics (Figure 4). Because the USGS
D50 dataset has a much smaller sample size and many sites were not
co-located with the other three methods, they were excluded from
this analysis. Since we were interested in understanding how the
scale of environmental characteristics relates to eachD50 estimation
method, we separately explored correlations to environmental
characteristics computed at the basin-scale (Figure 4A), and the
same environmental characteristics, but calculated at catchment
resolution (Figure 4B). We note that the basin-scale and
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FIGURE 3
A spatial comparison of D50 values distributed across the YRB for the four methods included in this study (see Table 1 for a summary of these
methods). All available USGS sites were used, while only NEXSS and Abeshu estimates matching reaches with YOLO-enabled estimates were included.
Note that medians are determined separately for each method. The main stem of the Yakima River is plotted in dark blue, and Satus Creek is plotted in
light blue, as spatial references for two waterways referenced in the text.

catchment-scale are defined in the Methods. Among the three D50
estimation methods, we observed the strongest correlation between
Abeshu and NEXSS (r = 0.25), while correlations to YOLO were
weaker (r = 0.15 and 0.18 respectively). This is not surprising as
Abeshu and NEXSS methods estimated using large-scale modeling
approaches (Table 1).

At the basin scale (Figure 4A), NEXSS exhibited the strongest
correlation to evapotranspiration (r = 0.72) and strong correlations

(r > |0.5|) to all catchment variables except for basin area and
stream length. Abeshu correlations were weaker, with the strongest
correlation to precipitation as snow (r = 0.63), but generally
showed the same patterns (i.e., correlations are positive for both
methods or negative for both methods). In contrast, the strongest
correlation for YOLO was urban land covert (r = −0.45), and several
variables that strongly co-varied with both NEXSS and Abeshu
D50 estimates (stream slope, precipitation as snow, elevation, and
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FIGURE 4
Spearman correlations (presented numerically as numbers and visually as colors) between the three methods with spatially co-located D50 estimates
and catchment characteristics (urban = % urban land cover, elev_mean = mean catchment elevation, prsnow = precipitation as snow, and pet =
potential evapotranspiration) for (A) basin-scale, and (B) catchment-scale. Prefixes indicate basin-scale (“tot”) or catchment-scale (“cat”) where
applicable.

potential evapotranspiration) showed weaker correlations to YOLO
(r < |0.3|). Interestingly, YOLO correlations to basin area and stream
length were stronger than those for either Abeshu or NEXSS D50
estimates (Figure 4A).

For catchment-scale characteristics (Figure 4B), the strongest
correlations for NEXSS and Abeshu were weaker (r = −0.56 and
−0.49, respectively), while the strongest correlation for YOLO was
stronger (r = −0.34). Both NEXSS and Abeshu exhibited weaker
correlations to all variables except basin area and stream length.
We observed the largest decrease in correlation between basin-
scale and catchment scale for NEXSS in urban land cover (from
r = −0.61 to r = −0.17) and for Abeshu in stream slope (from
r = 0.40 to r = −0.04). Strong correlations between NEXSS and
precipitation as snow, mean elevation, and evapotranspiration are
linked to precipitation and elevation as predictor variables used
for D50 estimates (Gomez-Velez et al., 2015). Similar correlations
to between Abeshu estimates and snowfall are also expected,
as snowfall was identified as a key predictor in their model
(Abeshu et al., 2022), and snowfall correlates strongly with both
mean elevation and evapotranspiration (Figure 4). For YOLO,
correlations to catchment-scale variables were stronger for stream
slope, precipitation as snow, and potential evapotranspiration.

3.3 Intra-site variance in YOLO-enabled
estimates

To better understand intra-site variability in YOLO D50
estimates, we calculated means and standard deviations for 12

sites with at least 6 images (Figure 5). To directly compare across
sites with different numbers of images, we calculated the means
and standard deviations for 1,000 random selections of 5 images
from each site, and Figure 5 reports the mean of each statistic
(mean and standard deviation) across the 1,000 calculations within
each site. Standard deviations for each site represent intra-site
variability, while standard deviation of all images (“All”) represents
inter-site variability within our dataset. For several sites, intra-
site variability was larger than inter-site variability (Figure 5A).
Because mean values differ widely across the sites in Figure 5A,
we normalized standard deviations to mean values to directly
compare intra-site and inter-site variability (Figure 5B). Based
on this analysis, several sites, most notably S17R, exhibited
higher intra-site variability than the inter-site variability within
our dataset.

3.4 YOLO image grading

To assess how useful our manual grading process was
(as described in the Methods), we explored the relationship
between assessment by the human eye and YOLO’s internal
accuracy in Figure 6. We found that images deemed unsuitable
for modeling (Image suitability = “no”) had significantly
(p < 0.0001) lower accuracy (mean = 65%) relative to
images deemed potentially suitable (“maybe”) and suitable
(“yes”), with mean accuracies of ∼72% and 73%, respectively.
Images graded “maybe” or “yes” did not have significantly
different accuracies (p > 0.05).
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FIGURE 5
(A) Calculated intra-site variability for all study sites with at least 6 images available. Mean and standard deviation (SD) values for D50 (mm) were
calculated as the average of 1,000 subsets of 5 images randomly sampled via bootstrapping from all images available at a given site (or across the full
dataset of images estimated by YOLO for “All”), with mean values presented as dots, and upper/lower error bars to represent ± one standard deviation.
(B) Calculated coefficients of variance (standard deviations normalized to mean D50 values) within each site grouping in order to compare variability
between sites with different mean D50 values.

4 Discussion

4.1 Comparability of object-based and
catchment characteristics-based D50
estimates

Our comparison of varying D50 measurement/estimation
methods found that each method gave different interpretations of
D50 values, their distributions across the study area, and their
relationships to basin characteristics. Because the USGS dataset is
the only method presented that measures D50 instead of estimating
it, we suggest thxat these values represent “ground-truth” for D50
values in the YRB, with caveats that USGS sites are not co-
located with YOLO sites, the sample size is limited, and values
are constrained by a maximum grain size threshold of 0.2 mm
(Table 1). As expected based on minimum grain size (Table 1),
mean D50 values were significantly (p < 0.05) higher for the
object detection method (YOLO) relative to our understanding
of ground-truth (USGS measurements). We expected NEXSS and
Abeshu measurements to have similar mean D50 values as USGS
because neither catchment characteristics-based method includes a
size cut-off (Table 1). However, both methods had significantly (p

< 0.0001) higher mean D50 values, indicating that both methods
overestimated D50 across the YRB relative to our understanding of
ground-truth. Figure 2B indicates some overlap between USGS and
Abeshu, and considerably less overlap with NEXSS, indicating that
Abeshu estimates are more closely aligned with the true magnitude
of D50 across the YRB than YOLO or NEXSS estimates.

NEXSS estimates also had the highest variance across the basin
of the three methods (Figure 2A), which is somewhat surprising as
we anticipated that catchment characteristics-based estimates would
vary less than object detection and manual estimates. In addition,
NEXSS estimates are based on a series of empirical relationships,
while both Abeshu and YOLO-enabled estimates are derived from
machine learning algorithms without explicit boundary conditions,
which we anticipated would result in lower variance for NEXSS
estimates. Instead, we found that standard deviations were smaller
than mean values for both YOLO and Abeshu, but the NEXSS
standard deviation was larger than its mean (Figure 2A). We
interpret this as NEXSS being more sensitive to a wide range of
environmental conditions represented across the YRB relative to
Abeshu. Both Abeshu and YOLO methodologies use localized data
inputs (relationships based on local basin characteristics and local
images, respectively), while NEXSS uses relationships established
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FIGURE 6
Image suitability was determined for each image, as explained in the methods, and was categorized into “yes”, “no”, or “maybe”. These categories are
compared to YOLO’s internally reported accuracy metric for grain identification for each image, with significant differences between categories shown
based on Wilcoxon pairwise tests (ns = p > 0.05, ∗∗∗∗ = p < 0.001).

at a continental scale. In addition, while NEXSS is well-validated
in lower-relief catchments (Gomez-Velez et al., 2015), it has been
suggested that the methodology may not represent headwater
streams accurately (e.g.,Ward et al., 2019).Thus, we infer that higher
variance from NEXSS estimates is related to a combination of being
based on larger scale (and thus less specific) relationships and the
prevalence of high-relief locations in this study, for which NEXSS
may perform poorly. Our results highlight the benefit of utilizing
multiple D50 estimation methods, ideally in concert with manual
measurements to ground-truth. For models that depend on D50 to
parameterize important basin processes like respiration (Son et al.,
2022), based on results in Figure 2, we would expect dramatically
different process estimates based on each D50 method, with more
variable estimates from YOLO than the other three methods.

We also found differences across estimation methods in the
relationships between D50 and stream order (Figure 2C). Based on
basin hydrology and geomorphology, we expected that increasing
stream order would correlate to lower slope, and therefore
decreasing velocities, meaning higher order streams should have
smaller D50. While D50 values were generally lowest at the largest
stream order, each method exhibited a unique pattern for stream
orders 1–6. YOLO clearly followed the expected pattern (Figure 2C).
However, the lack of a monotonic decreasing trend is surprising
for NEXSS and Abeshu estimates, which are both modeled using

catchment properties, and correlate to basin-scale parameters
(elevation, stream slope, and precipitation, Figure 4A). Instead, we
suggest that deviation from the expected trend can be explained
by the complex suite of factors that influence fining across basins,
including underlying geology, stream gradient, channel width, and
discharge (Church, 2002; Menting et al., 2015). Additionally, these
results may suggest localized processes are stronger controls of D50
distributions than general watershed position represented by stream
order. note that all methods show increased variance in mid-order
streams, which is likely partially due to larger sample sizes, but also
may be associated with wider variance in site characteristics for
these sites (e.g., Supplementary Figure S1). The lack of a clear trend
between D50 and stream order is also consistent with other studies,
which found a similar divergence from expected spatial patterns
(Menting et al., 2015; Snelder et al., 2011; Splinter et al., 2010),
although expected patterns of fining of grains have been observed
in lower-relief systems (e.g., Costigan et al., 2014).

Further exploration of the spatial trends in D50 values (Figure 3;
Supplementary Figure S3) identified both latitude and longitude as
significant covariates for D50 estimates for Abeshu and NEXSS
methods, indicating spatially structured controls that may be
unrelated to stream order. These results suggest that modeled D50
estimates (Abeshu and NEXSS) follow broader spatial patterns
within the basin. Due to lack of relationships to latitude for
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USGS and YOLO D50 datasets, we suggest these methods may
be more sensitive to local controls (Supplementary Figure S3). For
YOLO, this is supported by stronger correlations to catchment-
scale variables relative to basin-scale variables (Figure 4), and a
significant relationship to a site’s distance from the main stem
(Supplementary Figure S3). This is consistent with the scales at
which the four methods operate, with both Abeshu and NEXSS
taking “top-down” views, where D50 estimates are built on
continental-scale frameworks which are down-scaled to the site
scale and correlatemore strongly to larger basin-scale characteristics
(Figure 4A). In contrast, the USGS method and YOLO algorithm
only access site-specific information, and are therefore unaware of,
and theoretically independent of basin properties, although we did
observe connections between YOLO and both distance from the
main stem (Supplementary Figure S3) and smaller catchment-scale
characteristics (Figure 4B).

Together, our results suggest that continental-scale relationships
that work for continental-scale modeling of D50 may not be
sufficient for modeling at site-to-catchment scales where the
generic physical rules do not apply consistently enough to provide
trustworthy D50 predictions. As such, methods that incorporate
site-scale information (e.g., manual or YOLO) are needed to provide
accurate D50 data to hydro-biogeochemical models.

4.2 Advantages of object detection-based
D50 estimation

We found YOLO to be an effective method for estimating D50
values for grains larger than pixel resolution (∼1 mm, as reported by
the YOLO algorithm for images used in this study), ranging from
sand/gravel to cobble (Figure 1). The maximum grain size evaluated
here is not tied to YOLO itself, but rather the way in which photos
were taken. For example, photos taken from further off the ground
(e.g., via drone) could be analyzed by YOLO to capture larger grains
(e.g., boulders). Below, we identify some advantages associated
with this method, and note that some of these advantages are
also shared with other image-based grain size estimation methods
(Azarafza et al., 2021;Detert andWeitbrecht, 2020; Lang et al., 2021).

One clear advantage of the YOLO approach is the lack of
external data required for D50 estimations. In areas with sparse data
coverage (e.g., ungauged catchments), model inputs are based on
remotely sensed data withminimal ground-truthing, which can lead
to bias and large uncertainty of the input variables (Abeshu et al.,
2022; e.g., Gomez-Velez et al., 2015). YOLO stands as a promising
complementary method, as stream/river access is not required
and results will be as accurate in an ungauged catchment as a
heavily instrumented research basin. With advancements in both
photography and aerial drone technologies, we see great potential for
collecting many images to spatially characterize D50 values across
reach-to-basin scales, as explored in other studies (e.g., Lang et al.,
2021; Miazza et al., 2024). In addition, the coupling of YOLO with
an uncrewed approach could prove a powerful yet safe way to
estimate D50 in hard-to-access locations, or during unsafe field
conditions. We also see potential for videographic application of
the YOLO algorithm, which can process 45–115 frames per second
(Redmon et al., 2016), and could therefore potentially provide near
real-time D50 estimates. This capability allows for spatially resolved

estimates over a short period of time, but also facilitates rapid
rescanning of D50 estimates, which could be applicable to collecting
high-frequency assessments useful for understanding event-scale
(storms, ice-out, etc.) shifts in geomorphology (Lin et al., 2014;
Tremblay et al., 2014). In addition, because of the speed with which
YOLO processes images, the internal accuracy metric derived for
each photo (Figure 6) could be used to assess image suitability for
modeling in real-time, allowing operators to adjust the mission
(changing altitude, flight paths, etc.) to improve data quality, and
potentially indicate when a site has been sufficiently characterized.

Another advantage of YOLO is the ease of collecting large
datasets. Unlike manual methods, where each sample requires
permission to destructively sample, time in the field to collect,
and time in the lab to prepare, analyze, and clean up, the major
limitation on the sample size of photos collected for YOLO-enabled
estimates is the ability to collect a suitable image. The lack of
any disturbance or sample collection requirements for machine-
learning object detection approaches bypasses any permitting
requirements that other methods that require physical sample
collection (e.g., Baptista et al., 2012). Because of this, it is feasible
to characterize the average value and variability of D50 at a site
simultaneously by collecting multiple images at every site and then
calculating D50 values for each image.

The high intra-site variability in Figure 5 highlights the
importance of image-based methods for estimating D50 to assess
and quantify heterogeneity. To illustrate some sources of high
variability, Supplementary Figure S4 presents six images all taken
at the same site (S17R), all taken within approximately 100 m of
each other on the same river reach, which represent a gradient of
GSDs from primarily sand/gravel to boulders that take up almost
the entire quadrat. While manual sampling would be capable of
collecting multiple samples from a given site, each sample multiples
the time, effort, and cost of the dataset collected, and likely limits
the number of sites that can be characterized. Conversely, the
catchment characteristics-based methods in Table 1 utilize methods
that only generate a single estimate for a given reach. By accurately
representing this level of intra-site variability, YOLO and other
object detection-based methods that can quickly ingest many
images, which presents an opportunity to complement manual
sampling and catchment characteristics-based modeling estimates.
As mentioned above, incorporation of automated image collection
via drones or other technologies would extend this capability
from a single site to spatially resolved reach-scale profiles, and
incorporating edge computing capabilities could provide estimates
of data quality and indication of sufficient data collection “on-the-
fly”.

4.3 Limitations of object detection
estimation

While YOLO provides several advantages, as described
above, there are also limitations to this method relative to
manual and catchment characteristics-based approaches. First,
only surface sediments are captured, while manual methods
can characterize sediments at depth. An additional limitation
is the method is only as good as the image collected. As
an example, Supplementary Figure S5 presents two images where
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the YOLO algorithm does not capture all grains within the reference
frame. On the top row, while most grains are accurately identified,
a large grain in the upper left is partially outside the frame and
therefore is not identified. The bottom row presents an extreme
example of this, where two large grains (boulders) dominate the
frame, and neither is identified by the algorithm. For these cases, the
YOLOalgorithmwould need either additional training, flexibility, or
potentially manual review after grain assignment to more accurately
represent D50 values.

As YOLO is a machine learning object detection algorithm, it
is not surprising that visual assessment via the human eye relates
to the algorithm’s accuracy (Figure 6). However, the significant
distinction between “no” and “maybe”/“yes” highlights the value
of this brief visual inspection prior to modeling. Although this
quality control pre-processing is a current limitation of the YOLO
method, we suggest that future iterations of the YOLO approach
could help develop a “living model” that continually learns
and improves grain identification by ingesting new images then
rerunning. The ability of this living model to automatically detect
unsuitable images is supported by the relationships we observed
between human-assigned image suitability and machine-assigned
YOLO accuracy (Figure 6). Additionally, the iterative retraining
of the model with larger and more diverse image datasets would
improve the potential transferability of thismodel to a broader range
of fluvial geomorphologies.

Our current approach limits our resolution to ∼1 mm grains
and larger, making it useful in gravel/cobble-dominated streams.
However, using a higher-resolution imaging system would improve
the ability to resolve smaller grains, including sandy substrates.
In heterogeneous catchments, we suggest carrying multiple, clearly
labeled quadrats as a simple and cheap solution that would likely
significantly improve YOLO performance. We also note that,
because quadrats are placed manually, utilizing best practices for
random sampling (e.g., randomly selecting cells from a grid) is
important to protect against sampling bias. The YOLO detection
method can underperform in variable lighting conditions, including
submerged sediments or exposed sediments interactingwith flowing
water. Additionally, strong sunlight can wash out images, and low
light can lead to blur, both of which degrade YOLO performance.
We suggest collecting photos on sunny days when the sun is close to
overhead as possible to minimize these potential issues.

Finally, we note that the lack of co-location of USGS sites with
YOLO sites complicates direct comparison of these two methods.
To better understand this limitation, we compared NEXSS values
for all reaches represented in the YOLO dataset to NEXSS values
for all reaches represented in the USGS dataset to understand if
these sample distributions represent different D50 regimes within
the YRB (Supplementary Figure S6). Our comparison indicated that
YOLO sites generally had larger NEXSS D50 values compared to
NEXSS D50 values at USGS sites, although there was considerable
overlap between these datasets (Supplementary Figure S6). While
co-location of manual and object detection estimates is beyond the
scope of our study, this limits our ability to directly compare manual
measurements to our object detection method, and this uncertainty
limits the generalizability of our results to other basins. We suggest
that future studies should either collect directmanualmeasurements
or attempt to co-locate with a subset of sites that have existing
manual measurements to improve cross-method comparisons.

4.4 Future directions

We see great potential for the YOLO algorithm and other object
detection methods to be incorporated into a living model that
1) ingests new images supplied via a simple interface (potentially
via a publicly available app supporting crowdsourced input), 2)
automatically assesses image quality and variability as photos are
taken, and 3) reruns the model incorporating the new information.
Asmentioned above, this opens an opportunity for real-time quality
control during data collection in the field, simultaneously improving
YOLO model fidelity, optimizing image-capture field efforts (e.g.,
informing investigators when enough images have been collected
to sufficiently represent the study site or system), and eliminating
the need to manually assess image quality prior to modeling.
This edge computing approach to data-model integration would
ensure that high-quality data are collected for all sites via real-
time quality control, eliminating site loss due to image issues,
which was a limiting factor to the accuracy of the YOLO model in
this study (Figure 6). Coupled with technologies for imaging large
spatial scales like drones, a living YOLOmodel could rapidly expand
from site to catchment and basin-scale D50 estimates.

Because of the ability of YOLO to quickly estimate D50
from images, we suggest that YOLO holds potential to improve
spatiotemporally resolved D50 estimates in combination with site-
specific (manual) and over-generalized catchment characteristics-
based approaches. As an example, in the YRB,manual D50 estimates
are available, but at a limited number of locations and over limited
time-scales that make extrapolation difficult. Likewise, as discussed
above, catchment characteristics-based estimates can be down-
scaled to individual reaches, but are over-generalized due to the
coarser resolution of their input parameters and can be biased by
basin features (e.g., a model parameterized in low-relief systems
exhibits high variability in our high-relief basin). Our YOLO-
enabled estimates provide site-specific information at a larger
number of sites than the manual estimations, but are not biased by
model constraints or input parameter resolution. As such, exploring
the differences and similarities between 1) YOLO and co-located or
co-collected manual measurements, and 2) YOLO and catchment
characteristics-based measurements could provide basin-specific
calibration of models capable of reconciling the accuracy of direct
measurements with the spatiotemporal resolution of catchment
characteristics-based estimates. While these relationships would be
basin-specific, additional YOLO campaigns in other, contrasting
basins with manual and catchment characteristics-based estimates
would move towards basin-agnostic relationships.

YOLO-enabled estimates across multiple basins, incorporated
into an iterative, living model could then be scaled up to
provide continuous spatial coverage of D50 estimates required to
parameterize basin-scale model data needs. We see potential for
such an approach, utilized within a data-model feedback loop like
the Model-Experiment (ModEx) framework (Serbin et al., 2021) to
iteratively identify locations of high uncertainty for D50 estimates
across a region of interest, which can help target data collection for
improving YOLO models. In turn, because hydro-biogeochemical
models depend on D50 for parameterization, iterative improvement
of D50 products would iteratively improve model performance,
better constraining estimates of key basin functions like sediment
respiration (Son et al., 2022).
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Finally, we recognize that there are many emerging machine-
learning enabled technologies relevant to estimation of D50.
Each of these methods represents substantial improvements over
traditional techniques in terms of throughput, and has trade-offs
with our YOLO-enabled method in processing speed, simplicity
of implementation, and accuracy (Detert and Weitbrecht, 2020;
Miazza et al., 2024). For instance, GRAINet uses convolutional
neural networks (CNNs) and a two-stage architecture that segments
images then classifies individual grains, which provides high
precision but requires greater compute resources relative to our
YOLO approach (Lang et al., 2021). Similarly, the method described
by Mair et al. (2024) utilizes CNNs to efficiently estimate grain
sizes across a broader range of image types. SediNet is another
alternative that can estimate equivalent sieve diameters directly
from images (Buscombe, 2020). We encourage future efforts that
compare YOLO-enabledD50 estimationwithmethods used in other
recent publications such as those listed above.

5 Conclusion

In this study, we explored how estimates of median GSD
(D50) derived from four different methods varied across the
YakimaRiver Basin. Object detectionmethods (including the YOLO
approach in this study) bring advantages of rapid throughput, low
sample cost, and site-specific information, which complement both
manual and catchment characteristics-based methods, which are
limited by low throughput and over-generalization, respectively.
In addition, imaged-based methods like YOLO can easily estimate
intra-site variance, which is difficult with manual methods, and not
possible for the catchment characteristics-based methods explored
here. As such, we suggest that object detection methods can
complement site-specific manual measurements and “top-down”
catchment characteristics-based estimates towards spatially and
temporally resolved, scalable estimates of GSD (both median and
variance). The flexibility of the data input (images of sufficient
quality with some physical reference) and the speed of the YOLO
method are primed for use on uncrewed platforms, inclusion
in citizen or crowdsourced science campaigns, and ingestion of
existing high-resolution datasets to rapidly improve the coverage
and resolution of ground-truthed GSD estimates from reach to
continental scales. We also discuss several limitations associated
with this method, including lack of depth-resolved estimates. We
envision this coalescence of data as a living model that maintains
site-specific accuracy while scaling predictive capabilities up to
regional or continental scales as more data from an increasingly
broad range of ecosystem types and geographic regions are ingested.
Using this constantly improving D50 product, in concert with
manual and catchment characteristics-based D50 values, we see
strong potential to iteratively improve D50 representation in
models improving both quantitative (magnitude) and qualitative
(spatial and temporal organization) estimates of basin-scale hydro-
biogeochemical processes.
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