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Named Entity Recognition (NER) is crucial for accurately extracting and
classifying specialized domain terms from textual data. This study introduces the
Schema for Mineral Systems (SMS), designed through domain characterization,
word disambiguation, taxonomy development, and expert input to refine NER
approaches in geosciences. SMS, featuring nine geological and five general
entity classes, enhances the precision of term identification in mineral system
texts. Utilizing domain-specific dictionaries and schema-linked annotations,
the schema facilitates the distinct recognition of unique terms, underscored
by iterative expert validation to refine NER accuracy. Applied to iron and
lithium deposit corpora in Western Australia, SMS highlights the challenges and
effectiveness of context-specific schemas in specialized knowledge extraction
and accurate entity recognition within complex domains.
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1 Introduction

Named Entity Recognition (NER) has evolved significantly since Grishman and
Sundheim, (1996) foundational work, whereNERwas defined as “the task of identifying and
classifying proper names in text into predefined categories,” such as Persons, Organizations,
Locations, Dates, and Times. NER’s importance has been recognized in various fields,
including geosciences, where it helps in the automatic extraction and classification of
geological terminology from unstructured scholarly literature and reports. A critical
component of developing NER systems is the use of text corpora—large, structured sets
of texts used for linguistic analysis and model training. Corpora provide empirical data
essential for refining lexical and grammatical theories, aswell as supporting the development
of Natural Language Processing (NLP) models (Biber et al., 1998).

In the context of geosciences, the adoption of Information Extraction (IE) technologies
has played a vital role in automating knowledge discovery and reducing the need formanual
intervention. Angeli et al. (2015) emphasize that IE technologies have been instrumental
in extracting valuable information from large datasets, which is particularly relevant for
managing the vast amount of unstructured data in the geoscience domain. With the
advent of advanced Machine Learning (ML) and NLP techniques, especially with models
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like BERT (Devlin et al., 2018) and GPT-3 (Brown, 2020), NER
tasks have enhanced capabilities in capturing language context
and semantics. Building on these technological advancements,
it is recognized that specific challenges exist in geological text
processing, such as ambiguity and variability in the analysed text
(Huber andKlump, 2015; Qiu et al., 2019). Ambiguity can arise from
poorly written text or a lack of sufficient context, making it difficult
for NER models to capture meaning successfully. Variability relates
to subtle but important differences between domains (for example,
terms like ‘formation’ or ‘basin’). They recognise the need to develop
flexible and scalable models tailored to the unique characteristics
of the geoscience domain. To address these challenges, the use
of structured frameworks such as ontologies has emerged as a
crucial strategy for establishing and defining relationships among
concepts within a specific domain. Ontologies like OntoGeonous
(Lombardo et al., 2018), GeoCore (Garcia, 2020) and theGeoScience
Ontology (GSO) (Brodaric and Richard, 2020) illustrate how these
frameworks enable systematic NER and contextual understanding
in the field of geosciences. OntoGeonous integrated semantic
technologies for geologic mapping across various geological
concepts (Mantovani et al., 2020). GeoCore’s structured approach
enabled categorization and retrieval of geoscientific information,
demonstrating how well-defined ontological frameworks can
facilitate semantic consistency across diverse datasets. GSO,
developed in Canada, exemplifies a structured representation of key
geoscience knowledge through a three-layer framework, enabling
comprehensive representation and customization for specific
requirements. Despite this advancements, there are downsides in
fully capturing the dynamic and complex nature geosciences. For
example, Babiae et al. (2023) illustrates in the case of mineral
systems that even well-designed ontologies are not suitable for
direct application in NER tasks without substantial transformation
and adaptation. These ontologies also are not readable accessible
for the public research. OntoSimilarly, GeoCore and GSO faced
challenges in integrating knowledge with data usage and adapting
to emerging terminologies across various geological sub-schemas
(cf. sub-disciplines and sub-categories used elsewhere). Problems
arise when updating ontologies, as geoscience is constantly evolving.
Incorporating new subschemas requires expert validation and
periodic revisions to include new interdisciplinary terms that
often do not fit into existing categories, complicating integration
efforts. Additionally, reliance on foundational frameworks creates
difficulties in adapting to new terminology and connecting with
other domain-specific ontologies, resulting in a labor-intensive
process (Garcia, 2020; Brodaric and Richard, 2020). Addressing
these challenges, Qiu et al. (2023) introduced a geological domain
ontology with over 50,000 terms across twenty-three sub-categories,
representing a significant step forward in enhancing NER in
geosciences. Their research classifies geological entities into six
main types, including geological time and structures, facilitating
systematic labeling of academic literature in Chinese language.

Schemas form the core structure of these ontologies enabling
the organization of data, the definition of relationships between
words, and the recognition of domain-specific terminology. The
development of effective schemas for NER in geosciences has been
highlighted byMa (2022) and further explored byWang et al. (2022)
who discussed the use of schemas in structuring geoscientific data,
stressing the importance of having clear objectives and focused

classification types relevant to the field. Despite these advancements,
a significant challenge in achieving optimal NER precision in
geosciences, is the need for large annotated corpora verified and
validated by experts (Villacorta et al., 2024).

Geoscience-specific controlled vocabularies, hosted by
commissions and national or state surveys, exist for many
concepts, such as stratigraphic rank (Cox and Richards, 2015) and
lithology, further supporting the organization and standardization
of geoscientific data. These controlled vocabularies provide an
ontological framework emphasizing the importance of clarity and
consistency in communicationwithin specialized topics likemineral
exploration (Lindsay et al., 2024), further illustrating the need for
domain-specific tools and frameworks in NER tasks.

While significant progress has been made in NER for
geosciences, comprehensive, ontology-driven approaches remain
a critical challenge. Such approaches are essential for enhancing
the capabilities of automated annotation systems and for effectively
exploring the intricate relationships between geological entities.
To contribute to addressing this challenge, building geological
knowledge graphs offers a new approach to structuring complex
geoscience texts and provides a practical visual analysis of the
insights fromgeoscience papers (Zhou et al., 2021). Addressing these
gaps offers an opportunity to broaden the scope of NER research
to encompass a wider variety of entities and relationships, thereby
increasing its relevance and applicability to geoscience research and
exploration.

This study aims to contribute to these ongoing efforts on
improving NER by analyzing the use of specialized geological
schemas tailored for this field. Building on prior research in corpora
creation, this research explores avenues for achieving a semantic
understanding of geoscientific language. Specifically, our research
focuses on the development and application of three distinct
geological schemas: OzRock, GeoIElite_rev, and SMS, applied to
corpora concerning iron and lithium mineral deposits in Western
Australia. This approach exemplifies ML applications in geological
contexts and contributes to the understanding and processing of
geoscientific language, targeting a notably underexplored area in
geosciences. The primary objectives are to enhance geoscientific
data processing and knowledge representation, thereby optimizing
the extraction of information from geoscientific texts. Such
improvements are crucial for facilitating more efficient knowledge
discovery and data management within the field.

In the following sections of this article, we will show that
assessing NER in the geoscience domain enables more reliable
results consistent with geological reasoning. Accordingly, adhering
to the methodologies outlined in this paper provides a practical
approach to assess the effectiveness of NER in this intricate field.

2 Methodology

This section outlines the creation of a domain-specific schema,
emphasizing its key role in enhancing NER and classification.
Developing such a schema is connected to addressing specific
research questions for understanding complex domain issues, and
schemas are more effective when they are aligned with the domain’s
processes and when they can capture lexical entities and their
semantic relationships. In response to the identified gaps within
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existing ontological frameworks as discussed in the introduction,
we are including the process of adapting these frameworks into a
functional schema tailored specifically for the NER system for this
paper. This adaptation involved customization to align vocabularies
with the unique lexical and semantic challenges presented by texts
on mineral systems, ensuring the final schema could effectively
support entity recognition and classification. The exploration of the
OntoLex-Lemon model—the primary mechanism for representing
lexical data on the Semantic Web, demonstrates how detailed
semantic relationships, context-specific usage, and multilingual
representation can be effectively captured (McCrae et al., 2017).
This model defines lexical concepts with metadata about usage
contexts, capturing nuanced differences in word usage across
domains and languages, including specialized terms. Through two
use cases, representing multilingual dictionaries and the WordNet
Collaborative Interlingual Index, McCrae et al. (2017) illustrate how
the model addresses complex linguistic structures and domain-
specific terminology. Such a semantic approach when designing
the ontological framework is reinforced by Bikaun et al. (2024)
who developed a schema for the maintenance domain. It focuses
on maintenance work, order texts generated by technicians during
engineering tasks, primarily describing equipment conditions.Their
schema is structured around critical questions, such as ‘who
is performing what action on what component, and why?’ For
instance, ‘who?’ refers to a technician, ‘what action?’ could be
‘replacing,’ ‘what component?’ could be ‘a broken alternator bolt,’ and
‘why?’ would be ‘due to failure.’ By organizing the schema around
these questions, Bikaun et al. (2024) emphasize the importance
of a question-driven design in improving information extraction
and knowledge representation. This approach ensures technical
robustness and relevance to research objectives, leading to more
precise and meaningful entity recognition outcomes while avoiding
the ambiguity that arises from non-specific constraints, such as
excessive class options that confuse AI systems when selecting the
correct class in a given context.

2.1 Steps to create a schema in a
specialized domain

Adhering to the methodology proposed by Lamparter et al.
(2004) and incorporating the insights provided by Qiu et al. (2023),
the procedure entails the following stages:

• Domain Characterization: This involves identifying and
defining the scope and relevant concepts within the specific
domain to ensure comprehensive coverage and precision in
entity recognition. Collaboration with domain experts to
capture the intricacies of the selected field and create annotation
guidelines and a domain ontology are considered.

• Word Disambiguation: This step is crucial for distinguishing
between multiple meanings of terms, which is common
in technical fields like geoscience. It involves deciding the
most appropriate meanings and improving clarity in entity
recognition to ensure that the schema accurately reflects
the intended connotation of terms. This potentially reduces
ambiguity and enhances precision in domain-specific entity
classification.

FIGURE 1
Typical academic papers database schema (from Guo et al., 2024).

• Taxonomy Creation: Develop a hierarchical organization by
identifying and structuring the domain’s classes, entities,
and relations. This taxonomy forms the backbone of the
schema, facilitating systematic classification and information
retrieval (Figure 1). It requires defining parent-child
relationships, attribute hierarchies, and cross-references
among entities. The taxonomy should be flexible enough to
accommodate new findings and scalable to manage large
datasets. Tools like ontology editors can assist in visualizing
and managing this complex structure.

• Identification of Other Relations: Beyond hierarchical
classifications, capturing complex interactions within the
analysed data is essential for accurately representing the
nuances of geological information. This step involves
identifying and defining relational attributes that illustrate
how different entities interact or influence one another,
including temporal relationships, spatial dependencies, and
causal links. These relations enrich the schema, allowing for
more dynamic querying and analysis of geoscientific data. The
approach of Qiu et al. (2023) in leveraging a knowledge graph
to capture these intricate relationships can serve as a model for
this process.

2.2 Tools and libraries

The following tools are common in these kinds of applications:

• NLTK (Natural Language Toolkit): This library is used for text
tokenization, particularly for breaking down the extracted text
from PDF documents into individual sentences (Loper and
Bird, 2002). It is widely recognized for its extensive collection of
text-processing libraries suitable for tokenization, parsing, and
classification tasks.

• Pdfplumber and Pdfminer: These libraries are employed to
extract text from PDF files. pdfplumber (Singer-Vine, 2020)
offers robust capabilities for extracting text, tables, and other
data from PDFs, while pdfminer (Shinyama and Guglielmetti,
2014) handles exceptions related to PDF parsing errors.

• Flair: This library is popular for its good performance
when training and applying the NER model for
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specialized domains (Akbik et al., 2019). Flair provides a simple
interface for training and applying state-of-the-art sequence
taggers, such as NER models.

• Pandas: A data manipulation and analysis library used here to
load and handle annotated datasets from CSV files (McKinney,
2010). Pandas is essential for managing and preprocessing
structured data efficiently.

• Scikit-learn: This library provides ML and statistical modelling
tools, including the confusion_matrix and classification_
report functions used to evaluate the NER model’s
performance (Pedregosa et al., 2011). These functions are
fundamental for generating performance metrics that offer
insights into the model’s accuracy and error rates.

• Matplotlib and Seaborn: These libraries are utilized for data
visualization, specifically for plotting the confusion matrix.
Matplotlib is a versatile plotting library, while Seaborn builds
onMatplotlib by providing an interface for creating informative
statistical graphics.

2.3 Validation and performance evaluation

The validation process evaluates the suitability of schemas
when combined with the NER model for recognizing and
classifying specific domain entities. This aims to assess NER model
performance and identify areas for improvement. It also helps
to identify common misclassifications of the NER algorithm and
understand the underlying reasons for these errors. Key steps of this
process are:

• Annotation and Benchmarking: These involve manually
annotated benchmark datasets. These datasets contain specific-
domain entities that experts annotate (verify) for correct
classification using the selected schema. They serve as a
reference for evaluating the performance of the NER models.

• Evaluation Using Confusion Matrices: The model’s predictions
must be compared to the benchmark dataset to visualize the
correspondence between the NER model’s predictions and
the verified dataset categories. The visual representation helps
identify areas where the model performed well and struggled
when classifying entities. Darker diagonal cells in the matrices
indicate correct predictions, while lighter, non-diagonal cells
highlighted misclassifications.

• Weighted F1 score: This is an evaluation metric that combines
precision and recall assessing the performance of NER systems,
especially in scenarios where class distribution may be uneven
or complex (Tjong Kim Sang and De Meulder, 2003). Unlike
the standard F1 score, the weighted F1 score calculates the F1
score for each class and then takes a weighted average based on
the number of instances of each class.This ensures that the score
reflects themodel’s performance across all entity classes, not just
the most frequent ones.

2.4 Script pipeline

The application starts by converting PDF documents into
corpora and then applies a pre-trained NER model to finalize

evaluating its performance using a confusion matrix and
classification report. It includes the following parts (Figure 2):

• Pre-processing: The script begins by extracting text from PDF
files located in a specified directory on the virtual environment
(workspace). The pdfplumber library is used to open and
read the text from each PDF. The text is then tokenized into
sentences using nltk.sent_tokenize, which facilitates subsequent
processing by the NER model. This step converts the raw
textual data into a format themodel can process (Villacorta and
Lindsay, 2023).

• NER: A pre-trained NER model (best-model.pt), previously
obtained using an annotated dataset on a domain-specific
corpus, is loaded using the Flair library to recognize entities
relevant to the geosciences.

• Sentence Extraction: Sentences are extracted from the PDF files
stored in theworkspace for further processing.Using pandas, an
annotated dataset (validated by experts) containing manually
labelled sentences is loaded from a CSV file. These annotations
serve as a benchmark for evaluating the model’s predictions.

• EntityClassification:TheNERmodel is applied to each sentence
from the annotated dataset. The model identify terms and
assigns entity labels for each sentence.

• Evaluation: The evaluate function compares the previously
identified entity labels to the true labels in the annotated
dataset. It calculates and prints a classification report, which
includes precision, recall, and F1-scores for each entity class.
A confusion matrix is also generated to visually represent the
model’s performance. This step is essential for assessing the
model’s accuracy.

3 Case study: comparing the efficacy
of the NER Flair model using
geological schemas and geoscience
papers on iron and lithium deposits in
Australia

This section outlines the creation of the Schema for Mineral
System (SMS), designed from a controlled vocabulary for mineral
exploration. This schema incorporates the critical components of
mineral systems unifying cross-discipline geoscientific concepts to
capture various physical processes and spatial-temporal elements
associated with the formation of economically viable mineral
resources (Lindsay et al., 2024). By using SMS we illustrate the
benefits of domain-specific ontological approaches and ML tools
for entity recognition and classification of complex terminology.
In this study, we use the SMS to structure corpora derived from
academic literature related to iron and lithium deposits and to assess
the NER of mineral systems terminology. Following the method
explained in Section 2, while any kind of question can guide schema
development, they need to specifically focus on the ‘what’, ‘how’,
‘when’, or ‘why’ of geological processes and phenomena, rather
than broad, no-process-oriented questions. For example, general
‘who’ questions are not relevant here, as our schema is centered on
natural processes rather thanhuman actions. Considering that, three
specific questions were selected to benchmark our schema design

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1530004
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Villacorta Chambi et al. 10.3389/feart.2025.1530004

FIGURE 2
Pipeline of the NER process.

and evaluate its effectiveness in capturing relevant terminology
(geological entities) in the context of the mineral deposits we
have chosen:

• “What are the important tectonic processes for lithium-bearing
deposits?”;

• “What are the important structures for iron deposits inWestern
Australia?”;

• “What are the importantmineralogical associations for iron and
lithium deposits in Australia?”

These questions, serving as benchmarks rather than research
inquiries, set specific objectives for the schema. By assessing
how accurate the schema identifies and classifies terms related to
these questions, we can have an approximation on its ability to
cover essential terminology (critical geological concepts relevant to
mineral systems), as well as the contextually appropriateness of the
selected entity classes.

The tools summarized on Section 2.2 were integrated into
the EASI Hub high-performance cluster (Woodcock et al.,
2018), which has a Tesla V100 GPU, a high-performance
processor designed specifically for deep learning and parallel
computing tasks. The complete script with usage instructions is
included in Supplementary Appendix 1.

3.1 Training of the Flair NER model

In this study, Flair was employed to read geological corpora
using three geological schemas: OzRock (Enkhsaikhan, 2021),
GeoIElite_rev (Villacorta et al., 2024), and SMS. Flair’s effectiveness
in domain-specific applications is well-documented across diverse
fields such as the biomedical sector for extracting entities like
diseases and genes (Patel, 2020), the legal field for identifying
statutes and case law (Mathis, 2022), and the business sector
for recognizing financial entities like organizations and currencies
(Bhattacharya, 2023). The training process involved fine-tuning the
Flair NER model on annotated datasets associated with OzRock,
GeoIElite_rev and SMS. Each of these schemas was selected for
its characteristics wich make them adequate within geoscientific
text processing. OzRock offers a comprehensive overview of

general geological entity classes and serves as the baseline for
understanding common geological terms and categories relevant
to mineral exploration (Enkhsaikhan, 2021). GeoIElite_rev was
developed to delve deeper into specialized geological entity classes
and focuses onprocessing academic papers concerning irondeposits
in Western Australia. It enhances the granularity of geological
classifications beyond the foundational OzRock. Complementing
these, the SMS schemawas developed by the research group involved
on writing this paper to address the most complex and nuanced
aspects of geoscientific terminology, particularly those associated
with mineral systems. The training process involved fine-tuning
the Flair NER model on annotated datasets corresponding to
these schemas.

3.1.1 Datasets

- Iron and lithium deposits in Western Australia hold
considerable economic and environmental importance,
influencing global markets, particularly in steel production
and battery manufacturing domestically and internationally
(Angerer et al., 2015; Perring et al., 2020; Greim et al.,
2020). Western Australia’s geological setting and tectonic
development are prospective for these deposits and thus
worthwhile for scientific investigation. This study explores
academic literature about these deposits within the framework
described here using three geoscience schemas: OzRock,
GeoIElite_rev, and SMS.

- OzRock (Enkhsaikhan, 2021) was generated from a corpus of
hundreds of documents and is focused onmineral exploration.
In this dataset, the geological entities are categorised into
six types (Table 1). For our research, the OzRock Evaluation
set, the annotations based on which comprise 83,838 sentences
and 3,238 entities, was utilized as a schema to train Flair
NER to produce a customized NER model for the geoscience
domain. This model enabled recognition of geological classes
from the explored geoscience papers related to iron and
lithium deposits. This dataset, publicly available on GitHub
(https://github.com/majiga/OzROCK), was already annotated
by domain experts, allowing us to utilize it directly for model
training without additional annotation.Thewide coverage and
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TABLE 1 Description of OzRock entity types (Enkhsaikhan (2021).

Label (class) Description Example

MINERAL Mineral Copper, fire opal, goethite, gold, iceland spar, magnesite, iron, natural salt, silica

ROCK Lithology Conglomerate, sandstone, felsic volcanic rock, migmatite, volcaniclastic sedimentary rock

ORE_DEPOSIT Ore types Channel iron deposit, iron ore, nickel ore, silver ore

TIMESCALE Geological time Archean, Lower Proterozoic, Paleoproterozoic, Triassic, Upper Cretaceous

STRAT Stratigraphy Angas Hills Formation, Bingy Bingy Basalt Member, Marra Mamba Iron Formation

LOCATION Geographical location Kalgoorlie Terrane, Kimberley Craton, Perth, Pilbara, Pilbara Craton, Western Australia

extensive representation of general geological entities provided
a robust base for the model to learn from well-defined classes.

- GeoIElite_rev (Villacorta et al., 2024) was developed to
compare other geological classes with those included in
OzRock. It was constructed from concepts detailed in
20 PDF papers focused on iron deposits (list of papers
in Supplementary Appendix 2). This dataset encompasses
eighteen distinct entity classes (Table 2) and required manual
annotation to ensure its entity classes were appropriately
applied to this project. The annotation count for GeoIElite_rev
includes 5,400 sentences and 5,028 entities.

- SMS: The Schema for Mineral System (SMS) was developed
to evaluate NER within the domain of mineral systems
literature. Following the steps indicated in Section 2, the
SMS schema was defined collaboratively with geoscientists,
and defines complex mineral systems terminology through
literature review. Critical entities and relationships were
identified, and a hierarchical taxonomy was created to
organize the schema’s 14 classes (Table 3), providing flexibility
to accommodate updates for large datasets. After several
discussions, subject matter experts selected nine from the
twenty-four geological classes defined to be part of this schema.
These include the specific terminology associated with the
selected questions considered as relevant. Additionally and
following the methodology outlined by Ding et al. (2021),
specific categories such as Country, Province/State, and City
were consolidated into a single class, GPE (Geopolitical
Entity), to address context-based ambiguities. Additionally,
general domain classes, such as Person-Scholar (PS), were
included to capture mentions to researchers (for example,
geologists, biologists, and palaeontologists) and ensure the
semantics are understandable to the machine. Similarly to the
case of GeoIElite, this dataset required manual annotation
to ensure it was appropriately applied this project. The
annotations count is 910 sentences and 832 entities.

3.1.2 Training process
The training process involved fine-tuning the Flair NER model

individually for each geological schema resulting in three distinct
best-model.pt files, each tailored to its specific entity classes. For
each schema, the model was loaded and fine tuned on its respective
annotated dataset, integrating each schema’s structured vocabulary

to specialize in recognizing terms relevant to each schema. For
instance, the SMS schema emphasized classes like TECTONIC_
SETTING, critical for analyzing mineral systems, while the OzRock
schema covered broader geological categories like MINERAL and
ROCK. This structured approach enabled the model to differentiate
and contextualize geological terms according to each schema’s focus,
ensuring tailored recognition capabilities across the three different
geological datasets.

3.2 Validation and performance evaluation

The validation process for the geological schemas used in this
project involved testing the Flair NER model on our annotated
datasets. These annotations were performed by subject matter
experts consisting of the co-authors of this paper along with
additional colleagues from CSIRO Minerals Resources. Their
expertise delivered a rich depth of knowledge necessary for
accurately tagging geological entities in the corpora.

The methodology for annotation was jointly developed by the
authors of this paper. Given the logistical challenges of working in
different locations and the limitations of open-access annotation
tools, which were not suitable for handling large corpora, we
as annotators, opted for a more flexible approach. Annotations
were made directly within online Google Sheets documents, which
facilitated easy access editing. This approach allowed for real-time
collaboration, ensuring all annotators could participate effectively
despite geographical disparities.

The expert-validated annotations and the Flair NER model’s
predicted classifications were continuously compared using the
collaborative Google Sheets documents as online platform. This
setup ensured a dynamic and responsive validation process, allowing
for immediate expert inputs and adjustments.

To visually represent the accuracy of classifications, confusion
matrices were generated. These matrices showcased the alignment
between the model’s predictions and the expert-validated categories,
highlighting any discrepancies and common misclassifications. The
evaluation also included calculating weighted F1 scores, providing
a detailed measure of the model’s precision and recall, particularly
for handling the diverse and occasionally rare classes within the SMS
schema.Thismetricwascrucial forassessingthenuancedperformance
of the NER system across different geological terminologies.
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TABLE 2 Description of GeoIElite_Rev entity types (Villacorta et al., 2024).

Label (class) Description Example

FORMATION Geological formation Angas Hills Formation, Bingy Bingy Basalt Member, Marra Mamba
Iron Formation

AGE Age of the rocks 4,000 to 2,500 million years ago, 2,500–541 million years ago

TIMESCALE Geological time Archean, Lower Proterozoic, Paleoproterozoic, Triassic, Upper
Cretaceous

MINERAL Mineral Fire opal, goethite, martite, Iceland spar, natural salt

ROCK Lithology Conglomerate, sandstone, felsic volcanic rock, migmatite, volcaniclastic
sedimentary rock, metamorphic gneisses

PROCESS Geological process Deposition, erosion, basin development, mountain building, volcanism,
weathering, hydrothermal alteration and mineralization, karst
formation

ELEMENT Metal/elements Iron, gold, nickel, lithium, bauxite, copper, zinc, lead, cobalt, rare earth
elements, tantalum and niobium, vanadium, platinum group elements,
uranium, manganese

CHARACTERISTIC Geological feature Fractured, metamorphosed, pelitic, altered, folded, weathered, intruded,
granitic, foliated, sheared, veined

LOCATION Geographical location Countries, cities, states, places like: Kalgoorlie, Kimberley, Pilbara,
Pilbara, Western Australia

ORE_DEP_REG Locations where mineral resources have been discovered or explored Mines, exploration sites like: Kalgoorlie Terrane, Kimberley Craton,
Perth, Pilbara, Pilbara Craton, Western Australia

LANDFORM Geomorphological forms Channel, cratons, mountain, basin, hill, ophiolite (represents ancient
oceanic crust and upper mantle rocks), karst systems, river, lava flows,
lakes, dunes, regolith, pluton

TYPE Type of ore deposits Banded iron, nickel sulfide, volcanogenic massive sulfide, copper–gold
porphyry

METHOD Methods of exploration activities Drilling, sampling, or testing

YEAR Year of exploration activities 1970, 1980, 1990, 2000, 2003, 2005

COMPANY Company responsible for exploration/production BHP Group, Rio Tinto, Fortescue Metals Group, Gold Fields, Western
Areas, IGO Limited, Pilbara Minerals, Woodside Energy

INSTITUTION Government entity involved Department of Energy, Mines, Industry Regulation and Safety,
Geological Survey of Western Australia, Australian Government
Department of Industry, Science and Resources, Minerals Research
Institute of Western Australia
Environmental Protection Authority (EPA) of Western Australia,
Western Australian Planning Commission, Aboriginal Lands Trust,
Office of the Environmental Protection Authority, Water and
Environmental Regulation Department

PERM_LIC Permissions/licenses for exploration and production Exploration License, Mining Lease, Prospecting License, Retention
License, Miscellaneous License, General Purpose Lease, Program of
Work Approval, Environmental Approvals, Native Title Agreements,
Water License, Cultural Heritage Clearances

IMPACT Environmental impact of exploration Impact on water, air, or land

4 Results

The comparison of F1 scores across the OzRock, GeoIElite_
rev, and SMS schemas reveal significant variations in performance

(Figures 3–8). Figures 3, 5, 7 present Flair NER confusion matrices
and F1 scores for the three geoscience schemas applied to
iron deposit literature. These matrices utilize a blue palette to
indicate the count of predictions made by the model, with darker
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TABLE 3 Description of SMS entity types.

Label (class) Description Example

LITHOSPHERIC ARCHITECTURE The geometric structure of the solid Earth (Earth’s
crust and lithospheric mantle) as defined by domains
of similar chemical composition and the
discontinuities that separate them. Lithospheric
architecture is the result of geodynamic processes

Chemical compositional change, age, geometry,
physical property change, mineralogy, domain

TECTONIC HISTORY The temporal sequence of events that forms
lithospheric architecture, such as magmatism,
deformation, metamorphism, subsidence or
exhumation. These events can be interpreted in
paradigmatic frameworks and attributed to
geodynamic processes such as subduction, seafloor
spreading, mantle plumes, large igneous provinces,
and the resulting geodynamic environments

Magmatism, deformation, metamorphism, subsidence,
uplift

TECTONIC SETTING Lithospheric region deformed by contiguous
geodynamic conditions resulting in characteristic
geological processes

Deformational regime, thermal regime

TEMPORAL EXTENT Period during which processes responsible for forming
or developing a particular mineral system occur

Time units (chronostratigraphic units): Archean,
Lower Proterozoic, Paleoproterozoic, Triassic, Upper
Cretaceous

MINERAL Inorganic elements or compounds (apart from liquid
mercury and a few organic minerals) and defined by
their chemical composition and crystal structure

Fire opal, goethite, martite, Iceland spar, natural salt,
quartz, magnetite, columbite, monazite

ROCK Solid mass of aggregate of minerals (lithology) Conglomerate, sandstone, felsic volcanic rock,
migmatite, volcaniclastic sedimentary rock,
metamorphic gneisses

GEODYNAMIC ENVIRONMENT Dynamic setting characterized by planetary-scale
events and physical processes in the Earth’s crustal and
mantle envelopes. Differs from tectonic settings in
time and space

Boundary condition, subduction, seafloor spreading,
mantle plume, large igneous province, volcanism,
mountain building, basin formation, hotspot

SOURCE A volume of rock, fluid or magma that, by its chemical
composition, acts as an origin for a particular chemical
compound (ion, ligand, crystal or lithic fragment) that
is subsequently transported from its primary site to a
secondary site (of mineralization)

Sedimentary pile, felsic magmas, mafic magmas,
source rock, crystalline basement, metal, fluid,
chemical species: iron, gold, nickel, lithium, bauxite,
copper, zinc, lead, cobalt, rare earth elements,
tantalum and niobium, vanadium, platinum group
elements, uranium, manganese

ROCK DEFORMATION The change of shape or the displacement of a mineral
aggregate through crystal-plastic (ductile) processes or
by fracturing (brittle) due to mechanical failure

Crystal-plastic deformation, brittle deformation

GPE (GEOGRAPHIC LOCATION) Geographical location of the place entities as
represented by latitude and longitude values

Countries, cities, states, geographical coordinates

DATE Absolute or relative dates or periods (general domain) 5000 BC, 1750 AD, 20th Century, 18th Century, 1990s,
1500s, 2010, 2011, 2012, 2013, etc.

LOC Non-GPE locations, mountain ranges, bodies of water Places like: Kalgoorlie, Kimberley, Pilbara, Pilbara,
Western Australia

PS (PERSON-SCHOLAR) Researchers’ names (for example, geologists, biologists,
and palaeontologists)

During, Perring, Ramanaidou, Thorne, Angerer,
Rodger, etc.

QUANTITY Measurements, as of weight or distance km, metric, tons, degrees, mm, litres, percent, etc.

shades of blue representing higher frequencies of classifications
within each category. Similarly, Figures 4, 6, 8 use the same
visual representation for the analysis of lithium deposit research
papers. The following results provide insights into the strengths

and limitations of each schema and highlight areas for further
enhancement. Previous research (Villacorta et al., 2024) indicated
that increasing the number of papers does not improve the F1 score.
Hence, we compared schemas based on different class types and
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FIGURE 3
(A) Ozrock Confusion matrix (Wgt F1: 0.72). (B) F1 scores for NER on Iron Deposits Datasets by class.

numbers. Note in the figures that an ‘O’ was used to indicate tokens
that do not belong to any entity like “by” or “and”.

4.1 Dataset comparisons

• OzRock (Figures 3, 4) confusion matrices and F1 score bars
show that it performs robustly in identifying entity classes
like “MINERAL”, “ROCK”, and “ORE_DEPOSIT”. The high
weighted F1 scores (0.72 and 0.71) indicate better precision
and recall balance than the other schemas in categorizing
geological terms.

• GeoIElite_rev (Figures 5, 6) presents slightly lower weighted
F1 scores of 0.69 and 0.70. This result suggests moderate
effectiveness, due to the schema’s expansive inclusion of
diverse entity types, which might introduce complexity in
accurately tagging less distinct classes such as “PROCESS” and
“METHOD”.

• SMS (Figures 7, 8) depicts a considerable drop in weighted
F1 scores to 0.27 and 0.35, indicating challenges in entity
recognition.

4.2 Entity class performance

• The F1 scores across different entity classes reveal that core
geological categories (“MINERAL”, “ROCK”, “TIMESCALE”)
consistently achieve higher accuracy.

• Lesser-defined classes, such as “PROCESS”, “METHOD” and
“IMPACT”, demonstrate lower F1 scores.

5 Discussion

5.1 Challenges and limitations

The limitations of NER models in recognizing annotated
geological classes and its misclassification patterns are closely tied to
the complexity of geoscientific terminology, the challenges in design
and annotating geological schemas and the difficulties of ensuring
high-quality annotations. These factors impact model performance
and highlight the need for continuous refinement of schemas and
training datasets.

5.1.1 Schema classes selection
While the detailed processes involved in the development and

application of the SMS schema are outlined in the case study
section, it is crucial to emphasize the broader implications of our
findings here. The use of the SMS schema shows the critical need for
ontological resources in geosciences that are not only scientifically
rigorous but also adaptable to the evolving landscape of geological
research. The encountered challenges highlight the importance of
developing frameworks that can be easily updated and refined to
accommodate new scientific insights and terminologies.

The selection of geological classes in the SMS schema was
guided by their relevance to characterizing iron and lithium
deposits, illustrates a targeted approach to ontology design. For
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FIGURE 4
(A) Ozrock Confusion matrix (Wgt F1: 0.71). (B) F1 scores for NER on Lithium Deposits Datasets by class.

FIGURE 5
(A) GeoIElite_rev Confusion matrix (Wgt F1: 0.69). (B) F1 scores for NER on Iron Deposits Datasets by class.
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FIGURE 6
(A) GeoIElite_rev Confusion matrix (Wgt F1: 0.70). (B) F1 scores for NER on Lithium Deposits Datasets by class.

FIGURE 7
SMS (A) Confusion matrix (Wgt F1: 0.27). (B) F1 scores for NER on Iron Deposits Datasets by class.
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FIGURE 8
SMS (A) Confusion matrix (Wgt F1: 0.34). (B) F1 scores for NER on Lithium Deposits Datasets by class.

instance, the inclusion of LITHOSPHERIC_ARCHITECTURE and
TECTONIC_SETTING helped to understand the formation of
iron deposits, such as banded iron formations (BIFs), which are
influenced by regional tectonic activity and large-scale lithospheric
processes. This specificity in class selection is crucial for enhancing
the precision of NER tasks in complex domain like geosciences,
where the accuracy of terminology recognition directly impacts the
quality of data extracted from scholarly texts.

Similarly, the MINERAL and ROCK classes are key terms for
both deposits, as they determine the feasibility of extraction by
directly influencing the concentration and accessibility of valuable
minerals. For lithium pegmatites, minerals like spodumene and
lepidolite are pivotal for extraction viability, while the mineralogy
and composition of iron banded formations play a critical role
in determining the grade and recoverability of iron. Additionally,
TEMPORAL_EXTENT aids in understanding the timeframes of
geological processes critical to the formation of these deposits.

The analysis of confusion matrices and F1 scores for the
SMS schema (Figures 7, 8) reveals that while classes such
as LITHOSPHERIC_ARCHITECTURE and GEODYNAMIC_
ENVIRONMENT were recognized with reasonable accuracy,
others like TEMPORAL_EXTENT and TECTONIC_SETTING
experienced significant misclassification. These findings highlight
the challenges in distinguishing closely related or complex classes,
particularly in geosciences, where terms often have nuanced and
overlapping meanings. Overly detailed categories could possible
have overwhelmed the Flair model, underscoring the importance
of schema simplicity and specificity in achieving accurate NER
performance.

The model demonstrated higher performance for schemas with
general categories, as reflected by the higher F1 scores forMINERAL
and ROCK in the tree geoschemas. However, the low F1 scores for
SMS suggest that a more nuanced definition of certain classes is
necessary to capture the complexity of mineral system vocabularies.
As noted by Qiu et al. (2019), an effective schema starts with a
focused set of terms that are representative of the domain-specific
entities. Although the SMS schemawas tailored to address geological
questions related to lithium pegmatites and iron deposits inWestern
Australia, the results indicate that further refinement is required.

The findings suggest that the challenge lies not only in the
number of classes but also in selecting foundational and contextually
relevant ones. Expert input and iterative validation are critical
to ensure the schema maintains classification consistency and
accurately reflects geoscientific terminology, ultimately improving
NER performance for specialized domains.

5.1.2 Annotation
Annotating large corpora for geoscience NER presents

considerable challenges due to the need for substantialmanual efforts.
Automated tools, such asPython-basedpackages and specializedNER
models like Flair, offer potential solutions; however, the complexity
of automatic annotation and expert validation remains significant
(Villacorta et al., 2024; Bikaun et al., 2022). This study corroborated
the major challenge when validating annotations across extensive
geological datasets. Despite efforts to comprehensively verify the
annotations in a corpus of twenty papers, only one was fully
annotated and validated due to time constraints and the lack of
specialized annotators. This partial validation served as a foundation
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for automating the annotation of the rest of the corpus.The automated
process faced limitations; the Flair NER model recognized only a
subset of the annotated classes. The weighted F1 scores for the
SMS dataset were 0.27 and 0.34 for both datasets (iron and lithium
deposits), indicating variability in the model’s performance across
different entity types. Specifically, the confusionmatrices revealed that
classes such as ‘DATE’ and ‘PS’ achieved high accuracy with minimal
misclassifications (accuracy of 0.98 and 0.96, respectively). The
geological classes like ‘TECTONIC SETTING’ and LITHOSPHERIC
ARCHITECTURE’ are often misclassified (Figures 7, 8).

In addressing these challenges, Qiu et al. (2023) implemented
a systematic approach to annotation and validation in the
geological domain. Their annotation platform allowed input from
domain experts, categorizing entities into six main types. Using a
specialized Python-based annotation tool, it was facilitated manual
annotation and iterative consistency checks, achieving a high
level of annotation consistency and expert involvement enabling
the authors to construct large-scale, high-quality corpora in the
Chinese language. To mirror Qiu et al.’s efforts, we can adopt
a similar approach in the future by developing domain-specific
annotation guidelines in collaboration with experts. Additionally we
can utilize specialized tools such as INCEpTION, an open-source
platform that supports collaborative and interactive annotation in
general domains (Klie et al., 2018). Implementing this approach,
with automated checks and expert validation, can potentially
produce high-quality data for training and validating NER models
in geoscience, significantly improving their accuracy and reliability.

5.2 Misclassification cases

The analysis of the SMS schema’s misclassification patterns
reveal three primary types of misclassification: overlap
due to complex terminology, context dependency, and the
underrepresentation of rare classes. Figures 7, 8 provide a detailed
visual representation of these misclassification patterns. Several
factors contribute to this misclassification, including the complexity
and variability of language in the corpus, nuanced distinctions
between similar classes, and potential inconsistencies in initial
manual annotations. Addressing these challenges requires refining
iterative annotation schemas, improving ML algorithms, and
potentially expanding themanually validated sample size to improve
the model’s accuracy and coverage.

5.2.1 Overlap due to complex terminology
Certain classes, such as LITHOSPHERIC_ARCHITECTURE

and TECTONIC_SETTING, have nuanced meanings that the
model struggled to capture without expert guidance. For example,
as seen in Figure 9, terms like “Yilgarn” were misclassified as
LITHOSPHERIC_ARCHITECTURE instead of LOC (Location),
likely because they refer to geological regions. This demonstrates
themodel’s difficulty in distinguishing between geological structures
and geographic regions, where context plays a significant role.
Another notable example is TECTONIC_SETTING, which was
occasionally misclassified as ROCK (confusion matrices 7A, 7B)
due to overlapping terminology with geological formations, as
shown in Figure 9. This frequent overlap, exemplified by terms
such as ‘continental collision,’ which may reference both tectonic

FIGURE 9
Automatic annotation using as base the SMS schema, highlighting
misclassification of geological entities.

settings and rock-associated processes, highlights a significant
challenge in AI: the generation of spurious concept relationships or
hallucinations. Jiang et al. (2024) emphasize that such errors in entity
recognition can propagate through subsequent stages of analysis,
compounding inaccuracies in data interpretation. To address this
issue, further refinement of our schema is essential. By enhancing
its capacity to distinguish between closely related terms, and
incorporating advanced AI techniques that apply deep contextual
analysis, we can improve the accuracy of entity recognition.

5.2.2 Context dependency
The Flair NER model’s limited capacity to incorporate contextual

cues significantly complicates its handling of context-dependent
classeswithin theSMSdataset.For instance,asdepicted inFigure 9, the
terms “Iron” and “Ore” frequently receive the label ‘SOURCE’ instead
of the more appropriate ‘MINERAL’ or ‘ROCK’, contingent upon the
surrounding textual context. This inadequacy in context processing
not only underscores the model’s struggle with polysemous terms but
also impacts its ability to deliver precise geological classifications. The
inclusionof an additional class category like ‘ELEMENT’ has potential
to enhance the model’s discernment of such nuances. However, the
fundamental resolution involves not just technological enhancements
but also rigorous expert validation to ensure the accuracy and
consistency of labeling, critical in the domain of geosciences where
the exactitude of each term holds substantial implications. Further,
the misclassification of terms like ‘TECTONIC_SETTING’, which
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might be incorrectly annotated due to overlapping or ambiguous
context, can severely distort the geological interpretations essential
for addressing specific research inquiries, such as understanding
relevant tectonic processes.This limitation is crucial because accurate
classification directly influences the integrity and utility of data
used in determining geological dynamics, which are foundational to
mineral exploration and geological mapping strategies. Orellana et al.
(2020) and Hu et al. (2024) emphasize the importance of enhancing
NER systems’ contextual comprehension to mitigate AI-induced
misinformation and improve the reliability of information extraction
processes.They advocate for the adoption of advanced NLP strategies
to deepen the contextual understanding ofNERmodels, whichwould
enhance their precision and recall. This is crucial as these metrics
are essential for validating the effectiveness of entity recognition and
classification within complex, domain-specific datasets.

5.2.3 Rare classes
Rare classes in the SMS dataset, such as PROCESS, METHOD,

and IMPACT, demonstrated lower F1 scores, highlighting the
challenges of limited representation in training data. The SMS
dataset, with only 91 sentences and 832 entities, provided insufficient
data for these classes, resulting in reduced generalization capability.
For comparison, the OzRock dataset, which contained 83,838
sentences and 3,278 entities, offered broader coverage and higher F1
scores for general classes like ROCK and MINERAL (Figures 3, 4).
However, even within OzRock, nuanced or less frequent classes
were more prone to misclassification. The disparity in performance
between these datasets highlights how insufficiently diverse or
narrowly scoped training data can lead to suboptimal model
performance, particularly for complex or infrequent classes.
Integrating broader datasets and continuous expert feedback
into the training process can help address these shortcomings by
enhancing the diversity and representativeness of the training data,
thus reducing the incidence of AI-induced errors and improving the
overall reliability of the model.

5.3 Future research

The limitations of automated recognition with the SMS schema
highlights the need for diverse, representative training datasets,
refined schemas to capture domain-specific nuances, and model
adaptations to address the complexities of geological terminology
and context, enhancing entity extraction accuracy. Increasing the
number of annotated examples for rare classes, expanding the
diversity of training data, and enhancing model adaptability to
context would improve classification accuracy and the utility of NER
models in geoscientific research.

Using advanced techniques such as few-shot learning
(Hofer et al., 2018) can improve NER model’s ability to recognize
less frequent or underrepresented classes. Few-shot learning is a ML
technique that allows NER models to generalize with a limited
number of labelled examples which is common in specialized
domains like geoscience. Liu et al. (2022) have been pioneers
exploring few-shot learning in geosciences. They used GeoBERT
and Few-shot learning approach for recognizing long geological
terms using a minimal amount of annotated datasets. They

fine-tuned a pre-trained model using a geological domain thesaurus
achieving an F1 score of 0.80.

Additionally, a continuous feedback loop, where domain
experts validate and refine the model’s outputs, can help improve
its accuracy and reliability over time. This aligns with our
previous findings (Villacorta et al., 2024), which highlighted the
importance of schema training data diversity in enhancing NER
model performance in geosciences. Specifically, it was noticed that
GeoIElite achieved a modest F1 score compared to OzRock, which
performed better due to its broader linguistic diversity and the
inclusion of hundreds of documents. The narrower scope and
fewer entity classes in GeoIElite contributed to its lower scores.
The analysis suggested that limited annotated data scope, as seen
with GeoIElite, hinders robustness. Expanding the diversity and
context of annotated data can improve contextual recognition.
Additionally, Flair’s performance tends to decline with an increasing
number of entity classes, while F1 scores indicate that corpus size (7
PDFs vs. 20 PDFs) has a limited impact on overall NER accuracy.
Misclassifications, particularly between geological entities such as
‘ORE_DEPOSIT’ and ‘MINERAL,’ emphasize the need for schema
refinement. This can be addressed by ensuring that classes are well-
defined and distinct, or in some cases, merging similar classes
to reduce ambiguity and improve classification accuracy. Models
with a generalized LOCATION class (GeoIElite_rev, OzRock)
show different F1 scores, suggesting that class generalization may
impact model accuracy. Expert validation which is reflected in
the annotated dataset is crucial for creating schemas due to the
challenges of integrating automated tools. Future research will focus
on expanding and diversifying the annotated datasets to cover
additional geological subdomains and terminology.

Large language Models (LLMs) like GPT-4, BERT, and others
have shown significant potential in processing and analyzing
geoscientific texts (Touvron et al., 2023). These models, trained
on vast amounts of diverse data, can capture complex language
patterns and contextual nuances, making them well-suited for
handling the specialized terminology and varied contexts found
in geoscientific literature. LLMs offer opportunities for processing
geoscientific texts, some examples are GeoBERT (Liu et al., 2022)
which promises improvemed NER tasks in geology; GeoGalactica
(Lin et al., 2023), which was fine-tuned using geoscience-specific
data to improve knowledge extraction, document classification,
and question answering, and the use of LLM in analyzing climate-
related questions (Bulian et al., 2023), enhancing understanding
of environmental changes. However, their effectiveness vary
significantly based on the specificity of the training data and the
domain-specific challenges they are tailored to address. To fully
harness their potential in geosciences, ongoing efforts are needed
to increase the diversity and representativeness of training datasets,
refine domain-specific schemas and ontologies, and develop ML
techniques to enhance model performance with minimal data.

Moreover, collaboration with domain experts is essential to
validate and improve model outputs, ensuring that LLMs can provide
accurate, reliable insights in geoscientific research. The challenges
and limitations of LLMs are that they may struggle with rare or
underrepresentedgeological termsorconcepts if thetrainingdata lacks
diversity. This limitation can lead to incomplete or inaccurate entity
recognition. While LLMs are powerful, they may still face challenges
in generalizing across different geological contexts, particularly when
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encountering less common terms or unique geological formations or
acronyms in geoscience contexts.As observed inprevious discussions,
this can result in a model that recognizes only a subset of the relevant
geological classes as observed in this research. Yet, applying LLMs in
geosciences requires significant computational resources, particularly
when fine-tuning models on domain-specific data, which can be
considered a limiting factor for smaller research teams or projects
with constrained budgets.

While the initial phase of the project focused on the steps for
implementing schemas, future developments of the SMS plan to
integrate relational attributes, such as temporal relationships and
spatial dependencies. Capture more complex relationships within
geological entities, will enhance contextual recognition in this
specialized domain. Also is planned to investigate how thementioned
LLM can be fine-tuned and integrated with our developed schemas
to improve entity recognition accuracy and reduce errors related to
context misinterpretation and ambiguous terminologies.

6 Conclusion

This research highlights the potential and current limitations
of automated annotation tools using open-access NER models,
tailored for geoscience literature.The introduction of the Schema for
Mineral Systems (SMS) has provided insights into the classification
and recognition of geological entities, particularly emphasizing
the schema’s capability to detail the nuanced aspects of complex
mineral systems.

Our findings demonstrate that while schemas such as OzRock
and GeoIElite_rev establish essential frameworks for geological
entity recognition, they occasionally fall short in capturing the
more detailed and subtle geological features that SMS excels in
identifying. However, our results also highlight a critical challenge:
the detailed and comprehensive nature of SMS, while beneficial, can
sometimes introduce complexities that hinder the effectiveness of
NER systems. This intricacy necessitates significant fine-tuning and
expert validation to achieve reliable performance.

The analysis of confusionmatrices and performance evaluations
from the datasets reveals a stark contrast in the effectiveness
of different schemas. OzRock and GeoIElite_rev showed robust
performance in general geological categorization, whereas
SMS, despite its detailed approach, showed variability in its
effectiveness, particularly struggling with classes that require
deep contextual understanding or are less represented in the
training data.

From this study, it is evident that achieving optimal NER
performance requires a balance between schema detail and
simplicity. Future research should thus focus on refining schema
definitions to ensure they capture essential geological nuances
without overwhelming the NER systems. Incorporating diverse
and high-quality training data, along with leveraging advanced
machine learning strategies such as few-shot learning and
domain-specific language models, will be crucial in enhancing
the precision and utility of NER systems for geoscientific
applications.

Continued collaboration with domain experts is imperative
to ensure the relevance and accuracy of schema classifications.
Such partnerships are vital for aligning the schemas with

evolving geological concepts and maintaining the high standards
necessary for automated knowledge extraction from geoscientific
literature.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

SV: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Visualization,
Writing – original draft, Writing – review and editing, Validation.
ML: Methodology, Resources, Supervision, Validation, Writing –
review and editing, Conceptualization, Project administration. JK:
Conceptualization, Supervision, Writing – review and editing. KG:
Writing – review and editing, Methodology, Validation. EG:Writing
– review and editing, Validation. HM: Writing – review and editing,
Validation.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by the CSIRO ResearchPlus Science Leader program.

Acknowledgments

The authors express their gratitude to Mario Iglesias and
Marta Sośnicka for their assistance in annotating the SMS
dataset. We appreciate Ryan Noble’s insightful feedback on entity
class classification and Behnam Sadeghi’s contributions to the
manuscript’s approach. Thanks are also to Andy Wilkins and Tadro
Abbot for their thorough review within the CSIRO peer review
system. We are grateful to the Executive Director of the Geological
Survey of Western Australia for granting K Gessner and E Gray the
permission to participate in this study, which was pivotal for our
research. Marta Sośnicka deserves additional acknowledgment for
her comprehensive review and input on the practical applications
of our findings in mineral exploration research. A special thanks
to the journal reviewers, Dr. Antony Mamuse and Dr. Feng Han,
for their constructive feedback and thoughtful suggestions, which
greatly contributed to improving the quality of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1530004
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Villacorta Chambi et al. 10.3389/feart.2025.1530004

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of thismanuscript. To assist in editing themanuscript and enhancing
its readability. AI is not credited as an author of the manuscript; it
was solely utilized for summarizing text and reducing redundancy.
All content edited with the help of Generative AI has been verified
for factual accuracy and checked for plagiarism.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2025.
1530004/full#supplementary-material

References

Akbik, T. B., Blythe, D., Rasul, K., Schweter, S., and Vollgraf, R. (2019). “FLAIR: an
easy-to-use framework for state-of-the-art NLP,” in Proceedings of the 2019 conference
of the North American chapter of the association for computational linguistics
(demonstrations), 54–59.

Angeli, G., Premkumar, M. J. J., and Manning, C. D. (2015). “Leveraging linguistic
structure for open domain information extraction,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), 344–354.

Angerer, T., Duuring, P., Hagemann, S. G., Thorne, W., and McCuaig, T. C. (2015). A
mineral system approach to iron ore in archaean and palaeoproterozoic BIF of Western
Australia. Geological Society, London, Special Publications 393 1, 81–115.

Babaie, H. A., Davarpanah, A., and Elliott, W. C. (2023). Ontology of the
complex rare-earth elements mineral system. Special Pap. Geol. Soc. Am. 558, 29–44.
doi:10.1130/2022.2558(03

Bhattacharya, A. (2023). Custom named construct recognition in the business
and management literature. Ottawa, ON, Canada: Carleton University. Doctoral
dissertation.

Biber, D., Conrad, S., and Reppen, R. (1998). Corpus Linguistics: Investigating
Language Structure and Use. Cambridge University Press. Available online at: https://
academic.oup.com/dsh/article-abstract/14/2/305/936240 (Accessed February 2, 2025).

Bikaun, T. K., French, T., Stewart, M., Liu, W., and Hodkiewicz, M. (2024). “MaintIE:
a fine-grained annotation schema and benchmark for information extraction from
maintenance short texts,” in Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), 10939–10951.

Bikaun, Stewart, M., and Liu, W. (2022). “Quickgraph: a rapid annotation tool for
knowledge graph extraction from technical text,” in Proceedings of the 60th annual
meeting of the association for computational linguistics: system demonstrations, 270–278.

Brodaric, B., and Richard, S. M. (2020). The geoscience ontology. Abstract retrieved
from AGU Fall Meeting Abstracts 2020 (IN030 07).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020).
Language models are few-shot learners. arXiv: 14165. doi:10.48550/arXiv.2005.14165

Bulian, J., Schäfer, M. S., Amini, A., Lam, H., Ciaramita, M., Gaiarin, B., et al. (2023).
Assessing large languagemodels on climate information. arXiv Prepr. arXiv:2310.02932.

Cox, S. J., and Richard, S.M. (2015). A geologic timescale ontology and service. Earth
Science Informatics 8. 5–19.

Devlin, M.-W., Chang, Lee, K., and Toutanova, K. (2018). Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv Prepr. arXiv:1810.04805.

Ding, N., Xu, G., Chen, Y., Wang, X., Han, X., Xie, P., et al. (2021). Few-nerd: a
few-shot named entity recognition dataset. arXiv [Preprint]. arXiv:2105.07464.

Enkhsaikhan, M. (2021). Geological knowledge graph construction from mineral
exploration text. Doctoral thesis (UWA: University of Western Australia).

Garcia, L. F., Abel, M., Perrin, M., and dos Santos Alvarenga, R. (2020). The GeoCore
ontology: a core ontology for general use in Geology. Comput. and Geosciences 135,
104387. doi:10.1016/j.cageo.2019.104387

Greim, P., Solomon, A. A., and Breyer, C. (2020). Assessment of lithium criticality
in the global energy transition and addressing policy gaps in transportation. Nat.
Commun. 11 (1), 4570. doi:10.1038/s41467-020-18402-y

Grishman, R., and Sundheim, B. M. (1996). “Message understanding conference-
6: A brief history,” in COLING 1996 volume 1: The 16th international conference on
computational linguistics.

Guo, Z., Wang, C., Zhou, J., Zheng, G., Wang, X., and Zhou, C. (2024).
GeoKnowledgeFusion: a platform for multimodal data compilation from geoscience
literature. Remote Sens. 16 (9), 1484. doi:10.3390/rs16091484

Hofer, M., Kormilitzin, A., Goldberg, P., and Nevado-Holgado, A. (2018).
Few-shot learning for named entity recognition in medical text. arXiv Prepr.
arXiv:1811.05468.

Hu, Z., Hou, W., and Liu, X. (2024). Deep learning for named entity recognition: a
survey. Neural Comput. Appl. 36 (16), 8995–9022. doi:10.1007/s00521-024-09646-6

Huber, R., and Klump, J. (2015). Agenames a stratigraphic information harvester and
text parser. Earth Sci. Inf. 8, 125–134. doi:10.1007/s12145-014-0171-5

Jiang, G., Luo, Z., Hu, C., Ding, Z., and Yang, D. (2024). Mitigating out-of-
entity errors in named entity recognition: a sentence-level strategy. arXiv Prepr.
arXiv:2412.08434.

Klie, J. C., Bugert, M., Boullosa, B., De Castilho, R. E., and Gurevych, I. (2018). “The
inception platform: machine-assisted and knowledge-oriented interactive annotation,”
in In Proceedings of the 27th international conference on computational linguistics:
System demonstrations (Santa Fe, NM: Association for Computational Linguistics),
5–9.

Lamparter, S., Ehrig, M., and Tempich, C. (2004). “Knowledge extraction from
classification schemas,” in On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA,
and ODBASE 2004, Agia Napa, Cyprus, October 25–29, 2004 (Springer Berlin
Heidelberg), 618–636.

Lin, Z., Deng, C., Zhou, L., Zhang, T., Xu, Y., Xu, Y., et al. (2023). Geogalactica: a
scientific large language model in geoscience. arXiv Prepr. arXiv:2401.00434.

Lindsay, M., Villacorta, S. P., McFarlane, H., Gessner, K., and Gray, E. (2024). Geo-
semantics and ontologies: an approach to decode goldmineral systems using controlled
vocabularies. arXiv. doi:10.5281/zenodo.15151900

Liu, H., Qiu, Q., Wu, L., Li, W., Wang, B., and Zhou, Y. (2022). Few-shot learning
for name entity recognition in geological text based on GeoBERT. Earth Sci. Inf. 15 (2),
979–991. doi:10.1007/s12145-022-00775-x

Lombardo, V., Piana, F., and Mimmo, D. (2018). Semantics–informed geological
maps: conceptual modeling and knowledge encoding. Comput. and Geosciences 116,
12–22. doi:10.1016/j.cageo.2018.04.001

Loper, E., and Bird, S. (2002). Nltk: the natural language toolkit. arXiv Prepr.
cs/0205028.

Ma, X. (2022). Knowledge graph construction and application in geosciences: a
review. Comput. and Geosciences 161, 105082. doi:10.1016/j.cageo.2022.105082

Mantovani, A., Piana, F., and Lombardo, V. (2020). Ontology-driven representation
of knowledge for geological maps. Comput. and Geosciences 139, 104446.
doi:10.1016/j.cageo.2020.104446

Mathis, B. (2022). Extracting proceedings data from court cases with machine
learning. Stats 5 (4), 1305–1320. doi:10.3390/stats5040079

McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P., and Cimiano, P. (2017). “The
Ontolex-Lemon model: development and applications,” in Proceedings of eLex 2017
conference, 19–21.

McKinney, W. (2010). “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in science conference. Editors S. van der Walt, and J.
Millman (Austin, TX: SciPy), 51–56. doi:10.25080/Majora-92bf1922-00a

Orellana, M., Fárez, C., and Cárdenas, P. (2020). “Evaluating Named Entities
Recognition (NER) tools vs algorithms adapted to the extraction of locations,” in

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2025.1530004
https://www.frontiersin.org/articles/10.3389/feart.2025.1530004/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2025.1530004/full#supplementary-material
https://doi.org/10.1130/2022.2558(03
https://academic.oup.com/dsh/article-abstract/14/2/305/936240
https://academic.oup.com/dsh/article-abstract/14/2/305/936240
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1016/j.cageo.2019.104387
https://doi.org/10.1038/s41467-020-18402-y
https://doi.org/10.3390/rs16091484
https://doi.org/10.1007/s00521-024-09646-6
https://doi.org/10.1007/s12145-014-0171-5
https://doi.org/10.5281/zenodo.15151900
https://doi.org/10.1007/s12145-022-00775-x
https://doi.org/10.1016/j.cageo.2018.04.001
https://doi.org/10.1016/j.cageo.2022.105082
https://doi.org/10.1016/j.cageo.2020.104446
https://doi.org/10.3390/stats5040079
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Villacorta Chambi et al. 10.3389/feart.2025.1530004

2020 International Conference of Digital Transformation and Innovation Technology
(Incodtrin) (IEEE), 123–128.

Patel, H. (2020). Bionerflair: biomedical named entity recognition using flair
embedding and sequence tagger. arXiv Prepr. arXiv:2011.01504.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
Available online at: https://www.jmlr.org/papers/v12/pedregosa11a.html.

Perring, C., Crowe, M., and Hronsky, J. (2020). A new fluid-flow
model for the genesis of banded iron formation-hosted martite-goethite
mineralization, with special reference to the north and south flank deposits
of the Hamersley Province, Western Australia. Econ. Geol. 115 (3), 627–659.
doi:10.5382/econgeo.4734

Qiu, Q., Tian, M., Xie, Z., Tan, Y., Ma, K., Wang, Q., et al. (2023). Extracting named
entity using entity labeling in geological text using deep learning approach. J. Earth Sci.
34 (5), 1406–1417. doi:10.1007/s12583-022-1789-8

Qiu, Q., Xie, Z., Wu, L., and Tao, L. (2019). GNER: a generative model for geological
named entity recognition without labeled data using deep learning. Earth Space Sci. 6
(6), 931–946. doi:10.1029/2019ea000610

Shinyama, Y., and Guglielmetti, P. (2014). pdfminer.six (Version 20240706). GitHub.
Available online at: https://pypi.org/project/pdfminer.six/ (Accessed September 4,
2024).

Singer-Vine, J. (2020). Pdfplumber (Version 0.11.0). GitHub. Available online at:
https://pypi.org/project/pdfplumber/ (Accessed September 4, 2024).

Tjong Kim Sang, E. F., and De Meulder, F. (2003). “Introduction to the CoNLL-
2003 shared task: language-independent named entity recognition,” in Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003,
142–147.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T.,
et al. (2023). Llama: open and efficient foundation language models. arXiv Prepr.
arXiv:2302.13971.

Villacorta, S. P., Lindsay, M., Klump, J., and Francis, N. (2024). “Assessing named
entity recognition efficacy using diverse geoscience datasets,” in 2024 International
Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)
(IEEE), 1–3.

Villacorta, and Lindsay, M. (2023). “Exploring the importance of preprocessing
operations in geoscience knowledge graphs through the application of a machine
learning approach,” in Proceedings of the 26th World Mining Congress, Brisbane,
Australia, 177–188.

Wang, C., Chen, J., and Li, Y. (2022). Named entity annotation schema for geological
literature mining in the domain of porphyry copper deposits. Abstract retrieved from
AGU Fall Meeting Abstracts (IN12C-0276).

Woodcock, R., Paget, M., Wang, P., and Held, A. (2018). “Accelerating industry
innovation using the Open Data Cube in Australia,” in IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Symposium, 8636–8638.

Zhou, C., Wang, H., Wang, C., Hou, Z., Zheng, Z., Shen, S., et al. (2021). Geoscience
knowledge graph in the big data era. Sci. China Earth Sci. 64 (7), 1105–1114.
doi:10.1007/s11430-020-9750-4

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1530004
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.5382/econgeo.4734
https://doi.org/10.1007/s12583-022-1789-8
https://doi.org/10.1029/2019ea000610
https://pypi.org/project/pdfminer.six/
https://pypi.org/project/pdfplumber/
https://pypi.org/project/pdfplumber/
https://doi.org/10.1007/s11430-020-9750-4
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Methodology
	2.1 Steps to create a schema in a specialized domain
	2.2 Tools and libraries
	2.3 Validation and performance evaluation
	2.4 Script pipeline

	3 Case study: comparing the efficacy of the NER Flair model using geological schemas and geoscience papers on iron and lithium deposits in Australia
	3.1 Training of the Flair NER model
	3.1.1 Datasets
	3.1.2 Training process

	3.2 Validation and performance evaluation

	4 Results
	4.1 Dataset comparisons
	4.2 Entity class performance

	5 Discussion
	5.1 Challenges and limitations
	5.1.1 Schema classes selection
	5.1.2 Annotation

	5.2 Misclassification cases
	5.2.1 Overlap due to complex terminology
	5.2.2 Context dependency
	5.2.3 Rare classes

	5.3 Future research

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

