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Formation density can reflect the pressure state and fluid migration of the
reservoir, which is crucial for the re-development of depleted reservoirs.
Although various prediction models have been developed using density
inversion, the Terzaghi correction, and machine learning techniques, these
models are difficult to meet the high-precision requirements during the
calculation process. This fact limits their effectiveness in oil and gas exploration
and development. However, the formation density and the detector counting
rate during well logging process exhibit a nonlinear relationship. A system
structure integrating Convolutional neural network (CNN) and Transformer is
suggested to accomplish the goal of automatic formation density prediction and
solve the problem of insufficient model feature extraction ability under multiple
logging data conditions. The reason for adopting the integrated structure is to
enhance prediction accuracy and robustness through collaborative optimization
of multiple models. The CNN mainly extracts feature regions of interest and
Transformer encoder is utilized to assign high weights to the regions of interest.
The CNN-Transformer model also includes the novel S-shaped Rectified Linear
Activation Unit (S-ReLU) function. Based on the counting rates of the detector’s
energy windows, the Pearson correlation coefficient method is applied for
feature selection. Bayesian optimization combined with K-fold cross validation
is used to fine-tune the key model hyperparameters. The proposed CNN-
Transformer model is compared with the traditional inversion model, the CNN
model and the Transformer model in terms of prediction accuracy. The results
demonstrate that the CNN-Transformer model offers greater robustness and
smaller prediction deviations than other machine learning models. This study
provides a reliable and fast approach for predicting formation density while
minimizing exploration cost and improving exploration efficiency for oil and gas.

KEYWORDS

formation density prediction, real-time, well logging parameters, CNN-Transformer
model, formation density error

1 Introduction

As more domestic oil fields go into their later stages of development, it becomes
more crucial than ever to realize the re-development of depleted reservoirs. The precise
interpretation of formation density is particularly important for improving the success
rate of exploration and development benefits. Density logging provides irreplaceable
technical support in the fine reservoir description, the dynamic development tracking
and the engineering risk prevention and control. It is a key tool for achieving efficient
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and safe development throughout the entire lifecycle
of oil and gas fields, especially in the development of
unconventional oil and gas (shale gas, tight oil) and the complex
old oil fields.

For the density logging project, the response properties and
gamma spectrumof the four-probe array density logging instrument
are studied based on the interaction principle between photon and
material. Meanwhile, the cement sheath density (ρc), the casing
thickness (hs) and the cement sheath thickness (hc) are proved to be
the three primary influencing elements for formation density (ρb)
(Zheng, 2008). Drawing from simulation data and the calibration
wells, numerous researchers worldwide have developed inversion
models for the four-probe array density logging. Ronald et al. (2011)
established a four-detector forwardmodel of the counting rate using
simulated and measured well data. Based on the forward model,
the inversion of formation density was studied by optimization
methods in Alberta Basin. Li et al. (2017) created a model to
calculate the formation density under the condition of known
cement sheath density and thickness. And it is found that the
inversion error of the formation density value is 0.124 when the
cement sheath thickness is greater than 2.5 cm in the Ordos Basin.
Wu et al. (2017) conducted the response simulation of scattered
gamma photons using a four-detector density logging instrument
and established a density inversion model. They obtained relatively
accurate formation density values. Cao et al. (2024) proposed
an extension of the Terzaghi correction method by selecting a
new direction perpendicular to the scan line of the fracture and
calculating the projection length of the sampling space in that
direction to solve the problem of formation fracture density. In
fact, the simultaneous acquisition of these four parameters (ρb,
hc, hs and ρc) can be achieved by forming a four-dimensional
equation group. In the equation, the casing thickness offers the
highest computation accuracy and is least influenced by other
factors. However, the calculation accuracy of the formation density
is comparatively low, and the cement sheath thickness also generates
a major impact on the computation. According to the practical
application research of Xiangyang et al. (2024), the above traditional
inversion methods also lack the ability to extract richer feature
information and can’t achieve long-term high-precision prediction.
For this reason, a new technique to determine the formation
density is needed.

With the development of artificial intelligence,machine learning
(ML) has been widely applied in the field of geophysical exploration
(Pham et al., 2020). Majid and Hadi (2019) utilized an enhanced
Support Vector Regression (SVR) technique to forecast reservoir
permeability, yielding highly satisfactory outcomes in Ordos Basin.
Johnson et al. (2023) summarized that artificial neural network
(ANN) is the most commonly used machine learning method for
rock physics analysis and estimation of raw petroleum geological
reserves. Liang et al. (2021) improved the interpretation of acoustic
dipole dispersion data in the presence of casing and drill pipe
by physics-driven machine learning method in Qinshui Basin.
Xiao et al. (2023) conducted a multi-logging curve variable
contribution analysis using reservoir sweet spot parameters as
output, and ultimately constructed a reservoir sweet spot prediction
model based on Light Gradient Boosting Machine (LightGBM)
regression algorithm in Chuannan Basin. Ekechukwu and Adejumo
(2024) used the eXtreme Gradient Boosting (XGBoost) method to

predict the equivalent cyclic density (ECD) value in South Pars gas
field of Iran. Wang et al. (2024) proposed a deep learning model
based on bidirectional temporal convolutional network (BTCN) and
bidirectional long short-term memory (BLSTM) network, called
bidirectional spatiotemporal neural network (BSTNN), to establish
a porosity prediction model in Sichuan Basin. Hassaan et al. (2024)
applied gradient boosting regressors (GBRs) network to predict
formation permeability using existing drilling parameters inMiddle
East Basin. Al-Mudhafar et al. (2023) adopted adaptive boosting
(AdaBoost) model to identify discrete lithofacies distributions
related to well logging records in Iran Basin. Feng et al. (2024)
proposed a reliable and low-cost Bidirectional Long Short-Term
Memory (BiLSTM)method for predicting S-wave velocity from real
logging data in Liaohe Basin. Lei et al. (2024) created a RefineNet
network model based on a mixed loss function for removing clutter
signals from ground penetrating radar profiles. The multi-value
nonlinear regression model should be used due to the nonlinear
correlation between the formation density and the detector counting
rate of distinct energy windows during well logging process
(Zhou et al., 2002). The deep learning neural network is one of the
most widely used techniques for solving nonlinear regression issues.
It demonstrates remarkable abilities in function approximation and
pattern recognition, and in principle can be considered a high-
dimensional nonlinear function (Khisamutdinov and Pakhotina,
2015; Cresson, 2019; Sun et al., 2019). But there are few related
studies about formation density problem of well logging by
machine learning.Meanwhile, convolutional neural network (CNN)
model is ideal for handling complicated well logging parameter
prediction situations because of their great adaptive and self-
learning capabilities. Cai (2022) successfully predicted the formation
density variation of Zhangye Basin with an accuracy of 75% using
CNN model. With the increase of logging data, the prediction
classification task in CNN model is also vulnerable to multi-class
labels and a complicated setting environment, which can lead to the
problem of insufficient feature extraction ability (Lim et al., 2021).
Furthermore, the original activation function ReLU of CNN suffers
a neuron “necrosis” issuewhile having good sparsity and operational
efficiency. Therefore, the creation of an effective activation function
for the current CNN network is equally crucial.

In this paper, CNN-Transformer model is designed to achieve
accurate prediction of formation density and solve the insufficient
feature extraction ability problem of CNN model under multiple
logging data conditions for the first time. The innovation lies in
the Transformer encoder is coupled after the CNN structure to
reweight the feature information by the multi-head self-attention
mechanism. This operation allows us to precisely capture the
feature areas of interest throughout the training process, which
can enhance the feature extraction ability. After that, the CNN-
Transformer model is expanded to include the innovative S-ReLU
function. The new S-ReLU activation function avoids the problem
of neuron “necrosis” in CNN-Transformer model. Meanwhile, the
parameter feature selection engineering is adopted to reduce the
redundant input information. Lastly, the newmodel is applied to the
formation density prediction and a discussion of the study’s findings
is displayed. Moreover, the model practicality, parameter sensitivity
analysis and recommendations for future studies are discussed to
gain a more specific understanding of CNN-Transformer model
performance.
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FIGURE 1
Network connection diagram of BP and 1D-CNN models. (a) Represents BP model; (b) represents 1D-CNN model.

2 Methodology

2.1 Convolutional neural network (CNN)

Convolutional Neural Network is a feedforward neural network
(Jin and Tong, 2023). Its powerful feature extraction and recognition
skills have been effectively employed in time series and picture
data classification applications (Barkataki et al., 2022; Madan et al.,
2022; Ozcanli and Baysal, 2022). CNN’s distinct convolution
and pooling techniques not only simplify network models but
also enable automatic feature extraction, significantly enhancing
the model’s ability to adapt to input data (Huang and Xia,
2019; Kim et al., 2021; Zulfiqar et al., 2020). Due to the fact
that the formation density parameter is time series data, a
one-dimensional convolutional neural network (1D-CNN) model
can be adopted to achieve multi-classification prediction about
formation density.

BP neural network is transformed into 1D-CNN by changing
the function and form of hidden layer. 1D-CNN and BP neural
network are generally composed of three parts: input layer,
hidden layer, and output layer. The difference is that the hidden
layer of 1D-CNN model contains convolutional layer, pooling
layer, and fully connected layer (Rizvi, 2021). Relative to BP
neural network, 1D-CNN model exhibits two major advantages.
Firstly, as the connection mode between neurons is local region
connection, the number of training parameters can be effectively
reduced, and the computational efficiency of the model may be
enhanced. Secondly, from the perspective of weight similarities
and differences, 1D-CNN model employs the way of weight
sharing, which makes the algorithm possess strong robustness
and easy to train (Abo-Tabik et al., 2020; Williams et al., 2021).
The connection modes of BP and 1D-CNN models are displayed
in Figure 1.

The neurons of BP neural network are fully connected, and the
corresponding weights and biases are varied. Hence, the output of
the jth neuron in the hidden layer is represented as (Li et al., 2020):

yj = f(
n

∑
i=1

wi,jxi + bj) (1)

where xi (i = 1, 2, .) is the input vector; f is the activation function;
wi, j is the weight from the ith neuron to the jth neuron; bj is the bias
of each neuron in the hidden layer.

Due to the introduction of convolution kernel in 1D-CNN
model, the connection mode between neurons becomes local
connection. So 1D-CNN model provides the feature of sharing
weight. Then, the weight part of Equation 1 is improved to obtain
the output of the jth neuron of the convolutional layer in 1D-
CNNmodel:

yj = f(
k

∑
i=1

wixj−i+k + bk) (2)

In Equation 2, wi is the shared weight of convolutional kernel
between neurons; k is the number of convolutional kernel; bk is
the offset corresponding to the kth convolutional kernel in the
hidden layer.

2.2 Redefined S-ReLU function

To increase the nonlinear ability of CNNmodel, a novel function
S-ReLU is created based on ReLU function and SoftPlus function.
The advantages of S-ReLU are illustrated by analyzing its properties
and comparing it to ReLU and SoftPlus, and then how S-ReLU
propagates forward in the model is exhibited.

Glorot et al. (2011) were inspired by the performance of human
brain neuron after stimulation in neuroscience and applied ReLU
to the neural network for the first time. Through allowing CNN to
simulate the workflow of biological neural networks, the expression
ability was enhanced. The form of ReLU function is:

f(x) =
{
{
{

x,x > 0

0,x ≤ 0
(3)
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FIGURE 2
S-ReLU function and derivative diagram.

SoftPlus is considered to be a smooth approximation of ReLU,
and they share many similarities (Hahnloser et al., 2003). The
expression for SoftPlus is:

f(x) = In(1+ ex) (4)

The S-ReLU activation function is built using two types of
activation functions stated in Equations 3, 4:

f(x) =
{
{
{

x,x > 0

x[ex + xIn(1+ ex)],x ≤ 0
(5)

As can be seen from Equation 5, the output is an identity
function when x > 0, that is, the input is equal to the output. When
x ≤ 0, the output is a combination of ReLU and SoftPlus functions.
The derivative of S-ReLU activation function is:

f(x) =
{{
{{
{

1,x > 0

ex + x(ex + 2α+ xex

1+ ex
),x ≤ 0

(6)

Noted that α = ln (1+ex) in Equation 6. Figure 2 presents S-ReLU
function and derivative diagram. From f ’+(0) = f ’ (0) = 1, it can be
inferred that f (x) is differentiable and its derivative is not a constant.
Thus, f (x) is nonlinear, which will considerably improve the model’s
ability to deal with complex problems.

First of all, S-ReLU adds negative sample information.
Specifically, S-ReLU contains positive and negative values, unlike
SoftPlus, which always exists a value larger than 0 in the negative
area. This significantly solves the “mean deviation” issue. S-ReLU is
more in line with the characteristics of biological neuron response,
which increases the anti-interference ability of the model. Secondly,
when x approaches +∞, f (x) approaches∞. It is proved the function
has no upper bound, which can accelerate the convergence speed
of CNN model and avoid a sharp decrease in training speed after
function saturation. When x approaches -∞, f (x) approaches 0. It
suggests that the function has a lower bound, making CNN model
highly regularized and improving its robustness.

Additionally, S-ReLU function is composed of exponential
function and logarithmic function, which is more complex than
the function composed of only identity function (Equation 3). The
operation makes S-ReLU function need more time in practical
application. But the S-ReLU function can return a valid negative
value during forward propagation, preventing the gradient from
disappearing.The structure of S-ReLU function is extremely similar
to that of ReLU function, which enables the S-ReLU function to
possess several advantages of ReLU function, such as sparsity. This
not only reduces the computational complexity of CNN model,
but also enhances its expressive power, making the network more
focused on the task itself.

2.3 Transformer encoder structure

Transformer structure is made up of multi-head self-attention
mechanism and feedforward neural network (Figure 3). The Q
(query matrix), K (key matrix) and V (value matrix) are the inputs
of self-attention mechanism which is a special case of attention
mechanism (Kumar et al., 2022). The sequence matches itself to
extract the dependency between its parts. Equation 7 presents how
each self-attention mechanism is calculated:

Attention(Q,K,V) = softmax(QK
T

√dk
)V (7)

where dk is the dimension of channel. The Q and K use the inner
product to match, and the result is an attention matrix whose value
characterizes the correlation between Q and K. Multi-head self-
attention mechanism employs multiple self-attention in parallel to
learn the interdependence between different types of data, as shown
in Equation 8 and Equation 9:

MultiHead(Q,K,V) = Concat(head1, ....headh)Wo (8)

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )

WQ
i ∈ R

dmodel×dk ,WK
i ∈ R

dmodel×dk,WV
i ∈ R

dmodel×dv
(9)

In this paper, h = 6 is selected, which is composed of six self-
attention mechanisms.

Each layer in the Transformer encoder has a feedforward neural
network, and the network is applied equally to each location. The
structure includes the following linear transformations:

FFN(x) =max (0,xW1 + b1)W2 + b2 (10)

To avoid the problem of neuron “necrosis”, the S-ReLU function
is in the middle of the structure of Equation 10. While linear
transformations employ different parameters between layers, they
are the same in all positions (Nawaz et al., 2020). Although
linear transformations are the same in different positions, they
adopt various parameters between layers (Liu et al., 2022). In
Equation 7, due to the lack of position information, the position
of self-attention layer is unknown. Consider adopting position self-
attention mechanism, learnable relative position code is embedded.
Each attention head can be expressed as Equation 11 through a
trainable relative position code:

Attention(Q,K,V) = softmax(QK
T

√dk
+B)V (11)
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FIGURE 3
The construction of multi-head self-attention mechanism. (a) Multi-head self-attention mechanism, (b) Self-attention mechanism.

where B is the relative position code, which is a learnable parameter
during network training.

2.4 Workflow of CNN-transformer model

TheMBConv structure serves as the primary foundation for the
convolution operation in the newly built model (Sivaanpu et al.,
2024). Furthermore, the weighted values of the preset receptive field
can be summarised to represent both the convolution operation
and the self-attention process (Stojsic et al., 2024). The “inverted
residual” design is used by both the Transformer encoder and the
MBConv structure in the convolution layer.The design first employs
1 × 1 convolution to accomplish dimension augmentation, then 3
× 3 DW convolution is used to extract features, and finally 1 × 1
convolution is applied to achieve dimension reduction. This allows
it to realize the mutual fusion of various feature data. The MBConv
structure incorporates the S-ReLU activation function to expedite
the network’s convergence.

Convolution specifically relies on the fixed convolution kernel to
extract the feature data from the nearby receptive field. It not only
assures that the learned convolution kernel responds most strongly
to the local peculiarities of the input cased-hole information, but
it also minimizes the model’s complexity. Local characteristics, on
the other hand, tend to neglect the context correlation between
distinct regions predicted by cased-hole parameters. By calculating
the normalized weight based on pair similarity, the self-attention
mechanism can immediately obtain global information. The global
receptive field causes the model’s computation volume to grow
quickly. In order to determine the feature information we wish to
retain, CNN should extract the feature areas we are interested in
prior to entering the Transformer encoder structure.

Combining the advantages of CNN and Transformer should
be possible with the perfect model. Anti-interference performance
enhancement of CNN-Transformer model is achieved through
the use of S-ReLU activation function. The total structure is
depicted in Figure 4. This model not only thoroughly extracts
the feature regions of relevance for the prediction of cased-hole
parameter, but it also gives more weight to significant feature
information.

2.5 Performance metrics evaluation

Pearson Correlation Coefficient (R) and Root-Mean-Square-
Error (RMSE) are utilized to analyze the model’s predictive ability
(Chen et al., 2020). R is the method to measure the correlation
between two variables, and its value range is [-1, 1]. RMSE reflects
the maximum error between target parameters and prediction
parameters. Additionally, we conducted t-tests (Kim, 2015) on
the prediction results of different models to statistically evaluate
the differences between the models. Their calculation equations
are as follows:

R =
Cov(Y,P)

√D(Y)√D(P)
(12)

RMSE = √∑N
n=1
(yi − pi)

2 × 1
N

(13)

t =
p√k

√∑ki=1(pi−p)
2

k−1

(14)

In Equations 12, 13, Y and P denote the real and predicted
parameter values; Cov (Y, P) and D denote the covariance and
variance functions, respectively; yi and pi denote the true formation
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FIGURE 4
CNN-transformer structure schematic diagram.

density and the predicted formation density; N denotes the
samples’ number. In Equation 14, k is the iteration number. Pi is
the performance difference between different models in the ith
iteration. p represents the average performance difference between
different models.

3 Experiments

3.1 Data sample selection

A certain work area is located in the central western part
of Ordos Basin, which is between two primary structural units:

Tianhuan Depression and Shanbei Slope. Four detector density
logging project was carried out in August 2019. This work area
is mainly composed of dense sandstone, rich in pyrite, and has a
geological thickness of 624–2014 m. The entire reservoir porosity
ranges from 1.8% to 8.7%, with an average of 4.8%.The permeability
ranges from 0.01 to 4.81 mD, with an average of 2.15 mD. The
work area exhibits overall low porosity and low permeability
characteristics. During the process of measuring formation density
by the four-detector density logging instrument in this work area,
the actual counting rates of different detectors with different energy
windows were obtained at different depths by the gamma counters.
For every detector counting rate of each energy window, ρb shows
different features.
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FIGURE 5
Schematic diagram of box plot method.

FIGURE 6
Correlation analysis of formation density and the counting rate of six energy windows.

FIGURE 7
The variation of loss function value and accuracy vale with the number of iterations.
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TABLE 1 Optimization results of key hyperparameters in the
CNN-transformer model.

Hyperparameter Setup

Conv1 kernel size 2

Conv2 kernel size 4

Transformer encoding layers 3

Transformer attention head number 5

FNN hidden layer dimension 90

Initial learning rate 0.03

Batch size 64

Dropout rate 0.4

L2 regularization parameter 1 × 10−3

To establish the prediction model of formation density, the
dataset samplesmainly include six counting rates of energy window:
0–45 keV counting rate, 45–85 counting rate, 85–135 keV counting
rate, 135–235 keV counting rate, 235–345 keV counting rate and
345–585 keV counting rate. The experimental data ratio of the
training set, validation set and test set is set as 8:1:1. The training set
data and validation set data used for the experiment were acquired
from nine wells in the western part of work area, with a total of 1,680
samples and 210 samples, respectively.The purpose of the validation
set is to prevent overfitting of themodel. To ensure the generalization
ability of themodel, the test set selects regions that are different from
the training set. The predicted sample data comes from three wells
in the south, with a total of 210 samples.

3.2 Data preprocessing

Before data preprocessing, the quality control of logging data
was strictly implemented by adopting standardized acquisition
process, high-precision instrument calibration and double review
to ensure accurate data entry. Due to environmental interference
or errors in the acquisition process, the obtained detector counting
rate may be affected by noise interference, which results in the
occurrence of outliers. The box plot method is used for outlier
detection (He et al., 2023). Data with less than Q1-1.5∗IQR or
greater than Q3 + 1.5∗IQR are defined as potential outliers,
as shown in Figure 5. Among them, Q1 and Q3 are the 25th and
75th percentile values of the data, respectively, and IQR is the
interquartile range (Q3-Q1). For detected potential outliers, further
verification should be applied based on professional knowledge.
Considering the limited amount of experimental data, the confirmed
outliers will be treated as missing values to avoid potential
information loss. K-Nearest Neighbor (KNN) interpolation method
is adopted to fill missing values and preserve data information
to the maximum extent. The KNN method estimates and fills
missing values by searching for several most similar historical
data near the missing values, which can effectively handle missing
value problems in multivariate datasets while maintaining data

distribution characteristics. The specific KNN interpolation steps
are as follows. Firstly, for each sample containing missing values,
select the K samples closest to the missing sample based on metrics
such as Euclidean distance (K = 4 in this study). Secondly, use the
weighted average of these K sample data to fill in missing values,
with weights inversely proportional to the samples. Finally, replace
data points that do notmeet the requirements or outliers that deviate
from normal data can reduce the interference of logging noise.

3.3 Feature selection and data
standardization

Based on the fundamental theory of density logging, there is a
relationship between the cased-hole parameters and the counting
rate of every energy window. Six energy windows of the detectors
with a source distance of 16.84 cm were chosen for feature selection.
The purpose is to reduce the redundant feature information and
lower the model complexity. Figure 6 examines the relationship
between ρb and the energy window counting rate.

It is observed that there is a high correlation between ρb
and the counting rates in the energy windows of 45–85 keV,
85–135 keV, 235–345 keV and 345–585 keV. They have the
correlation coefficients (R) above 0.5. Furthermore, the correlation
coefficients (R) of ρb with the counting rates of 0–45 keV and
135–235 keV energy windows are less than 0.3 and do not exhibit
any significant correlation. Thus, we consider the four counting
rates (45–85 keV, 85–135 keV, 235–345 keV and 345–585 keV) for
various detector energy windows to be the input values. The goal is
to simply develop the nonlinear mapping between energy window
counting rate and formation density.

Before inputting the counting rate of detector into CNN-
Transformermodel, the datamust be standardized first. To eliminate
themagnitude difference between counting rate data and ensure that
the data with small magnitude will not be submerged during the
modeling process, we standardize all the data with z-score method.
The specific calculation process is shown in Equation 15.

xi =
x− xmin

xmax − xmin
(15)

where xi is the standardized counting rate; x is the real counting
rate; xmin and xmax are the minimum and maximum values of
counting rate.

3.4 Experimental setup

In the experiment, the processor is Intel (R) Xeon (R) CPU E5-
2687 W v4 at 3.00GHz, the graphics card is NVIDIA Ge Force RTX
3090, the running memory is 24 GB, the GPU acceleration library
is CUDA11.1, and the deep learning framework is PyTorch. The
model training adopts cross entropy loss as the loss function and
updates the learnable model parameters by the AdamW optimizer.
AdamW optimizer combines Adam optimizer and weight decay,
which not only has the advantage of adaptive learning rate, but also
effectively prevents overfitting through weight decay. In addition, an
early stopping strategy was introduced during the training process.
L2 regularization and Dropout technique were also used to control
model complexity and enhance the model’s generalization ability.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1530234
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cheng and Zhang 10.3389/feart.2025.1530234

FIGURE 8
The predicted curves of formation density based on different models in the test set. The black dotted curve represents the true density value. The red
curve represents the prediction result of CNN-Transformer model, the blue curve represents the prediction result of Transformer model, the green
curve represents the prediction result of CNN model, and the orange curve represents the prediction result of traditional inversion model.

During the construction process of CNN-Transformer
model, optimizing algorithm hyperparameters is a key step
to ensure superior model performance. This study adopted
Bayesian optimization algorithm combined with K-fold cross
validation to adjust the model hyperparameters for optimal
predictive performance. Figure 7 displays the changes in the
loss function value and accuracy value (Sang et al., 2021) as
iteration number increases during the training process. At the
beginning of training, the loss function value experienced a rapid
decline. When the iteration number reached around 150, the

model gradually converged. The loss function value tended to
stabilize, and the accuracy value reached its highest level. Table 1
provides a detailed list of the optimization results for the key
hyperparameters in the CNN-Transformer model. Besides, the
traditional inversion model of Wu et al. (2017) in the Introduction
section, CNN model of Cai (2022) and Transformer model are
used as a comparison. The experimental environment of the
comparative models is identical, the same method is used to ensure
optimal hyperparameters, and training is also conducted on the
same dataset.
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FIGURE 9
The intersection results between the predicted density values and true density values in the test set. (a) CNN-Transformer model, (b) Transformer
model, (c) CNN model, (d) Traditional inversion model.

TABLE 2 Performance metrics of the prediction models.

Model Training set Test set

R RMSE R RMSE

Traditional inversion 0.621 0.428 0.685 0.357

CNN 0.722 0.235 0.741 0.218

Transformer 0.829 0.168 0.804 0.174

CNN- Transformer 0.908 0.079 0.958 0.049

4 Example and results

4.1 Cased-hole formation density
prediction performance

The prediction results of formation density by CNN-
Transformer model, Transformer model, CNN model

and traditional inversion model (Wu et al., 2017) are
illustrated in Figure 8.The true density value was measured through
geochemical methods from real rock samples of the test wells, with
a sampling interval of 0.5 m.

From Figure 8, it is clear that the four models all offer
satisfactory prediction performance on formation density curves
with depth, indicating that artificial intelligence models can
effectively extract the temporal and nonlinear features of counting
rate data. On the one hand, it appears that the prediction results
of CNN model are relatively smooth and do not accurately
depict the local mutation of true density curves. Then comparing
traditional inversion model to CNN model, its prediction
performance is noticeably inferior. Conversely, the values predicted
by Transformer and CNN-Transformer models are more in line
with true values. The intersection findings between the true
density values in the test set and the predicted density values
are displayed in Figure 9 to perform comparison analysis. It
can be determined that there is a strong correlation between
the true formation density and the predicted formation density
derived from CNN-Transformer and Transformer models. The
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TABLE 3 The t-test results of CNN-transformer and other comparison models on the test data.

p|H Traditional inversion model CNN model Transformer model CNN- transformer model

1:10 1.56E-27|0 4.85E-11|0 1.44 E−08|0 4.63E-05|0

1:50 2.39E-24|0 3.66E-12|0 1.97 E−09|0 5.44E-04|0

1:100 1.88E-28|0 2.81E-15|0 3.75 E−12|0 1.78E-03|0

1:200 5.98E-19|0 6.33E-17|0 2.47 E−10|0 2.42E-04|0

FIGURE 10
The calculation time comparison.

TABLE 4 The size and computational complexity of four models on
the dataset.

Model Model size/M Computational
complexity

Traditional inversion 29.54 57.24

CNN 120.51 39.81

Transformer 97.25 43.28

CNN-Transformer 72.08 30.84

aforementioned investigation demonstrates that CNN-Transformer
and Transformer models featuring long-term memory function are
superior to traditional machine learning models in their ability to
forecast the formation density.

Besides, CNN-Transformer and Transformer models’ output
results do not differ much when the formation density curve
changes smoothly. The reason for this is that when the change
is stable, the formation density curve lacks a clear local shape.
CNN-Transformer model predicts density values that are closer
to reality than Transformer model when there is a local mutation
in the formation density curve. For instance, it is obvious that
CNN-Transformer model accurately predicts this mutation while

traditional inversion model, CNN model and Transformer model
typically fail to forecast at the depth of 1,230–1,240 m and
1,288–1,298 m. As for the prediction results of local features, CNN-
Transformer model also outperforms ordinary Transformer model.
Because CNN-Transformer has the advantages of both CNN and
Transformermodels, which plays a role in accurately extracting local
data features.

Additionally, Table 2 shows the accuracy indicators of several
models’ predictions for formation density. From the table, CNN-
Transformer model can achieve R and RMSE of 0.908 and 0.079
for 1,680 training sample sets. 210 test samples have R and RMSE
values up to 0.958 and 0.049, respectively. According to statistics,
the R value of CNN-Transformer model rises throughout the entire
training set than traditional inversion model, CNN model and
Transformer model by 46.22%, 25.76% and 9.53%. Compared to
traditional inversion model, CNN model and Transformer model,
CNN-Transformer model’s RMSE value is reduced by 81.54%,
66.38% and 52.98%, respectively. In the test set, theR-value of CNN-
Transformermodel is higher than traditional inversionmodel, CNN
model and Transformer model for the entire test set by 40.29%,
29.28% and 19.15%, respectively. Compared with the traditional
inversion model, CNN model and Transformer model, CNN-
Transformer model’s RMSE value drops by 86.27%, 77.52% and
71.84%. High R value and low RMSE value are the two primary
markers of small variation for formation density prediction. It
demonstrates that CNN-Transformer model’s fitting curve more
closely matches the real circumstances.

To verify whether the prediction performance of CNN-
Transformer model is greatly better than other comparison models
in a statistical sense, we conducted paired t-test. Assuming
zero hypothesis H0 is that the prediction performance of CNN-
Transformer model is superior to the corresponding comparison
model, and the threshold is set to 0.05. A larger p-value confirms
H0, while a smaller p-value negates H0. The t-test results regarding
the model performance comparison are shown in Table 3. It reports
the significance of all methods at the sampling ratios of 1:10, 1:50,
1:100 and 1:200. From the t-test results, it is obvious that H =
0 was all obtained at different sampling ratios. Statistically, this
fact proves that CNN-Transformer offers significantly improved
predictive performance compared with other comparison models.

4.2 Model practicality

In terms of operational efficiency, deep learning methods
for predicting formation density provide unique advantages over
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TABLE 5 The feature importance (SHAP) score for the regression test dataset of each model.

Model 45–85 keV counting
rate

85–135 keV
counting rate

235–345 keV
counting rate

345–585 keV
counting rate

CNN- Transformer 0.987 (0.010) 0.104 (−) 0.722 (−) 0.207 (−)

Transformer 1.012 (0.022) 0.092 (−) 0.873 (−) 0.638 (−)

CNN 0.925 (0.012) 0.156 (0.042) 0.483 (0.082) 0.360 (0.019)

Traditional inversion 0.897 (0.021) 0.071 (0.003) 0.816 (−) 0.187 (0.006)

FIGURE 11
Feature importance based on SHAP score.

conventional methods. In contrast, deep learning methods only
require sending data into the network for computation, and can
be completed in a very short time with the support of GPU
parallelism. According to the experimental results, we measured the
computation time of the corresponding model under the optimal
hyperparameter setting, and the comparison results are presented
in Figure 10. Table 4 lists the size and computational complexity of
different models.

It is worth noting that due to the use of more network
structures in the CNN- Transformer model, there may be an increase
in computation time. But from Figure 10, it can be seen that
the computational time difference between four methods is not
big. Then combining Figure 10 and Table 4, the inference time is
faster, the computational complexity (GFLOPs) is lower, and it is
lighter compared with several mainstream networks. Overall, CNN-
Transformermodel not only ensures themodel accuracy in predicting
formation density, but also reduce the amount of calculation.

4.3 Sensitivity analysis

During the data set regression, the feature importance scores of
each model are calculated using the Shapley Additive exPlanations
(SHAP) approach (Lundberg and Lee, 2017). This approach
mainly highlights the average impact of each feature on the
model output. The average values of these importance scores
are shown in Table 5. Most models have similar feature rankings:
45–85 keV counting rate, 235–345 keV counting rate, 345–585 keV
counting rate, 85–135 keV counting rate.The importance difference
between the first feature (45–85 keV counting rate) and the second
feature (235–345 keV counting rate) is much smaller than the
difference between the third feature (345–585 keV counting rate)
and the fourth feature (85–135 keV counting rate). It indicates
that the 45–85 keV counting rate and 345–585 keV counting rate
offer a more significant impact on the prediction process of
CNN-Transformer model.

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2025.1530234
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cheng and Zhang 10.3389/feart.2025.1530234

Figure 11 plots the score values, which can be better visualized
by feature importance and differences. According to Figure 11 W1
has the highest score.That can be inferred that the 45–85 keV energy
window counting rate gets the greatest influence on formation
density prediction. Additionally, its value is positive, which means
that increasing this parameter will greatly enhance the prediction
ability of formation density.

5 Discussion

The contribution of this study is to explore the feasibility
of using the detector counting rate during the well logging
process to predict formation density by CNN-Transformer
model. It also demonstrates the superiority of CNN-Transformer
model in this situation. Compared with previous literature on
predicting formation density, the accuracy has been greatly
enhanced.

When using the traditional density inversion method (Li et al.,
2017; Wu et al., 2017) to obtain formation density, it was
found that although direct inversion of formation density can
be achieved through the difference in counting rates of multiple
detectors and the theoretical model is clear, it requires complex
wellbore compensation correction process, and the inversion error
increases with the complexity of the environment. The Terzaghi
calibration model (Cao et al., 2024) does not require GPU
training or large-scale data storage, but the selection of scanning
line direction depends on experience or prior knowledge (such
as the direction of geostress), and subjective errors may affect
the inversion accuracy. This is also the reason why we did
not adopt this method in the model comparison stage. When
using CNN model (Cai, 2022) to predict formation density,
although the computational efficiency is high and the structure
is easy to tune, it is difficult to achieve the optimal balance
between efficiency and accuracy. When using the proposed CNN-
Transformer model to predict formation density, although the
computational complexity of the model is high, extracting local
features of well logging data through convolutional layers (such
as formation abrupt intervals) and capturing long sequence
dependencies using the Transformer’s self-attention mechanism
make up for the shortcomings of CNN in modeling global
information. The error value does not change with the complexity
of the environment.

Compared to the other methods, the advantages of using CNN-
Transformer model for predicting formation density mainly lie
in the ability to extract richer feature information, achieve long-
term high-precision prediction, and improve prediction efficiency
and accuracy. Besides, this study provides an accurate solution
for reservoir parameter prediction, which greatly improves its
practical application in oil and gas exploration. Our model
can quickly determine the formation density, which helps to
significantly reduce exploration cost. This practical innovation
enables industry professionals to make smarter, more sustainable
decisions that optimize resource utilization during exploration
and development. However, there are still many disadvantages
and areas for improvement. Firstly, the density distribution of
some formation may be sparse, which makes it difficult for
models to accurately learn the characteristics of these regions.

Secondly, CNN-Transformer model is primarily data-driven, and
the formation physics model (such as gamma absorption formula
or formation density change rule) is not introduced, which
may lead to physical inconsistency of prediction results. Finally,
real formations are diverse and heterogeneous, and models
may be difficult to generalize to complex geological conditions.
Thus, balancing the sample distribution, embedding the gamma
absorption physics model in the model design, and input the
geological background into the network model are a field worthy of
further study.

6 Conclusion

To accomplish the goal of automatic formation density
prediction and solve the insufficient feature extraction ability
problem of CNN model under multiple logging data conditions,
this paper offers a network model for cased-hole formation density
prediction by combining the benefits of CNN and Transformer.
After extracting our desired feature areas from CNN, we utilize the
Transformer encoder to provide regions of interest high weights,
allowing us to concentrate on important areas and features. Thus,
CNN model’s accuracy in classification is improved. The CNN-
Transformer model also incorporates the new S-ReLU function to
avoid the problem of neuron “necrosis”. Following data parameter
optimization, the CNN-Transformer model’s inputs are chosen
from the counting rates of four energy windows (45–85 keV,
85–135 keV, 235–345 keV and 345–585 keV) for each detector
during the well logging process. The proposed CNN-Transformer
model is compared with traditional inversion model, CNN model
and Transformer model in terms of prediction accuracy. On the
test set, the predicted formation density of CNN-Transformer
model showed excellent consistency with the actual measured
values, with an R of 0.958 and an RMSE of 0.049. The paired
t-test also strengthens the argument for the superiority of CNN-
Transformer model statistically. Meantime, it reveals that the
45–85 keV counting rate contributes the most to the formation
density prediction through the interpretability analysis of SHAP
method. This study provides a reliable and fast approach for
predicting formation density.  The next step of research will embed
a gamma absorption physics model in the model design, input
geological background into the networkmodel, and further enhance
prediction accuracy.
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