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Introduction: The pore pressure of formations is a critical factor in assessing
reservoir stability, designing drilling programs, and predicting production
dynamics. Traditional methods often rely on limited well-logging data and
empirical formulas to derive one-dimensional formation pressuremodels, which
are inadequate for accurately reflecting the three-dimensional distribution of
pore pressure in complex geological structures.

Methods: To address this challenge, this study leverages the temporal
characteristics of well-logging and seismic data, employing the Mamba
technique in conjunction with high-precision seismic inversion results, to
construct a pore pressure prediction model. The model is a structured state-
space model designed to process complex time-series data, and improve
efficiency through parallel scan algorithm, making it suitable for large-scale
three-dimensional data prediction. Initially, the deep learning model is trained
and optimized by collecting and analyzing well-logging data, including key
parameters such as acoustic time difference and density. Advanced seismic
inversion techniques are then employed to obtain three-dimensional elastic
properties like subsurface velocity and density, which serve as input features for
the trained deep learning model.

Results: Through complex nonlinear mappings, the model effectively captures
the intrinsic relationship between input attributes and formation pressure,
enabling accurate spatial distribution prediction of formation pore pressure.
Research findings indicate that this method not only achieves high-precision
formation pressure predictions but also reveals lateral variations in pore pressure
that are challenging to detect using traditional methods.

Discussion: This provides robust technical support for the precise management
and efficient development of oil and gas fields. With this method, oilfield
engineers can more accurately assess formation pressure, optimize drilling
programs, reduce accident risks, and enhance production efficiency.
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1 Introduction

Pore pressure holds a fundamental position as a vital technical
data in the intricate design and meticulous execution of drilling
engineering endeavors, and carbon capture, utilization, and storage
(CCUS). Furthermore, it serves as a critical parameter in the broader
context of oil and gas field development, playing an indispensable
role in the exploration and exploitation of hydrocarbon resources
(Zong et al., 2024). On one hand, precise prediction of formation
pressure is indispensable for determining an appropriate wellbore
structure. It allows for proactive measures in zones with abnormal
pressure, aids in designing suitable drilling fluid densities, ensures
the stability of the wellbore, and plays a crucial role in preventing
and controlling well surges, leaks, and collapses during the drilling
process (Hussain and Ahmed, 2018). These measures, in turn,
simplify subsurface complexities and bolster safety, ultimately
contributing to the enhancement of mechanical drilling speeds. On
the other hand, the formation pressure within oil and gas reservoirs
significantly influences the properties of hydrocarbons. It dictates
the methodologies employed for hydrocarbon development, the
technical specifications, and the economic costs associated with
extraction. Moreover, it has a profound impact on the ultimate
recovery rates, making it a pivotal factor in the overall efficiency
and profitability of oil and gas operations (Hazra et al., 2024;
Ahmed et al., 2024b).

Pore pressure, alternately referred to as formation pressure,
represents the force exerted upon the fluids residing within the
pores of a rock formation. This pressure is typically correlated
with the depth of the formation and is commonly expressed in
terms of the static water pressure corresponding to the formation
water column extending up to the surface (Chopra and Huffman,
2006). It is measured using units such as megapascals (MPa)
or pounds per square inch (psi) and is denoted by the symbol
Pp. Abnormal formation pressure can manifest in two primary
forms: overpressure and underpressure. Overpressure arises when
the pore pressure surpasses normal levels due to additional
pressure sources, potentially resulting in hazardous incidents such
as blowouts. The upper threshold of abnormally high pressure
aligns approximately with the overburden pressure. Conversely,
underpressure signifies a pore pressure that falls belownormal levels,
which can lead to issues including well leakage, circulation losses,
and differential pressure sticking, ultimately escalating drilling costs
(Greenwood et al., 2009).

In the field of engineering, the prediction of pore pressures
can be divided into direct and indirect methodologies. Direct
methods encompass techniques such as leak-off tests, and rock
mechanics experiments, both aimed at measuring formation
pressures directly. Nonetheless, these methods generally offer
measurements solely at specific depths within the well, posing
challenges in obtaining continuous pore pressure profiles or
volumes. Furthermore, the process of collecting downhole data
is not only costly but also entails risks such as drillstring
sticking or loss during the collection phase. Currently, the
most prevalent approach involves the indirect prediction of
pore pressure through the utilization of mechanistic models
(Qi et al., 2024). When utilizing the theory of undercompaction
for predicting formation pressure, it is indispensable to employ the
normal compaction background trend, which is commonly derived

from stable lithological combinations, minimal structural impacts,
and assumptions of limited heterogeneity. However, in practical
applications, accurately establishing the normal compaction trend
line often presents significant challenges and is inherently subjective
(Sanei et al., 2023).

The second approach is the effective stress method, which
indirectly predicts pore pressure by calculating the overburden
pressure and effective stress. This method eliminates the need to
establish a normal compaction trend line and thus avoids the
associated prediction errors that arise from inaccuracies in this
trend. Its advantage lies in bypassing the complexities inherent
in normal compaction trends, thereby simplifying application.
However, the implementation of this method relies on several
assumptions, and its accuracy in predicting pressure depends
significantly on the specific conditions of the study area and the
degree of alignment with these assumptions. A common feature
of these methods is their reliance on a relatively straightforward
formula that primarily uses the P-wave velocity of the formation.
Nevertheless, these methods overlook a crucial aspect: S-wave
velocity and density of the formation are also closely related to pore
pressure. Many rock physics studies have shown that the variation
of S- wave velocity is almost entirely related to the stress on the
rock matrix, and rock density reflects the changes in the internal
structure of the rock when subjected to pore pressure (MacBeth,
2004; Ahmed et al., 2024a), while P-wave velocity is significantly
affected by the depth of the pore fluid (Soares et al., 2024). When
using this method and relying solely on P-wave velocity to predict
pore pressure, there is a tendency to misunderstand the decrease
in fluid velocity as the influence of rock matrix stress, ultimately
resulting in predicted pore pressure values exceeding actual values.
Therefore, by introducing S-wave velocity and density as additional
variables, the influence of pore pressure on rock physical properties
can be better reflected, and the accuracy of pore pressure prediction
can be improved.

Mylnikov et al. (2021) believed that traditional approaches have
encountered a dilemma in improving accuracy, which may be
attributed to twomain reasons. On the one hand, there is an inherent
discrepancy between empirical models and fundamental physical
principles. On the other hand, there is a challenge in selecting a
parameter combination within the standard analytical model that
aligns the predicted pressure with the comprehensive set of actual
field data (pore pressure measurements).

With the relentless advancement of machine learning
technology, we anticipate the development of more efficient,
precise, and secure methodologies for predicting pore pressure,
thereby providing oil/gas engineering with even more reliable
technical support. Unlike traditional mechanistic models, data-
driven models offer simpler establishment processes and robust
adaptability, transcending limitations posed by data types, scales,
and dimensions. These models excel at handling a wide variety
of diverse, voluminous, and complex data relevant to drilling
engineering.

Consequently, research on the application of machine learning
in predicting the pore pressures within geological formations
holds exceptionally vast application prospects and is of paramount
significance (Radwan et al., 2022). Syed et al. (2022) have
thoroughly discussed machine learning techniques developed in
the past decades and tested them to enhance the accuracy of
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petrophysical and geomechanical simulation models. They believe
that the application of machine learning to predict mechanical
properties represents an indispensable path forward. Various
studies have explored this domain, including Keshavarzi and
Jahanbakhshi (2013), who used a backpropagation neural network
(BPNN) and generalized regression neural network (GRNN) to
predict the pressure gradient of the Asmari oilfield in Iran by
incorporating depth, permeability, rock density, and porosity as
inputs. Aliouane et al. (2015) proposed a model combining fuzzy
logic and artificial neural networks for predicting pore pressure in
shale gas reservoirs. Huang et al. (2022) propose a machine learning
method to indirectly predict pore pressure based on the effective
stress theorem.

Hadi et al. (2019) introduced an artificial neural network
method for forecasting formation pressure, leveraging mechanical
and logging parameters such as vertical depth, density, neutron
porosity, natural gamma, acoustic time difference, and uniaxial
compressive strength. Ahmed S. A. et al. (2019) employed diverse
machine learning algorithms based on well logging data and
surface drilling parameters to predict formation pressure and
fracture pressure, with the support vector machine emerging
as the most accurate. Farsi et al. (2021) utilized a multi-layer
extreme learning machine and optimization algorithm to predict
the formation pore pressure of carbonate reservoirs, achieving
results that surpassed the predictive performance of traditional
physical models. Zhang et al. (2022) optimized nine logging
parameter variables through feature selection and applied various
machine learning algorithms, such as decision trees, to predict
formation pressure, with the decision tree algorithm demonstrating
robust generalization ability on the test set. Soares et al.
(2024) combined the K-nearest neighbor and geostatistical
seismic inversion to obtain the 3D volumes of pore pressures.
Krishna et al. (2024) compared several commonly used methods
and analyzed their performance for pore pressure prediction
based on well logging data (Ahmed et al., 2024a; Ahmed et al.,
2024b). Among them, the random forest method
performs the best.

Haris et al. (2017) employed probabilistic neural networks
(PNN) to forecast pore pressure distribution, utilizing both
pre-stack and post-stack seismic data from the South Sumatra
oil field. Hutomo et al. (2019) established a reservoir pore
pressure prediction model using artificial neural networks,
informed by three-dimensional seismic data including acoustic
impedance, shear impedance, seismic frequency, and amplitude.
Naeini et al. (2019) introduced a supervised deep neural network
method, creating a neural network capable of directly predicting
crucial rock properties based on seismic inversion results. Then,
Andrian et al. (2020) utilized an adaptive neuro-fuzzy inference
system to predict pore pressure distribution from two-dimensional
seismic data within the study area. Zhang et al. (2024) found
that most traditional deep learning models are less effective in
addressing generalization issues, especially for predicting 3D
pore pressure.

The propagation of seismic waves constitutes a continuous
and unceasing process, whereas seismic recorders meticulously
gather data at precise, often millisecond, intervals. Each data
point, anchored to a specific time step, is intricately linked to
its predecessor, fostering a temporal dependency that shapes a

distinctive and characteristic temporal data structure (Yilmaz, 2001;
Liu et al., 2023). Logging data involves the use of instruments to
measure the physical and chemical properties of rock formations
at various depths during the drilling process, thereby reflecting
changes in subsurface geological structures as they relate to depth.
Essentially, logging data consists of sequential information gathered
depth-by-depth. However, since drilling is a continuous process
over time, logging data is also intrinsically tied to temporal factors
(Pham et al., 2020). Cao et al. (2024) pointed out that the existing
machine learning methods often struggle to capture the intrinsic
temporal dynamics of the data, resulting in suboptimal prediction
accuracy. In order to effectively consider the temporal characteristics
of geological data such as logging and seismic data, we propose
introducing the Mamba model for 3D pore pressure prediction.
The Mamba model represents a groundbreaking approach to linear
time series modeling, elegantly blending the prowess of recurrent
neural networks (RNNs) (Hochreiter and Schmidhuber, 1997) and
convolutional neural networks (CNNs) (LeCun et al., 1998) to
tackle the computational inefficiencies associated with processing
extended sequences (Gu and Dao, 2023). By seamlessly integrating
RNN’s sequential processing prowess with CNN’s global context-
awareness within the framework of a State Space Model (SSM)
(Voelker and Eliasmith, 2018; Gedon et al., 2020), Mamba achieves
a meticulously balanced design. The Mamba model dynamically
selects relevant state information and extracts features of the
complex nonlinear trends in pore pressure with depth (or time)
variations. It effectively captures long-term dependencies, enabling
it to identify gradual manifestations of abnormal pressure events
across multiple layers. This enhances the generalization without
suffering from gradient vanishing issues, which are common in
RNNs. Furthermore, logging and seismic data often span extensive
depths or time periods, leading to lower computational efficiency in
traditional models, Mamba achieves efficient parallel computing to
ensure real-time predictive performance.

In the following section, we introduce the key features and
basic structure of the Mamba model and extend its application to
predict pore pressure. We demonstrate the feasibility of the method
through two examples, and finally, we discuss the findings and draw
conclusions.

2 Theory and methods

Strata and their properties exhibit temporal characteristics
on a large time scale, reflecting long-term geological processes
and changes. Both logging data and seismic data record physical
quantities related to geological properties that change over time and
display distinct temporal characteristics. Therefore, they can all be
regarded as time series. State SpaceModels (SSMs) can be utilized to
represent the state of a sequence at each time step and predict its next
state based on the input model. By capturing the dynamic evolution
of time series, SSMs provide a robust framework for both modeling
and forecasting sequences (Gu and Dao, 2023; Dao and Gu, 2024).
The Mamba model is an improved version of SSM, which mainly
weakens the two assumptions of SSMs to better handle nonlinear
and time-varying sequence data.
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FIGURE 1
The structure of SSM.

2.1 State-space model, SSM

The core of State Space Models (SSMs) lies in identifying an
appropriate state representation that can be combined with the
input sequence to accurately predict the output sequence. An SSM
comprises two primary components:

The first one is the state equation, expressed as:

h′ (t) = A (t)h (t) +B (t)x (t) , (1)

where x(t) represents the input sequences. h(t) denotes the hidden
state representation at time t, which contains the current state
information of the system. h′(t) represents the rate of change
or derivative of the latent state vector at time t, indicating the
change of the state over time. A is the state transition matrix,
which describes how the hidden state updates itself over time.
It determines the impact of the current state on state changes.
B is the input matrix that describes how the input affects state
changes. It determines the contribution of input to state changes.
This equation describes the dynamics of the system by detailing how
the state evolves from one time step to the next. It captures the
internal mechanisms and transitions within the system, providing
a mathematical framework for understanding the underlying
processes.

The second one is the observation equation, expressed as:

y (t) = C (t)h (t) +D (t)x (t) , (2)

where y(t) represents the output vector, i.e., pore pressure, which
is the response of the model to input and internal state. C is the
output matrix that describes how the hidden state is mapped to the
output, and it determines the direct impact of the current state on the
output.D is the direct transfermatrix, which describes how the input
directly affects the output and determines the direct contribution of
the input to the output. In general, D is similar to skip connections,
SSM is usually considered as the part that does not contain the
skip connection. The structure of SSM is displayed in Figure 1. This
equation specifies how the observable data (or measurements) are
generated from the system’s state. It bridges the gap between the
hidden state variables and the actual observations, allowing us to
relate the internal state of the system to the external data we can
measure. In the proposed method for the pore pressure prediction,
the input includes the elastic attributes and time. The corresponding
output is the pore pressure.

In the above expression, both the input and output are
continuous functions of time. However, since logging data and

seismic data are obtained through discrete sampling, Equations 1, 2
should be discretized before applying. To adapt the continuous-time
state space model to discrete input data, the SSM model employs a
discretization process using the Zero Order Hold (ZOH) method.
The process is as shown in Equations 3, 4. Gu et al. (2021), i.e.,

A = exp (ΔA) , (3)

B = (ΔA)−1 (exp (ΔA) − I)ΔB, (4)

where Δ is a newly introduced learnable parameter representation
called step size. Then we can obtain:

hk = Ahk−1 +Bxk, (5)

yk = Chk, (6)

where hk represents the latent state vector at the discrete time k.
hk−1 represents the latent state vector at the previous discrete time
k− 1. A and B denote the discretized state transition and input
matrices. It can be seen that the current state is obtained by the
combined action of the previous state and the current input through
their respective discretizationmatricesA andB. Similarly,C denotes
the discretized output matrix. The output is a linear transformation
of the state. Because the output is a direct observation of the
state and discretization do not change this relationship, C is equal
to C. Overall, we can consider discretization as the first step
in computing graphs in SSM forward propagation. It converts
continuous parameters into discrete parameters so that downstream
calculations only use (A,B). This discretization strategy ensures that
the model can maintain stable performance and accuracy when
processing discrete time series Gu et al. (2021).

Note that the hidden state will be updated at each time step.
hk is always updated under the joint action of = Ahk−1 and Bxk,
it can be processed by the structure of Recurrent Neural Network
(RNN). RNN relies solely on the hidden state from the previous
step and the current input data, avoiding the need to recalculate
the entire historical hidden state of the sequence. This characteristic
makes RNN faster during inference and forecasting. However, this
efficiency comes with the trade-off of longer training cycles, which
is a significant drawback.

It is particularly important to note that when substituting
Formula 5 into Formula 6, We can obtain Equations 7-10, which is
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similar to the calculation process of the convolution kernel

yk = C(Ahk−1 +Bxk) , (7)

= C(A(Ahk−2 +Bxk−1) +Bxk) (8)

=…

= CAkBx0 +CA
k−1Bx1 +CA

k−2Bx2 +⋯+CBxk. (9)

Let K = (CAkB,CAk−1B,CAk−2B,…,CB), denoting a kernel
function, the output can be calculated by:

yk = (CA
kB,CAk−1B,CAk−2B,…,CB)

((((

(

x0

x1

x2

⋮

xk

))))

)

. (10)

That is to say, the output of SSM can be calculated using a
convolution operation. One major advantage of representing SSM
as a convolution is that it can be trained in parallel, similar to
a CNN. However, due to the fixed kernel size, the inference or
prediction speed of convolutional SSMs is generally not as fast as that
of RNNs. In summary, recursive SSM excels in efficient inference
capabilities, while convolutional SSM is favored for the parallelizable
training process. By leveraging these different representations, one
can flexibly choose the most suitable model based on the specific
task requirements. During the training phase, the convolutional
representation can be selected to achieve parallelization, enhancing
training efficiency. In the inference stage, switching to the recursive
representation can ensure faster response times.

2.2 Mamba model

One of the key challenges with SSM is that the aforementioned
matrices (A,B, and C) do not adapt to different inputs, making it
difficult to make targeted inferences based on the input data. This
limitation is particularly pronounced in scenarios where models
need to flexibly focus on or ignore specific inputs, as the static nature
of these matrices restricts the capabilities of the model. Specifically,
for general SSM models, the model receives input data and attempts
to predict the output during training. The parameters of the model,
represented by the values in matrices A,B, and C, are adjusted
through optimization algorithms such as gradient descent in each
iteration to minimize prediction errors. As training progresses, the
values of these matrices gradually change to better fit the training
data. Once the model training is complete and the model enters the
prediction step, the values of matrices A,B, and C are fixed to the
values learned during the final stages of training. During inference,
the model uses these fixed matrices to process new input data and
generate predictions. The reason is mainly because of the two strong
assumptions of SSM, i.e., linear and time invariant, whilemost actual
systems are nonlinear and time-varying. This fixed nature of the
matrices in SSM limits their flexibility and adaptability, especially in
dynamic environmentswhere themodel needs to respond to varying

FIGURE 2
The structure of Mamba block, including linear projection layers, local
convolutional layers, dynamic SSM modules.

input conditions. Mamba is essentially an improvement of the SSM
model, freeing up these two assumptions.

The selective mechanism of Mamba elegantly refines its
operation through the dynamic adjustment of the parameter
matrix, achieved via the introduction of a selective weight vector,
denoted as s. This vector is meticulously computed to reflect the
significance of the input data, thereby enhancing the adaptability and
precision in response to varying input conditions. s is calculated by
neuralnetworks, calculation process is as shown in Equation 11, i.e.,

s = σ( fθ (xt)) , (11)

where σ is the activation function, fθ is the parameterization
function of the neural network, and θ represents the parameters of
the network. Then, the dynamic parameter matrix can be written as
Equations 12-14:

A(xt,s) = fAθ (xt,s) , (12)

B(xt,s) = fBθ (xt,s) , (13)

C(xt,s) = f
C
θ (xt,s) . (14)

In this process, Δ also becomes learnable. It determines the
degree of variation of selective weights at each time step, thereby
affecting the sensitivity and adaptability of the model to input data.
The introduction of learnable Δ allows the model to dynamically
adjust the time interval based on data features. In this way, the
model can preserve the temporal dependence between different
time steps to a greater extent, thereby enhancing the model’s
expressiveness Yu et al. (2018). A larger Δ value can make the model
more sensitive to input changes, which is equivalent to making the
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FIGURE 3
Logging curve and prediction results of training well A, (a) P-wave velocity; (b) S-wave velocity; (c) Density; (d) Formation pressure, where green
represents logging values and magenta represents predicted values. The pentagram represents the position of the measured point.

model focusmore on the current input rather than the previous state,
equivalent to selecting the current input and forgetting the current
state. When Δ is small, the model maintains the persistence of the
existing state h and pays less attention to the current input.

Although the Mamba model does not change its parameters
during inference, the selective mechanism introduced in its design
allows the model to treat different inputs differently based on their
characteristics, which is a significant improvement compared to the
SSM. This selectivity is achieved through parameter learning during
the training phase (different inputs are processed differently based
on the parameters learned during the training phase).

Since matrices A,B, and C are now dynamic, we cannot use
convolutional representations to compute them (CNN requires a
fixed kernel). Therefore, we can only use cyclic representations,
which results in the loss of the parallel training capability provided
by convolution. The Mamba model introduces a parallel scan
algorithm, which paves the way for ultimate parallelization. This
innovation hinges on the assumption that the order of operations
is independent of their associative properties, allowing segments of
a sequence to be computed separately and then iteratively combined.
The selective state model within Mamba further distinguishes itself
by enabling the differentiation between primary and secondary
states, thus selectively focusing on significant samples. This

mechanism effectively minimizes the interference from irrelevant
noise, directing the model’s attention to valuable information,
thereby enhancing overall performance. Compared to frameworks
that adopt a global statemodeling approach, the selective statemodel
offers a more targeted strategy, significantly improving inference
accuracy when tackling complex systems Gu and Dao (2023).

Furthermore, Mamba adopts hardware aware algorithms to
improve computational efficiency, which can dynamically adjust
the execution mode of algorithms based on the characteristics
of underlying hardware such as memory structure, cache size,
and topology of computing units, in order to maximize hardware
resource utilization and program performance Dao and Gu (2024).

2.3 Mamba-based pore pressure prediction

2.3.1 Structures
Based on the basic Mamba theory, we establish a pore pressure

prediction model. This model includes a series of Mamba block
modules. Each block processes the input data sequentially, with
the output of one block serving as the input for the next block.
This sequential processing allows the model to capture complex
patterns and relationships in the input data, making it effective
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FIGURE 4
Logging curve and prediction results of training well B, (a) P-wave velocity; (b) S-wave velocity; (c) Density; (d) Formation pressure, where green
represents logging values and magenta represents predicted values. The pentagram represents the position of the measured point.

for tasks involving pore pressure prediction. The structure of this
block is displayed in Figure 2. This block integrates several critical
components that form the backbone of theMambamodel, including
linear projection layers, local convolutional layers, and dynamic
SSM modules. Input data initially passes through a linear projection
layer, transforming it into a new space, crucial for subsequent
sophisticated processing.The core of SSM is the state transformation
layer, vital for updating the internal state based on input, ensuring
adaptability to new information. Before the SSM layer, a local
convolutional layer captures local sequence features, enhancing the
model’s understanding and interpretation capabilities.

2.3.2 Parameters
In the presented method, the Mamba model architecture is

elegantly constructed with five meticulously stacked Mamba blocks,
each configured with a state size of 64. This state size masterfully
balances the dual imperatives of capturing ample information and
maintaining computational efficiency, while also adeptly mitigating
the peril of overfitting. Each block is designed to process sequences
of length 100, a number meticulously selected to ensure that the
model can adeptly process and learn from the intricate temporal
dynamics embedded within the input data.

The batch size is thoughtfully set to 128, achieving an optimal
equilibrium between memory utilization and training velocity. For
the activation function, theMambamodel adopts the SiLU function,
a function that stands apart from traditional activation functions by
not saturating at either positive or negative extremes. This unique
characteristic helps to preempt issues such as gradient vanishing or
exploding, thereby ensuring a stable and efficient training process.

The model employs mean squared error (MSE) as its loss
function, a choice that is ideally suited for pore pressure prediction
tasks and provides a precise and unambiguous measure of the
model’s prediction accuracy. For optimization, the model leverages
the ADAM (AdaptiveMoment Estimation) algorithm. By adaptively
adjusting the learning rate for each parameter during training,
ADAM facilitates faster convergence and superior performance.

During the training phase, Mamba leverages a convolutional
mode to swiftly process the entire input sequence in a single
pass. Conversely, during the inference phase, it adopts a recursive
mode to incrementally process the input, allowing for incremental
updates. This innovative architecture harnesses the efficient parallel
processing capabilities of CNNs while preserving the adaptability
of RNNs in managing sequence data, thereby ensuring optimal
performance and flexibility.
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FIGURE 5
Logging curve and prediction results of training well C, (a) P-wave velocity; (b) S-wave velocity; (c) Density; (d) Formation pressure, where green
represents logging values and magenta represents predicted values. The pentagram represents the position of the measured point.

FIGURE 6
The joint distribution map. In the center of each subfigure is a cross plot that illustrates the relationship between pore pressure and different
parameters. The top and right sides of each subfigure display the marginal distributions of the corresponding parameters and pore pressure. The
intricate relationships depicted reveal that pore pressure does not adhere to a singular trend in relation to these parameters, thereby posing a
significant challenge for accurate pore pressure prediction.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1530557
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2025.1530557

FIGURE 7
Logging curve and prediction results of blind test well D, (a) P-wave velocity; (b) S-wave velocity; (c) Density; (d) Formation pressure; (e) Measured
pressure section enlargement, where green represents logging values and magenta represents predicted values. There are four measured points whose
positions are indicated by pentagrams.

3 Examples and results

Initially, we subjected our method to rigorous testing using a
dataset derived from a work area in China, which comprised five
wells. Wells A, B, and C, with a substantial 6,429 samples, served
as the training data. Wells D and E, containing 4,103 samples,
functioned as the test wells to evaluate the performance of the
proposed method.

3.1 Well data test

Figures 3–5 display the logging curves of the training test
wells, represented by green lines. Subfigures a to c illustrate the
elastic attributes, including P-wave and S-wave velocities, and
density, combining with time served as inputs for Mamba. It
is noteworthy that pore pressure maintains a close correlation
with depth. Considering that seismic data reside in the time
domain, the transition from this domain to the depth domain is
profoundly impacted by the velocity model. Logging data times can
be conveniently deduced from the time-depth relationship, making
time-depth a pivotal input attribute in our method. Subfigure
d highlights the predictive targets, i.e., the pore pressure. The
green line in this subfigure indicates the pore pressure curves,

providing a visual benchmark for evaluating the predictions. These
curves are provided by the engineers, which are extrapolated and
refined based on the actual measurement points of formation
pore pressure, as indicated by the pentahedrons in these figures.
Furthermore, engineers extrapolate the formation pressure curve
based on existing data and then refine it through actual drilling
conditions (Ahmed A. et al., 2019; Abdelaal et al., 2022). The
magenta color represents the prediction results. For clarity in these
figures, we have thinned out the depth of the data.

Figure 6 provides the joint distribution plots. The histograms
show that these input features have varying distribution
characteristics, exhibiting irregular shapes. The complex nonlinear
relationship between the input features and pore pressure poses
significant challenges for estimation.

To further elaborate, for predicting pore pressure, the initial
set of features comprises time depth, density, P-wave velocity, and
S-wave velocity, resulting in an input feature matrix of size N×
4. Selecting appropriate hyperparameters for deep learning models
is a delicate process that often relies heavily on human expertise
and iterative testing (Krogh and Hertz, 1991; Smith, 2017; Smith,
2018). Given these considerations, we meticulously fine-tuned the
hyperparameters of our Mamba model through a series of iterative
trials. This included adjusting the state size and the sequence length
to achieve optimal performance. Finally, in our example, the state
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FIGURE 8
Logging curve and prediction results of blind test well E, (a) P-wave velocity; (b) S-wave velocity; (c) Density; (d) Formation pressure; (e) Measured
pressure section enlargement, where green represents logging values and magenta represents predicted values. There are three measured points
whose positions are indicated by pentagrams.

FIGURE 9
(a) Loss function. The blue and orange lines represent the training loss and validation loss, respectively. (b) Cross-plot between the actual measured
value and predicted value at the points indicated by pentagrams in Figures 3–5, 7, 8. (c) Violin plots of errors between logging curves and predictions
from different wells. The wells marked in the orange font are training wells, while the ones in the blue are testing wells.

size is set to 64 and the sequence length is set to 120 to develop
a robust Mamba model tailored to our specific prediction tasks.
During the training process, training data and validation data were
randomly selected from three training wells in a ratio of 8:2. The
predicted result of training wells is represented by the magenta line
in subfigure d. As for the training well, the predicted results align

closely with the trend of the pore pressure curve, demonstrating a
high degree of agreement. At the measured points, the predicted
values match excellently with the actual measurements.

Subsequently, we applied the trained model to the test data.
Figures 7, 8 display the input attributes (excluding time depth) and
the predicted property (highlighted in magenta line) for test wells.
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TABLE 1 Quantitative analysis of prediction error in different wells. The wells marked in orange font are training wells, while the ones in blue are
testing wells.

Well name R2 RMSE MAD MAPE (%) MSE at measured points

Well A 0.9833 1.9029 0.7832 1.4704 1.6884

Well B 0.9956 0.2979 0.2169 0.6670 0.2386

Well C 0.9965 1.0394 0.5832 1.2271 1.1041

Well D 0.9920 0.5099 0.3526 0.8763 0.2199

Well E 0.9807 2.6443 0.6050 1.8231 2.7043

FIGURE 10
Two seismic sections randomly extracted along different directions.

Visibly, the results closelymatch the actualmeasurements, validating
the effectiveness of our approach. We also provide quantitative
analysis by several metrics, including mean absolute deviation
(MAD), mean absolute percent error (MAPE), root mean square
error (RMSE), and the coefficient of determination(R2). These
metrics measure the alignment between predicted and true values.

Figure 9a displays the convergence curve, with the blue line
depicting training loss reduction per epoch. The orange line
shows validation loss, assessing the performance of the model
on unseen data. Lower loss values indicate better performance.
Initially, both lines rapidly decline, signifying swift feature learning
through parameter updates. As epochs increase, both training
(blue) and validation (orange) losses stabilize, suggesting optimal
weights and diminishing returns from further training. The
smooth convergence curve without significant jitter indicates model
stability. The gradual loss decline hints at smooth optimization
and appropriate hyperparameters. The consistency of both lines
in later epochs, without a spike in validation loss, implies
good generalization, avoiding overfitting. This demonstrates the
robustness of the method on training data and good predictive
power on unknown data. Figure 9b shows the cross-plot between
the actualmeasured value and predicted value. Clearly, the predicted
results and measured data are evenly distributed on both sides of
the diagonal, indicating good consistency between the predicted
results and measured data. Figure 9c displays five violin plots,
each corresponding to a different drill hole, with distinct colors

representing the error data for each well. The white dot positioned
at the center of each violin plot signifies the median of the error
data, while the areas on both sides depict the probability density
distribution of the data points. Overall, the prediction errors are
centered around zero. Wells A and D exhibit broader violin shapes,
indicating higher variability in their error data, especially prominent
in Well A. Conversely, the error distributions for Wells B and E
are more focused, with Well E displaying the narrowest range of
data distribution, suggesting a more stable and consistent error
profile. Well C distinguishes itself due to a notable outlier, which
may indicate a significant discrepancy in its predictions. The tightly
clustered and narrow distributions of errors in Wells B and E
suggest superior prediction performance with minimal variability.
These observations underscore the varying levels of reliability
and accuracy across the wells, offering valuable insights into the
predictive models employed for each.

Table 1 presents the precision results of different wells.
Generally, lower mean absolute percentage error (MAPE), and
mean square error (MSE) values indicate a better model fit, while
a higher Pearson correlation coefficient (R) value signifies a closer
alignment between predictions and true values. The small value of
median absolute deviation (MAD) means that the prediction error
is relatively concentrated. From the table, it is evident that both the
training and testing well prediction results demonstrate minimal
errors and exhibit strong correlations with the pore pressure curve,
confirming the feasibility and reliability of the method.
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FIGURE 11
Sections of elastic attributes corresponding the seismic section in Figure 10, respectively, which combine with the time section as input attributes.

FIGURE 12
2D pore pressure section corresponding to the seismic section in Figure 10 that are predicted by using the Mamba model.

3.2 Seismic data application

The ultimate aim of this work is to acquire 3D volumes of
estimated pore pressure. After validating our proposed method
on individual wells, we broaden its application to seismic
data. All wells are incorporated into the training process for
predicting pore pressure in seismic data area, adhering to
the same training procedures. The network architecture and
hyperparameters remain identical to those utilized in the well-based
example.

Initially, we train a model that is then applied to seismic data.
The 3D volumes of density, P- and S-wave velocity are derived from
pre-stack seismic inversion technologies (Liu et al., 2020; Zhou et al.,
2022; Shi et al., 2023; Sun et al., 2024. For clarity, Figure 10 shows two
seismic sections along Inline and Xline directions that are randomly
extracted from the 3D seismic volumes. The corresponding 2D
sections of density, P-wave, and S-wave velocities are exhibited
in Figure 11, respectively. These three elastic attributes and time
volumes are input into the optimized Mamba model. The predicted
volumes of pore pressure are illustrated in Figure 12.
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FIGURE 13
The slice of the predicted pore pressure at the target layer. The spatial
distribution characteristics of pore pressure can be clearly seen from
the figure.

These predictions not only reflect the intricate formation
structurebut alsometiculouslydelineate the three-dimensional spatial
configuration of pore pressure. It is noteworthy that, despite refraining
fromemployingrockphysicsmodeling tobolsterour trainingsamples,
the predictions retained a commendable degree of rationality and
satisfaction. Observing the seismic profile, shallow pore pressures
reveal layered attributes, with relatively consistent formation pressure
values within each layer, hinting that lithology plays a pivotal role in
governing pore pressure at these depths. However, as the depth (or
time) increases, the pore pressure in subterranean sections undergoes
a notable surge, as vividly depicted in Figure 12B. This suggests that
depth transcends the solitary influence of lithology, exerting a broader
and more profound impact.

Figure 13 shows the formation pore pressure slice of the target
interval, and it can be seen from the figure that the pore pressure
in the studied area presents a significant differential distribution. In
the presented figure, the hue of red denotes a region of relatively
high pore pressure, whereas blue symbolizes areas of comparatively
low pore pressure. Additionally, yellow serves to mark those zones
exhibiting moderate pore pressure values. The concentration of
red hues is particularly evident in the southeastern vicinity of the
fault, suggesting an accumulation of high pore pressure on that
specific side. Conversely, the yellow-colored areas, which represent
moderate pore pressure, are positioned to the northwest of the fault,
reflecting a state of relatively stable median pore pressure in that
region. Adjacent to the fault, there is a noticeable abrupt decrease in
pore pressure, resulting in zones characterized by lower values. The
successful implementation of thismethod highlights its potential for
quantitatively evaluating the spatial distribution of pore pressure.

4 Discussion

Through the implementation of our proposed method,
leveraging a fundamental Mamba network, we achieved a relatively
accurate prediction of 3D pore pressure. Our primary objective

was to establish a viable and reliable approach for predicting the
spatial distribution of pore pressure. The results obtained validate
the feasibility of this method and demonstrate that the model can
be generalized for broader application.

In our experiments, all the parameters related to the Mamba
model are obtained through trial and error, and the method of
automatically determining these parameters needs further research.
In essence, the configuration of Mamba for pore pressure prediction
ismeticulously fine-tuned to strike a balance between computational
efficiency, model capacity, and training stability, rendering it a
resilient and versatile choice for a wide array of complex tasks.

It is worth noting that we did not directly compare our
method with other existing pore pressure prediction techniques, as
most of these methods are primarily focused on one-dimensional
predictions and have not been adapted for three-dimensional
applications. However, the successful deployment of our method
underscores its potential for providing quantitative evaluations of
three-dimensional pore pressure.

Seismic data serve as the primary source of reservoir
information in the inter-well space, primarily comprising elastic
properties derived from seismic inversion. However, wells offer
a diverse array of inputs, suggesting that elastic parameters may
not necessarily be the sole or primary inputs for pore pressure
prediction. For instance, the correlation between porosity and
pore pressure could also be considered. To further refine the
accuracy of our predictions, we propose incorporating additional
logging curves and drilling performance data into the estimation
process. This holistic approach can significantly enhance our
ability to predict pore pressure with greater precision and
reliability.

5 Conclusion

We successfully established an efficient and precise the spatial
distribution of formation pressure prediction system by integrating
deep learning technology with seismic inversion methods. The
model fully leverages the spatial continuity of seismic data,
effectively tackling the prediction challenges posed by geological
complexity, and significantly boosting the accuracy and reliability of
three-dimensional formation pressure predictions. Specifically, pore
pressure prediction has transcended one-dimensional limitations,
achieving true three-dimensional visualization, thereby furnishing
more comprehensive and detailed geological information for
decision-making in oil and gas exploration and development.
Furthermore, the incorporation of the Mamba model enhances
the capacity to capture features from time-series data, such
as well logging and seismic data. As a structured state-space
sequence model, it combines hardware-aware algorithms and
convolution acceleration mechanisms to recursively compute
the model, drastically improving computational efficiency and
enabling the effective capture of complex dependencies within
sequential data. Examples of logging and seismic predictions
illustrate that this method can attain high-precision spatial
distribution of pore pressure prediction results, providing a scientific
foundation for identifying potential high-pressure/low-pressure
anomalies, predicting formation fracture risks, and optimizing
drilling paths.
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