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The Concepción Metropolitan Area (CMA) in South-Central Chile presents
a complex interplay of climatic conditions, tectonic activity, and varied
topography that heightens landslide susceptibility. The CMA is characterized
by steep escarpments and sloping valleys atop tectonic blocks. This complex
setting creates landslide-prone areas as urban development extends into
unstable hillslopes. Unfortunately, current landslide inventories are limited and
inconsistent, hindering effective susceptibility zoning and urban planning efforts.
The objective of this study was to improve quantitative landslide susceptibility
assessments in the CMA by developing a comprehensive landslide inventory
spanning from 1990 to 2023. Themethods we implemented included compiling
a multitemporal and multi-source comprehensive landslide inventory for the
CMA, integrating historical and recent data. The inventory consolidates detailed
records from the Chilean Geological Survey (SERNAGEOMIN), encompassing
materials, conditioning factors, anthropogenic influences, and other relevant
variables. To test the potential of our inventory for landslide susceptibility, we
compared its performance relative to existing compilations using the Frequency
Ratio method. Three slide susceptibility models were compared, two using
previous databases, and one using the inventory developed in this study. A
comparative analysis highlighted differences in predictive accuracy due to
inventory completeness. Our findings show that the model using our landslide
inventory exhibited the highest predictive accuracy and spatial specificity,
emphasizing the benefits of a detailed, curated landslide inventory for more
reliable localized assessments. Additionally, this study is novel for the region
and shows that detailed inventories significantly improve accuracy of landslide
susceptibility models, providing a more reliable foundation for risk-informed
urban planning and land-use management in vulnerable regions.

KEYWORDS

landslide inventory, landslide susceptibility, natural hazards, frequency ratio, urban
planning
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1 Introduction

Landslides are gravitational processes that displace volumes
of rock, debris, or soil lower elevations at varying velocities
(Cruden and Varnes, 1996), controlled by site-specific conditions
and triggering factors. Site conditions include geological and
geotechnical conditions, geomorphological characteristics, soil
types, land use (e.g., vegetation, urban development), hydrogeology,
and anthropogenic activity (Highland and Bobrowsky, 2008).
Triggering factors alter the stability of the terrain (McColl,
2022), typically corresponding to precipitation (Polemio and
Petrucci, 2000; Froude and Petley, 2018) and seismicity
(Keefer, 2002; Tatard et al., 2010).

With more than 4,800 events causing several thousand fatalities,
from 2004 to 2016, landslides are one of the most life-threatening
hazards globally (Froude and Petley, 2018). To mitigate and reduce
the impact of these phenomena, inventories that capture key aspects
of landslide occurrence, characteristics, and spatial distribution are
essential for quantitative assessments of susceptibility and zoning
(van Westen et al., 2008). Inventories are necessary to determine
regional distribution, movement’s types affecting specific areas,
identify patterns of triggering factors, allowing estimations of
landslide recurrence and damaging potential (van Westen et al.,
2008; Fell et al., 2008; Guzzetti et al., 2012; Tyagi et al., 2022).
However, in order to be effective, inventories should provide
a wide range of information, including location of landslide
events, occurrence dates and frequency, movement type, failure
mechanisms, causal factors, displaced volumes, damage caused or
magnitude, validationmetrics, data uncertainties and their potential
sources (van Westen et al., 2008; Fell et al., 2008; Guzzetti et al.,
2012). Inventories are typically maps or geodatabases that display
these landslide attributes in a spatially distributed fashion, making
them useful for planning studies.

Inventory maps are classified as archive or geomorphological
(Guzzetti et al., 2012). An archive inventory contains information
collected from bibliographic sources or technical reports, while
geomorphological inventories can be further classified into (i)
historical, containing cumulative effects of many landslide events
over a period of tens, hundreds or thousands of years; (ii) event-
based, showing landslides caused by a single trigger, such as
an earthquake or a rainfall event; (iii) seasonal, characterizing
landslides caused by one or several events during one or several
seasons; and (iv) multi-temporal, depicting landslides caused by
several events over longer periods of time. In all cases, however,
displayed details dependence on the working spatial scale (Hervás
and Bobrowski, 2009). For instance, at large or medium scales (up
to 1:100,000), the differentiation between deposition and scarp areas
are most commonly represented as points.

Detailed inventories are therefore key components of landslide
risk assessments. For example, they may provide detailed
information on old and/or small landslides that seem harmless
but can potentially become significantly damaging under certain
conditions (Hervás and Bobrowski, 2009). However, in order
achieve this, inventories need standardized criteria on theminimum
relevant information and quality control. Unfortunately, there is
still not consensus, despite many assessing attempts, particularly
in the case of European inventories (e.g., Trigila et al., 2010;
Van Den Eeckhaut and Hervás, 2012; Herrera et al., 2018).

Landslide assessments, and so detailed inventories, are sorely
needed in Chile as the country is susceptible to these events (Hauser,
2000). Between 1928 and 2020, 68 landslides resulted in 854 fatalities
and 156 missing persons (Marín et al., 2021); since 1980, the
estimated damage cost is about US$32 billion (SERNAGEOMIN,
2016). Although landslide zoning is a mandatory field for urban
planning, particularly for the so called “Planes Reguladores
Comunales” (Commune Regulatory Plan), there is no standardized
methodology for zoning, hindering interoperability among offices
tasked with planning and response to these events (Espinoza, 2013).
For example, while several existing databases provide information
on landslide events, their details are often limited, recorded as
discrete coordinates, rarely indicating the transported volume
or affected areas. While in certain large urban areas systematic
recording systems are lacking (see GEOMIN Portal: https://
portalgeominbeta.sernageomin.cl/), there are many nomenclature
mismatches between the scientific literature and government
reports,making interoperability difficult. For instance, Article 2.1.17
of the General Ordinance on Urban Planning and Construction
(Ministerio de Vivienda y Urbanismo, Chile, 1976) describes risk
areas as “avalanches, rolled rocks, alluvium or accentuated erosion”,
omitting the terms landslides or slides, or the hazard of these
phenomena in the context of climate change (Barton, 2012).

According to Marín et al. (2021), the primary triggering factor
for landslide-related deaths in Chile is heavy rainfall (60.9%),
followed by earthquakes (38.3%), and anthropogenic activity (0.8%).
South-Central Chile (∼35°S to ∼40°S) is particularly susceptible
due to the interaction of multiple factors that influence landslide
occurrence, including climate, land cover, topography, geology, and
wildfires, among others (Araya-Muñoz et al., 2017). Within this
region, the Concepción Metropolitan Area (CMA, 36°30S to 37°30S
– 72°40′W to 73°15′W; Figure 1) exemplifies the combination of
conditions conducive to landslide occurrence, specifically heavy
rainfall as the primary triggering factor (Peña et al., 1993; Mardones
and Vidal, 2001; Mardones et al., 2004; Naranjo S. et al., 2006;
Naranjo J. et al., 2006; Ramírez and Hauser, 2007; Mardones and
Rojas, 2012; López, 2013; 2015; Fustos et al., 2017; López et al.,
2021; da Silva et al., 2022). However, due to the region’s active
tectonics, earthquakes are also a significant factor, with the Maule
Earthquake in 2010 (Mw = 8.8) serving as a notable example of
an event that triggered landslides in the CMA (Mardones and
Rojas, 2012; Serey et al., 2019). Consequently, landslide susceptibility
mapping is crucial for effective planning in the CMA.

Therefore, the goal of the research we report here was
to construct a detailed landslide inventory in the Concepción
Metropolitan Area, emphasizing a multitemporal, multi-source
compilation, covering the period 1990 to 2023. We assessed our
inventory relative to records from the Chilean Geological Survey
(SERNAGEOMIN) and then performed a landslide susceptibility
assessment to demonstrate the potential of our inventory approach.

2 Materials and methods

2.1 Study area

The CMA is in the Biobio Region, South-Central Chile,
corresponding to the third largest urban area in Chile with a
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FIGURE 1
Location map of the Concepción Metropolitan Area (CMA). (A) South America and Chile. Red star indicates study area location; (B) Administrative
divisions of the CMA in communes (municipalities); (C) Elevation map of the CMA. Legend and scale bar apply to (B, C).

total population of over 1 million (INE, 2017). The CMA includes
11 municipalities or communes, covering 2,850 km2 (Figure 1).
This area is undergoing rapid urban growth due to rural-urban
migration (Prada-Trigo et al., 2022), leading to expansion into areas
with yet unknown landslide dynamics.

From a geological-geomorphological perspective, the CMA
corresponds combines coastal, fluvial, and tectonic dynamics,
confined between the Pacific Ocean and the western slope
of the Coastal Cordillera, reaching elevations of over 300 m
a.s.l. (Figure 1). A system of horsts and grabens developed in
the Coliumo, Tumbes, and Hualpén Peninsulas (130, 160, and
200 m a.s.l. respectively) rise above the coastal areas and the
emerged delta of the Andalién and Biobío rivers, evidencing
tectonic blocks-oriented NE-SW (Mardones, 1978). Within
the emerged delta, there are several inselbergs with heights
exceeding 70 m a.s.l. All these elevated terrains have slopes
averaging between 30° and 50°, developing steep scarps and
slope valleys. These landforms are the result of tectonic activity
from the subduction between the Nazca and South American
plates, which has caused the uplift of Paleozoic metamorphic

and granitoid rocks that constitute the basement of the study
area, overlain by Triassic to Neogene continental and marine
sedimentary rocks and unconsolidated Quaternary deposits (see
Lithology in Figure 3G).

The climate of the CMA is mediterranean with warm,
dry summers and cold, wet winters (Sarricolea et al., 2016).
The average annual temperature is 12.4°C, 11.6°C in winter
and 18.2°C in summer, and the total annual precipitation is
around 1,000 mm, 70% concentrated between May and August
(DMC, 2023). Extreme events records indicate that the coldest
temperature was −3.8°C in July 1972 and 1976, and the warmest
temperature was 34.4°C in February 2023. In the case of extreme
precipitation records, the most significant pluviometric event
in 24 h occurred on 26 June 2005, with an accumulation
of 162.2 mm. These records also highlight the rainiest years
with more than 1,500 mm in 1966, 1977 and 1997. While
recent studies document an overall decrease in precipitation
in south-central Chile (e.g., Garreaud et al., 2019), they also
find a trend toward the concentration of precipitation into
fewer events (Sarricolea et al., 2019).
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2.2 Data for landslide events

We compiled data from 1990 to 2023 from various
sources to generate the CMA Landslide Inventory. Figure 2
summarizes the methodological framework of this study. The
initial historical data for landslide occurrences were collected
from the Landslide cadastre of the Chilean Geological Survey
(SERNAGEOMIN), available from the ITREND platform (https://
www.plataformadedatos.cl/). The SERNAGEOMIN database for
landslides contains events within the country until 2021. It is
important to note that most of these records report approximate
locations of the technical observation, rather than the specific
landslide sites (Jorquera-Flores and González-Campos, 2024). In
this study, we labelled these records as RAW-SNGM Landslide
Inventory. For information from 2022 to 2023, we also consulted
technical reports from the SERNAGEOMIN Library Website
(https://catalogobiblioteca.sernageomin.cl/) and the technical
minutes viewer for meteorological events (https://experience.arcgis.
com/template/38dbe7203f314d22b8392953c056f16c). Given that
many of these records contain approximate locations, many show
unrealistic locations, such as on flat urban areas or along flat
sections of main roads, rather than on the hillslopes associated
with the landslide events. Using these locations provides inaccurate
characterization of relevant factors, such as lithology and slope.
Consequently, we reviewed all technical reports listed in these
sources to determine the exact locations, adding them to the
database. The corrected coordinate locations in this database
correspond to the scarp centroid of each landslide event, labeling
this dataset as SNGM Landslide Inventory.

Additionally, we compiled information from available scientific
articles, graduate and undergraduate theses, and municipal
emergency offices for the period 2022–2023. Records were
also generated via analyzing local news reports from 1990 to
2023. Another source of records was social media platforms
(Facebook, Instagram, and X/Twitter), where community-shared
data were filtered using keywords in Spanish such as “derrumbe”,
“deslizamiento”, “socavón”, “caída” and “aluvión”. These local reports
provided information on location, occurrence date, affected
infrastructure or people, triggering factors, and, in some cases, the
type of movement. We supplemented this by checking some routes
in Google Street View images, and with interpretation of Google
Earth Pro images and aerial photos available from the Ministry of
Housing and Urban Development of Chile.

We conducted extensive fieldwork across the CMA in 2022 and
2023 to verify and validate compiled records and to document new
landslides in the surrounding areas that had not been previously
reported.Our identification criteria applied aminimum threshold of
3 × 3 m; areas below this size were excluded from the inventory. We
also categorized the type of movement and described the landslide
components, following Cruden and Varnes (1996) and Soeters
and van Westen (1996) guidelines. Detailed observations included
triggering factors, failure surface shape, material type, presence
and type of discontinuities, degree of weathering, activity degree,
water content, drainage conditions, affected infrastructure and/or
populations, and associated anthropogenic activities, and a
photograph of the deposit, among other relevant factors.

For recent landslides, younger than six months, cleared
vegetation is typically a key identification feature. However,

vegetation tends to regenerate quickly, making it more challenging
to identify certain characteristics, thereby affecting the accuracy
of descriptions for older events. This limitation is also relevant
when validating older records, particularly those predating 2010. To
partially compensate for this effect, we relied on testimonies from
local residents for validation, as shown in the flowchart of Figure 2.

2.3 Inventory fields

Our landslide inventorying closely follows guidelines from the
protocol for Inventory Mapping of Landslide Deposits by Burns and
Madin (2009) in terms of database structure within a Geographic
Information System (GIS), adapting the spatial resolution according
to the available imagery resources for the study area. Thus, the
CMA Inventory is mainly a GIS database of points with an
attribute table that, when possible, includes polygons describing
scarps and deposits areas of a given landslide, created in shapefile
format in ArcGIS Pro software. Landslide polygons were delineated
only when the affected area spanned at least six pixels of the
5 m resolution LiDAR-derived Digital Terrain Model (DTM; see
Table 2). Events smaller than this threshold were recorded as point
features. The landslide inventory map is presented at a scale of
1:10,000, in accordance with guidelines for local mapping (e.g.,
Fell et al., 2008; van Westen et al., 2008).

The attribute table contains some fields from GEOMIN
Portal database (https://portalgeominbeta.sernageomin.cl/),
complemented by other relevant attributes indicated in Table 1,
including location, date of occurrence, type of movements, causal
factors, damage caused, among others (e.g., van Westen et al., 2008;
Fell et al., 2008; Guzzetti et al., 2012; Tyagi et al., 2022).

We performed a descriptive analysis of these data to study their
patterns and differences between SNGM and CMA inventories,
while RAW-SNGM was excluded because the aim of generating this
inventory is susceptibility analysis. This includes plots for each field
category and density maps using the Kernel density tool in ArcGIS
Pro software to represent spatial patterns, highlighting areas of high
and low landslide concentrations to identify hotspots and spatial
patterns. Records from Quiriquina and Santa María Islands were
excluded, as these islands have low population density, and they are
situated in different geological and geomorphological contexts from
the mainland.

2.4 Landslide conditioning factors

Our inventory included seven conditioning factors widely
used in the literature. Four of these factors correspond to
elevation derivatives: Slope angle, Slope aspect, Curvature and
the Topographic Position Index (TPI). We also considered the
Distance to rivers, NDVI and Lithology (Figure 2). These are
widely used causal factors for Landslide Susceptibility Assessment
(van Westen et al., 2008; Reichenbach et al., 2018; Broquet et al.,
2024). All the sources of these factors are indicated in Table 2.
For the Susceptibility Assessment (see section 2.5) we used a 5 ×
5 m grid resolution, so the layers were resampled, snapped and
masked using the same Digital Terrain Model (DTM) raster in
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FIGURE 2
Methodological framework of the study.

ArcGIS Pro. Figure 3 shows the display of each of the conditioning
factors used in this study.

The Slope Angle directly affects the gravitational force acting
on a slope, which in turn influences the shear stress on the
slope material. As the slope angle increases, the component of
gravitational force parallel to the slope also increases, making the
material more susceptible to failure (Keller, 2012; Brain and Rosser,
2022). Slope Aspect influences microclimatic conditions, such as
incoming solar radiation, wind exposure, and precipitation patterns
with north-facing slopes tend to receive more sunlight, becoming
drier, while south-facing slopes retain more moisture (Méndez-
Toribio et al., 2016; Pham et al., 2017). Curvature is also important
for landslide susceptibility because it provides insights into the
shape of the land surface, which influences how water flows and
accumulates. This factor is described by combining the profile
curvature and the planar curvature. Positive curvature indicates the

slope is convex-up, negative indicates concave-up, and zero means
flat. These different shapes affect water flows and accumulation, soil
saturation and erosion (Phamet al., 2017; Alqadhi et al., 2022).These
elevation derivatives were calculated with the tool “Slope”, “Aspect”
and “Curvature” in ArcGIS Pro 3.2.2, respectively, from the 5 ×
5 m LiDAR-derived DTM of the Ministry of Housing and Urban
Development of Chile (Table 2).

The Topographic Position Index (TPI) following Weiss’ (2001),
is an index that compares the elevation of each DTM pixel to
the mean elevation of a circular neighborhood around it. Positive
TPI values identify pixels that are higher than the average of their
neighborhood; negative values indicate the opposite (Parra et al.,
2021). The topographic position affects different processes in
the landscape such as soil formation, microclimate conditions,
moisture availability, among others (Méndez-Toribio et al., 2016).
We classified the TPI values into 10 discrete landform classes by
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TABLE 1 Data fields for CMA Landslide Inventory.

N Field name Description Example

1 ID Identification code of the movement. First 3 letters from the commune’s name (municipality) +
number of 5 digits. In this research: TOM = Tome; PEN = Penco; CCP = Concepcion; HPN = Hualpen;
THN = Talcahuano; CHI = Chiguayante; HQI = Hualqui; STJ = Santa Juana; COR = Coronel; LOT =
Lota; SPP = San Pedro de la Paz. The following digits start with the oldest to the most recent movement
and then come the undated ones. SPECIAL CASES: If the landslide previously existed, but a new
significant movement is being recorded, the same original code is indicated, plus an underscore and a
two-digit number from 01 onwards. It is also possible that a landslide deposit has several sources. In
that case, one of the points and scarps may have the same code as the deposit, but the other points and
scarps will have the code plus an A, B, C onwards as appropriate.

PEN00003

2 SNGM This column indicates if the landslide event was registered by SERNAGEOMIN. It is just Yes or No. No

3 DISTRICT The administrative unit where the landslide took place. In Chile it corresponds to “Región”. Biobio

4 COMMUNE The commune (municipality) where the landslide took place. Penco

5 CUT Single Territorial Code from the Spanish expression “Código Unico Territorial”, based on the Single
Codification System for Districts, Provinces and Communes (municipalities).

8107

6 SECTOR The sector or the closest sector of the city, town, village or toponym where the landslide took place. Villa Montahue

7 LAT Latitude of the centroid of the landslide scarp in DATUM WGS84. −37.6889432

8 LONG Longitude of the centroid of the landslide scarp in DATUM WGS84. −72.58814568

9 ZONE Zone of the UTM WGS84 system. 18 H

10 EAST East coordinates of the centroid of the landslide scarp in UTM WGS 84 coordinate system. 677884.11

11 NORTH North coordinates of the centroid of the landslide scarp in UTM WGS 84 coordinate system. 5930923.35

12 LAT_D Latitude of the centroid of the landslide deposit polygon in DATUM WGS84. −37.6889435

13 LONG_D Longitude of the centroid of the landslide deposit polygon in DATUM WGS84. −72.58814569

14 EAST_D Latitude of the centroid of the landslide deposit in DATUM WGS84. 677847.04

15 NORTH_D Longitude of the centroid of the landslide deposit in DATUM WGS84. 5930910.03

16 TYPE Type of movement. Based in Cruden and Varnes (1996) with geomorphological criteria from Soeters
and van Westen (1996). Slow movements and Undifferentiated movements are also considered.

Slide

17 SUBTYPE Subtype of movement. Based in Cruden and Varnes (1996) with geomorphological criteria from
Soeters and van Westen (1996).

Rotational slide

18 MATERIAL Rocks, debris, soil (earth), fill material or a mix of these components, in order of abundance from
highest to lowest.

Soil and fill

19 MAT_TYPE Type of rock, soil (earth) or fill. Residual soil from shales and clayly fill

20 SOIL_USCS Soil type following the USCS classification (Casagrande, 1952). MH and CH

21 WEATHERING Weathering Grade of the rock mass classification suggested by ISRM (1981). VI

22 FN_TYPE Full Name Landslide Type: Includes material + subtype of movement. Earth rotational slide

23 GEOL Geological Unit Cosmito Formation

24 GEOL_GROUP Geological units grouped by type of rocks and age. Paleogene Sequences

25 CONFIDENCE Following the criteria of California Geological Survey (Wills et al., 2017) mapping the limits as Definite
= The limit was drawn with high probability; Probable = The limits could be approximated;
Questionable = Exist the possibility that the polygon drawn is not a landslide.

Definite

(Continued on the following page)

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1534295
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Castro-Venegas et al. 10.3389/feart.2025.1534295

TABLE 1 (Continued) Data fields for CMA Landslide Inventory.

N Field name Description Example

26 ACT_DEGREE Estimated age or activity degree based on Keaton and De Graff (1996). Active

27 SLOPE_TYPE Natural or artificial slope (affected by any excavation). Artificial

28 ANTHROP If any kind of anthropogenic activity is in the slope, yes is indicated. If not, no is indicated. Yes

29 ANT_TYPE Indicate type of anthropogenic modification previous mass movement. Excavation, Deforestation,
Wildfire, Construction, Filling, Water pipes or None.

Filling

30 LANDCOVER Land cover previous movement. Native forest, forestry plantation, shrubland, farming, urban or bare
ground. Classes based on Jaque Castillo et al. (2021).

Bare ground

31 YEAR Year of the known movement. 2022

32 MONTH Number of the month of the known movement. 7

33 DAY Day of the month of the known movement. 17

34 DATE_D Date of the known movement DD-MM-YYYY format. 17-7–2022

35 DATE_M Date of the known movement 01-MM-YYYY format. 01–07-2022

36 SLOPE_DIP Estimated slope dip in degrees (for slope orientation and at the same time prefailure slope). 25

37 SLOPE_AZM Estimated slope azimuth (for slope orientation). 185

38 AZIMUTH Mass movement’s azimuth 271

39 WATER_PRES Indicates water presence. Visible surface water (streams or ponds), Wet, Seepage (seeping water), Puddles,
Staining (stained due to moisture) and No visible water.

Puddles

40 SLOPE_SUPP This column indicates if the hillslope contains any type of support. It could be Yes or No. No

41 MAT_SUPP Type of slope support. If not, indicates None. None

42 SUPP_PRE Type of support before the movement. If there is no support before, indicate None. None

43 SLOPE_DEP Average slope in degrees of the deposition area 15

44 DEPTH Estimation of the landslide deposit depth in meters using the profile and contour lines derived from DTM
or fieldwork data.

3

45 AREA Horizontal Area in square meters of the landslide deposit. Calculated by GIS calculator in the attribute
table.

4823.14

46 SHAPE_POL Semi-conical or semi-ellipsoidal shape of the deposit. Semi-ellipsoidal

47 VOLUME Estimated volume in cubic meters from Cruden and Varnes (1996) method, assuming semi ellipsoidal
shape where VOLUME = 2/3∗AREA/cos (π∗SLOPE_DEP/180)∗DEPTH [ArcGIS defines cos () in radians]
or assuming a semi conical shape if the deposit corresponds to a fan shape, where VOLUME =
1/3∗AREA/cos (π∗SLOPE_DEP/180)∗DEPTH

458823.14

48 TRIGGER Main triggering factor Rainfall

49 MW_EQUAKE Magnitude of the earthquake that triggered the movement. -

50 RDAY Rainfall accumulation in mm during the day where the landslide occurred. Data extracted from the
nearest weather station.

22.5

51 METHOD Method to recognize and zone the landslide’s areas Photo Interpretation and fieldwork

(Continued on the following page)
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TABLE 1 (Continued) Data fields for CMA Landslide Inventory.

N Field name Description Example

52 REG_BY Researcher that reported the landslide. If another researcher drew the
polygon, this should also be indicated.

Sepúlveda and Merino, 2017. Polygons by Soto, J. (2023).

53 VERIF_BY Researcher who verified the landslide’s areas Castro, F. and Soto, J.

54 VERIF_DATE Date of verification the Landslide deposit 05–01-2023

55 REFERENCE Some literature or previous reports of the movement Sepulveda, N. and Merino, R. (2017). Efectos de los incendios
ocurridos entre Enero y Febrero de 2017 y recomendaciones para la
reconstrucción, comuna de Penco - Región del Biobío.
INF-BIOBÍO-03.2017. Servicio Nacional de Geología y Mineria.

56 LINKS Links to references if available https://catalogobiblioteca.sernageomin.cl/Archivos/15401.pdf

57 PHOTOS Photographs or records of the landslide in a google drive link https://drive.google.
com/file/d/1bk3X4kCtq77xZztnEd3q9nV7RgTL_leb/view

58 AFF_INFRAS Type and amount of affected infrastructure. —

59 DEATHS Number of deaths by the mass movement. 0

60 MISSING Number of missing people by the mass movement. 0

61 OBS Observations added by the reporter. This movement needs to be monitored because houses are just at 10 m
from the main scarp

Green blocks indicate that the info corresponds to the deposit polygon.

averaging over two neighborhoods within a radius of 100 and
1,000 m each using the TPI-Based LandformClassification from the
SAGA GIS 7.8.2 toolkit in the QGIS software. These TPI Landforms
are interpreted as geomorphic units within study area.

Distance to rivers is related to soil saturation, erosion rates, and
riverbank stability. Proximity to rivers increases the likelihood of
slope failure due to elevated groundwater levels and the undercutting
of slopes by flowing water. Therefore, areas closer to rivers are
susceptible to landslides (Pham et al., 2017). This parameter was
calculated using the “Euclidean distance” tool in ArcGIS Pro 3.2.2
software from rivers indicated into the Base cartography from
Ministry of Housing and Urban Development of Chile.

The stabilizing effect of vegetation on slopes is characterized
via the Normalized Difference Vegetation Index (NDVI). Higher
NDVI values indicate denser vegetation, which can reduce the
risk of landslides by reinforcing soil structure and reducing
surface erosion. Conversely, low NDVI values are indicative sparse
vegetation or bare ground, increasing the likelihood of slope
instability (Varnes, 1984; Doan et al., 2023). We computed the
average NDVI from March 2017 to August 2024 using Sentinel 2
available data in Google Earth Engine (Table 2). We classified NDVI
into six land cover classes following a modification of Doan et al.
(2023) classes: Water (<−0.042), Built & Barren land
(−0.042 – 0.182), Grass (0.182–0.327), Sparse Vegetation
(0.327–0.425), Dense Vegetation (0.425–0.503) and Very Dense
Vegetation (>0.503).

Lithology is also important because the type and characteristics
of the rocks and their derived soil materials directly influence
slope stability. Certain lithologies, such as highly weathered or
fractured rocks, unconsolidated sediments and clay-rich soils

derived from these rocks are prone to landslides due to their lower
shear strength and higher susceptibility to water infiltration (Varnes,
1984; Cruden and Varnes, 1996; Keller, 2012). We incorporated
this factor via compilation and reanalysis of several sources:
available regional and detailed geological maps (e.g., Quinzio et al.,
2011; Earth Sciences Department–UdeC, 2012; Earth Sciences 
Department–UdeC, 2015; Earth Sciences Department–UdeC,
2016; Earth Sciences Department–UdeC, 2018; Earth Sciences 
Department–UdeC, 2021; Molina, 2017; Rodríguez, 2022; Tomé 
Municipality, 2022) were scanned and digitized in ArcGIS Pro,
and refinement/correction was undertaken in the field. We
grouped units by their age and rock type, as they share some
characteristics, weathering, degree of consolidation and soil
properties. In general, the Metamorphic Basement corresponds
to two series of Paleozoic metamorphic complexes (Eastern
and Western Metamorphic Complexes) consisting of foliated
phyllites and schists; the Granitoids correspond mainly to the
Concepción Intrusive Complex and the Hualpén Monzogranite;
Triassic sequences correspond to Santa Juana Formation, which
consistsmainly of continental conglomerates, sandstones and shales;
Cretaceous sequences correspond to Quiriquina Formation, which
consists mainly of fossiliferous marine glauconitic sandstones;
Paleogene sequences correspond to Curanilahue and Cosmito
Formations, which consist of continental shales and sandstones
with some vegetal fossils and important coal layers; Pleistocene
deposits correspond mainly to Andalién Formation and Molino
El Sol strata, which are not well consolidated conglomerates and
siliceous sandstones; Holocene deposits correspond to old and
current coastal and fluvial deposits; and the Anthropogenic fillings
correspond to non-consolidated old coal mine material.
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TABLE 2 Conditioning factors sources for Landslide Susceptibility.

Conditioning factor Source Spatial resolution or scale Acquisition/production date

Slope Angle (°) LiDAR Digital Terrain Model (DTM) from
the Ministry of Housing and Urban
Development of Chile

5 m per pixel Last quarter of 2012

Slope Aspect

Curvature

TPI

Distance to rivers (m) Base cartography from the Ministry of
Housing and Urban Development of Chile
(MINVU)

1:10.000 2013–05

NDVI Calculated in Google Earth Engine from
Harmonized Sentinel-2 MSI: MultiSpectral
Instrument, Level-2A dataset

10 m per pixel 2017–03-28 to 2024–08-16

Lithology Geological Units Groups modified from a
compilation of geological maps from
Quinzio et al., 2011;
Earth Sciences Department – UdeC 2012;
Earth Sciences Department – UdeC 2015;
Earth Sciences Department – UdeC 2016;
Earth Sciences Department – UdeC 2018;
Earth Sciences Department – UdeC, 2021;
Molina, 2017; Rodríguez, 2022;
Tomé Municipality, 2022

1:50.000 Several

2.5 Landslide susceptibility mapping

To test the potential of our inventory, we utilized it to carry
out a susceptibility mapping, using the Frequency Ratio (FR)
method, a bivariate statistical model, widely used in landslide
susceptibility assessments due to its simplicity, straightforward
computation, and its multi-scale scope, from global to local (Sujatha
and Sudharsan, 2024). However, the method is bivariate, which
makes it potentially sensitive to collinearity between variables
(Nandi and Shakoor, 2010). To minimize this effect, we carefully
selected a set of conditioning factors designed to avoid collinearity
and ensure the reliability of the analysis. To apply the FR method,
each conditioning factor must be classified into discrete classes.
The classification breakpoints for each factor are detailed in
Supplementary Tables S1–5. A summary of the method’s steps is
provided in Figure 2. FR is calculated as follows:

FR =

Li
Ltot
Xi
Xtot

(1)

where, FR is the frequency ratio of class i of a given conditioning
factor X; Li is the number of landslide pixels within class i; Ltot is the
total number of landslide pixels; Xi is the number of pixels of class i
of that given conditioning factor X; and Xtot is the total number of
pixels of the conditioning factor X (all categories). The FR of each
conditioning factor is merged via normalization values to a relative
frequency (from 0 to 1) as follows:

RF =
FRi

FRtot
(2)

where RF corresponds to the relative frequency of each i class of the
factor X; FRi is the frequency ratio of class i of factor X calculated
in Equation 1; and FRtot is the sum (total) of frequency ratios of
all classes of the factor X. After this normalization, RF becomes
an indicator of the weight of the classes of each parameter but still
considers all factors with the same weight (Acharya and Lee, 2019;
Bammou et al., 2023). To solve this problem and to consider the
mutual interrelationship between variables, the Prediction Rate is
calculated as follows:

PR =
(RFmax − RFmin )
(RFmax − RFmin )min_all

(3)

where PR is the prediction rate of the parameter X; RFmax is the
maximum value of relative frequency (RF) among all classes of
parameter X calculated with Equation 2; RFmin is the minimum
value of relative frequency (RF) among all classes of parameter X
calculated with Equation 2; and the expression (RFmax–RFmin)min_all
is the minimum value of the differences between the maximum
and minimum RF values of all parameters. FR and RF values of
each class and PR of each conditioning factor calculated in this
study are indicated in Supplementary Tables S1–5. Thus, the final
step is to calculate the Landslide Susceptibility Index as a simple
linear equation:

LSI =
n

∑
i=1

PRi ∗ RFi (4)

where LSI is the Landslide Susceptibility Index; n is the number
of conditioning factors used to calculate the index; PRi is the
prediction rate of the factor i obtained from Equation 3; and RFi
is the reclassified layer of the factor i assigning to each class its
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FIGURE 3
Landslide Conditioning Factors for the Susceptibility Assessment. (A) Slope angle; (B) Slope aspect; (C) Curvature; (D) TPI Landforms; (E) Distance to
rivers; (F) NDVI land cover; and (G) Lithology. Scale bar applies to all factors.
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own relative frequency calculated with Equation 2. The LSI value
obtained from Equation 4 was then normalized (LSInorm) by scaling
between theminimum (min) andmaximum (max) values to achieve
a range from 0 to 1:

LSInorm =
LSI−min
max−min

(5)

The LSInorm obtained from Equation 5 was subsequently
classified into five categories in order to generate the Landslide
Susceptibility Map: Very Low (0–0.1), Low (0.1–0.2), Moderate
(0.2–0.3), High (0.3–0.5), and Very High (0.5–1.0). We conducted
this susceptibility analysis using three distinct datasets. First, we
applied the analysis to the raw data from the ITREND platform
(RAW-SNGM model). Next, we used the rectified data provided
by SERNAGEOMIN (SNGM model). Finally, we analyzed using
the newly generated inventory (CMA model). In the case of these
Susceptibility Assessments, we did not consider Quiriquina and
SantaMaría Islands records as these islands have different geological
and geomorphological conditions from the mainland.

2.6 Landslide susceptibility validation

Validation of the Landslide Susceptibility model was carried
out using the Receiver Operating Characteristic (ROC) curve and
the Area Under the ROC Curve (AUC), which are widely accepted
metrics for evaluating landslide model performance (e.g., Corsini
and Mulas, 2017; Pham et al., 2017; Acharya and Lee, 2019;
Alqhadhi et al., 2022; Bammou et al., 2023). First, susceptibility
values were sampled from the susceptibility raster for both landslide
and non-landslide points, as indicated in Figure 2. This resulted
in two distinct datasets, one containing values for actual landslide
locations (inventory) and the other for non-landslide areas. Non-
landslide points were randomly selected across the study area, with
each location manually verified to ensure the absence of recorded
landslide events.

To quantify the model’s ability to distinguish between landslide-
prone and non-landslide areas, the extracted values were combined
into a binary-labelled dataset: 1 for landslide and 0 for non-
landslide. Using the ROCR package in the R programming language
(Sing et al., 2005; ROCR package version 1.0-11, 2020), these data
were fed into a prediction object, which computed the true positive
rate (TPR) and false positive rate (FPR) across various threshold
values, forming the basis of the ROC curve.This ROC curve visually
represents the trade-off between sensitivity (TPR) and the false
positive rate (FPR; also known as 1 - Specificity). These values were
calculated as follows:

TPR = TP
TP+ FN

(6)

FPR = FP
FP+TN

(7)

where TPR is the True Positive Rate (Sensitivity); TP are the True
Positives values; FN are the False Negative values; FPR is the False
Positive Rate (1 – Specificity); FP are the False Positive values; and
TN are the True Negative values.

Subsequently, the AUC value was computed from the ROC
curve to summarize the overall performance of the susceptibility

model as follows:

AUC =
1

∫
0

TPR(FPR)d(FPR) (8)

where AUC is the integral of the ROC curve, which represents
the plot of TPR versus FPR (obtained with Equations 6, 7) across
different threshold values. The AUC calculated with Equation 8
provides a measure of how well the model distinguishes between
landslide-prone and stable areas. This represents the probability
that the model will rank a randomly chosen landslide-prone area
higher than a randomly chosen non-landslide area. A value of 0.5
represents random guessing, while a value closer to 1 indicates
excellent performance (Jiao et al., 2019).TheseAUC values are useful
for comparing model performance.

3 Results

3.1 CMA landslide inventory

Our inventory contains 1,288 landslide records for the
Concepción Metropolitan Area (CMA); we use 1,240 in the analysis
presented in this section. The remaining 48 events are located on
Quiriquina and Santa María Islands. The spatial distribution of
these landslides is depicted in Figure 4A, showing many events
occurring within or near urban areas, affecting houses and roads
(Figure 4B). Figure 4C highlights key attributes from the CMA
Inventory database. Each landslide record includes the type of
movement, the geological unit group where the event occurred,
coordinates, and the administrative division (municipality) where
the landslide took place. Several fields are nearly complete, detailing
slope type, associated anthropogenic activity (if present), and degree
of activity. Notably, approximately 80% of the records specify the
landslide’s triggering factor. Additionally, for the study area, it is
significant that half of the recorded landslide processes include
mapped deposit areas (Figure 4B), the date of occurrence, and
information on slope supporting methods.

3.2 CMA and SNGM landslide inventories
comparison

Figures 5A, B illustrate the spatial distribution of landslide
records using density mapping for the SNGM andCMA inventories,
respectively. Between 1990 and 2023, the SNGM inventory records
159 events, while the CMA1,240. Although both inventories overlap
in certain areas, particularly within urban zones, the CMA inventory
provides a denser and more comprehensive coverage, identifying
new landslide-prone zones, such as the northern coastal parts of
Tomé, the coastline between Tomé and Penco, additional points in
the Hualpén Peninsula, Hualqui and Santa Juana.

Observing the distribution of landslide events by
municipality (Figures 5C, D) reveals notable differences,
particularly in San Pedro de la Paz, Santa Juana, Hualpén, and
Hualqui. In these areas, the SNGM inventory records fewer than five
events per municipality, whereas the CMA reports more than 50.
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FIGURE 4
CMA Landslide Inventory locations and data. (A) Location of each landslide event in the study area; (B) A detailed view of an example location in (A); (C)
Selected fields of the inventory database and their percentage of completeness.

Differences in landslide density between the two inventories
are evident. Figures 5E, F display the density of records within a 500-
meter buffer of urban zones and a 100-m buffer of main roads. In
the SNGM inventory, Lota is the most affected urban area and Santa
Juana the least. Conversely, in the CMA inventory, Talcahuano is
the most affected, while Penco is the least impacted by landslides
near urban areas and main roads. These discrepancies highlight
the broader and more detailed scope of the CMA inventory, which

captures a more accurate picture of landslide occurrence in the
region. Talcahuano and Lota are particularly critical municipalities
in terms of landslide density, especially in urban zones and along
major roads that could be impacted.

In terms of geological units, according to the SNGM
inventory most of the records are concentrated in Paleogene
sequences, followed by Granitoids and Metamorphic basement
(Figure 6A). However, when we superimpose our geological
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FIGURE 5
Landslide Density Maps. (A) SNGM dataset; (B) CMA dataset; (C, D) show the amount of landslide records in each municipality; (E, F) indicate landslide
records inside a buffer of 500-m from urban zones and 100-m of from roads to represent affected urban areas and main roads.
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FIGURE 6
Landslide distribution by Lithology (geological unit groups). (A, B) Number of landslides in each geological unit group in SNGM and CMA inventories
respectively; (C, D) Normalized number of landslides by geological unit group surface in square kilometers in SNGM and CMA inventories respectively.

unit map (Figure 3G) and this inventory, via normalization
between number of records and unit area the result is different,
with Pleistocene deposits, Cretaceous sequences and Paleogene
sequences as the most landslide-prone units (Figure 6C). On
the other hand, for the CMA inventory most of the records are
concentrated in the Metamorphic basement and Granitoids, then
Paleogene sequences (Figure 6B), but when analyzed by spatial
surface area of the geological unit group, Cretaceous sequences,
Anthropogenic fillings and Pleistocene deposits are indicated as
the most landslide-prone units (Figure 6D). The CMA inventory
contains four new landslide records in anthropogenic fillings
consisting of unconsolidated material from uninhabited old coal
mining operations in Lota.

In the SNGM inventory, slides account for more than 70%
of events, followed by lateral spreads, falls, and flows, each with
fewer than 20 recorded events (Figure 7A). Similarly, Figure 7C
reveals that in the CMA inventory, slides records are also more
than 70%, with flows and falls exceeding 100 records each.
Regarding triggering factors, Figure 7B indicates that in the SNGM
inventory, 60% of slides are rainfall-induced, with the remainder
triggered by earthquakes and a small portion by anthropogenic
activity. Flows and complex movements in this inventory are
predominantly triggered by rainfall, while falls and lateral spreads
are mainly earthquake-induced. Notably, there are no records of
topples or slow movements in this inventory. Conversely, Figure 7D
shows a wider range of triggering factors in the CMA inventory,
with 90% of landslides being rainfall-triggered, followed by those

caused by earthquakes, anthropogenic activity, and wildfires. Flows
and complex movements are likewise driven by rainfall. Lateral
spreads are mainly triggered by earthquakes, consistent with
the SNGM inventory. However, in the CMA inventory, falls are
primarily rainfall-induced (77%), with additional triggers including
earthquakes, anthropogenic activity, coastal erosion, and wildfires.
Topples are linked to anthropogenic activity and tree root growth
(two records reported), while the triggering factor for slow
movements remains unclear.

Figures 8A, B present the monthly distribution of landslide
occurrences in the SNGM and CMA inventories, respectively, while
Figures 8C, D show the records arranged by year. The peak for
earthquake-induced landslides in the SNGM inventory occurs in
February, whereas rain-triggered events are concentrated between
June andAugust (Figure 8A). In contrast, theCMA inventory reveals
two significant peaks: February for earthquake-induced landslides,
consistentwith the SNGMinventory,while July for rainfall-triggered
landslides (Figure 8B). The CMA inventory records landslides
triggered by wildfires from December 2022 (see Figures 8B, D),
primarily inTomé, caused by theweakening of foliatedmetamorphic
rocks of the Metamorphic basement and discontinuities in the
Paleogene and Cretaceous sequences. The heat from the wildfire
destroyed the root systems of large trees that had previously
strengthened the rock mass, leading to landslides when the support
was lost. The rainfall-triggered and wildfire-triggered landslide
pattern are not identified in the SNGM inventory due the limited
number or records.
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FIGURE 7
Landslide distribution by type and triggering factor. (A, C) Number of landslides in SNGM and CMA inventories respectively by type of movement; (B, D)
Normalized number of landslides by type of movement in SNGM and CMA inventories respectively. Informed events in each bar indicated to the right.

For the annual distribution, Figure 8C displays five notable
peaks in the SNGM inventory, each with more than nine
records. Four of these peaks, in 2005, 2006, 2022, and 2023, are
predominantly associated with rain-induced landslides, while the
most significant peak in 2010 corresponds to earthquake-triggered
events. Similarly, Figure 8D for the CMA inventory identifies three
significant peaks, occurring in 2006 and 2022, primarily due to
rain-induced landslides, and in 2010,mainly by earthquake-induced
events (also consistentwith the SNGMinventory). SERNAGEOMIN
technical reports indicate that on 26 June 2005, an intense storm that
delivered 162.4 mm of rain in 24 h, triggering significant landslides
in the study area (e.g., Naranjo S. et al., 2006). The SNGM inventory
contains records of this storm, and the CMA inventory registers only
10 additional records related to this extreme weather event. Another
significant rainfall event occurred in July 2006, with 164 mm falling
over three days and 230 mm six days between July 5 and 11
(Naranjo J. et al., 2006). This event triggered several landslides that
are included in the CMA inventory. The year 2010 has many records
in both inventories, primarily due to the Maule Earthquake (Mw =
8.8; Mardones and Rojas, 2012; Serey et al., 2019), which impacted
south-central Chile. Despite the region’s well-known history of
seismicity, this is the only earthquake event that has significantly
triggered landslides.

In 2022, both inventories contain many more landslide
records relative to previous years. SERNAGEOMIN’s technical
reports documented rainfall-induced events throughout the year.
Considering precipitation data from the Carriel Sur meteorological

gauge located between Talcahuano and Concepción (labelled as
RDAY field in CMA inventory), significant events occurred on June
4–6, with at least 100 mm of rainfall accumulated over three to
five days, followed by rain events throughout July. August 16 also
stands out, following a 40 mm rainfall the previous day. This high
volume of records in 2022 relative to previous years may reflect
a recording bias, as the main fieldwork campaign was conducted
in 2022 and early 2023. Additionally, in 2023 SERNAGEOMIN
introduced technicalminutes formore precise landslide registration.
In the CMA inventory, were prominently recorded due to media
and socialmedia reports helped in recordingmany urban landslides.
Two key rainfall events in 2023 were June 24, with nearly 100 mm
of rain over four days, and a storm from August 15–24, bringing
approximately 100 mm over ten days.

3.3 Spatio-temporal distribution of CMA
landslide inventory

The CMA inventory was divided into five-year intervals to
examine spatio-temporal patterns and recurrence (Figure 9).
Within each time interval, certain spatial patterns emerge. For
instance, the hillslopes of Concepción, Talcahuano and Chiguayante
consistently show recurrent landslides in the same places. Records
for Coronel, Lota, Penco, and Tomé localities become more
consistent from 2005–2009 onwards (Figures 9D–G), while
landslides in the Hualpén Peninsula only appear in the 2020–2023
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FIGURE 8
Landslide distribution by period. Number of landslides in SNGM and CMA inventories and their triggering factor respectively by month (A, B), and by
year (C, D).

interval (Figure 9G). Lastly, Hualqui and Santa Juana show more
substantial records in 2005–2009 and 2020–2023 (Figures 9D, G),
largely due to the addition of photointerpretation data in rural
areas, which are significant in these municipalities. Indeed, an
analysis of landslide density distribution over time reveals that the
periods 1990–1994, 1995–1999, 2000–2004, and 2015–2019 contain
approximately 30 landslide records each (Figure 9H).The years with
the highest number of records are 2005–2009 and 2020–2023, largely
explained by the rainfall and eventsmentioned earlier.This temporal
breakdown highlights that different landslide types are distributed
unevenly over time. Slides are consistently present throughout the
entire study period. Flows show a substantial increase in 2005–2009,
while falls aremainly recorded in 2010–2014 and 2020–2023. Lateral
spreads were primarily recorded in 2010–2014, corresponding to the
Maule Earthquake in 2010.

3.4 Landslide susceptibility
intercomparison

3.4.1 Slide susceptibility
Figure 10 illustrates the landslide susceptibility models based on

the RAW-SNGM, SNGM, and CMA inventories. AUC values are
0.7035 for the RAW-SNGM model, 0.7986 for the SNGM model,
and 0.8714 for the CMA model (Figure 10G). At the regional scale,

the RAW-SNGM model indicates large areas of high susceptibility
in flat urban zones, which are instead classified as low or very low
susceptibility in both the SNGM and CMA models. Differences
among models that are subtle at the regional scale become more
pronounced at the local level. For example, Figures 10D–F show
models’ results for the Lota area (RAW-SNGM, SNGM, and CMA,
respectively), indicating overestimation of the RAW-SNGM model
of areas classified as low or very low susceptibility in the SNGM
and CMAmodels (Figures 10E, F). Notably, the CMAmodel weighs
higher drainage lines and steep hillslopes with high slope angles,
whereas the SNGM model reflects a generally more conservative
susceptibility classification.

The differences between these slide models stem from the
Prediction Rate (PR) values associated with each conditioning
factor, as presented in Table 3. Lithology emerges as a highly
significant factor across all threemodels, with the strongest influence
observed in the RAW-SNGM and SNGM models, where it ranks
as the most impactful factor. In the CMA model, while Lithology
remains important, it ranks as the second most influential factor
after Slope Angle. The latter factor is also critical to all models,
since it is the second most influential factor in the SNGM model.
NDVI Land Cover underscores the role of vegetation as a predictor,
especially in the RAW-SNGM model, where the class Built & Barren
land accounts for over 50%of the relative frequency (RF) of landslide
records (see Supplementary Table S1), leading to overestimations in
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FIGURE 9
Landslide distribution by 5-year period. (A–G) Landslide density from 1990 to 2023 in 5-year subdivision; (H) Bar plot of landslide records by type of
movement in this time subdivision.
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FIGURE 10
Slide Susceptibility Maps. (A) RAW-SNGM Slide Model for the study area; (B) SNGM Slide Model for the study area; (C) CMA Slide Model for the study
area; (D), (E, F) RAW-SNGM, SNGM and CMA models for Lota area respectively; (G) ROC Curve for the models’ performances. Blue rectangles in (A), (B,
C) indicate (D), (E, F) locations. Legend represents elements of (A–F). VL, L, M, H and VH in (A) to (C) indicates classes Very Low, Low, Moderate, High
and Very High respectively.
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TABLE 3 Prediction rate of each conditioning factor for each model.

FACTOR PR RAW-SNGM
Slides

PR SNGM Slides PR CMA Slides PR CMA Flows PR CMA Falls

Lithology 3.48 3.15 1.96 2.83 5.05

NDVI Land Cover 2.95 1.94 1.89 1.61 1.67

Distance to rivers 2.81 1.27 1.62 1.32 2.59

Slope Angle 2.34 2.01 2.84 2.06 4.48

Curvature 1.28 1.23 1.8 3.35 2.6

Slope Aspect 1.05 1 1 1 1

TPI landforms 1 1.06 1.04 1.14 1.71

Red values indicate the most important factor and blue the least.

urban areas due to uncorrected slide events. By contrast, Distance
to Rivers and Curvature exert moderate influence, while Slope
Aspect and TPI Landforms have minimal impact on susceptibility
compared to other conditioning factors.

3.4.2 Flow and fall susceptibility
Figure 11A displays the CMA flow susceptibility model, which

has an AUC of 0.8284. Figure 11C provides a closer view of the
Chiguayante locality, an area well known for flow occurrences
within the CMA (e.g., Mardones et al., 2004; Naranjo J. et al.,
2006). Notably, major drainage channels along the hillslopes show
high and very high susceptibility values for flows, with several
records aligningwith these areas, particularly near urban zones.This
suggests increased risk of flows in proximity to inhabited areas.

Figure 11B presents the regional output of the CMA fall
susceptibility model, with an AUC of 0.7783. Figure 11D highlights
the Talcahuano locality, an area with numerous rockfall records in
the CMA inventory database. Despite the model’s fair AUC value,
there appears to be some overfitting, likely due to a significant bias
in the distribution of the records. This bias seems to result from
the high concentration of rockfall events within the Quiriquina
Formation (Cretaceous Sequences), a geological unit with limited
spatial extent. The model assigns high and very high susceptibility
values to this unit, even though several rockfall records occur outside
of it, indicating themodel may overemphasize susceptibility in areas
with a high density of records, regardless of the likely importance of
other geomorphic factors.

4 Discussion

4.1 Landslide inventory standardization in
Chile

Despite Chile’s high susceptibility to landslides due to its
complex topography and active tectonics, the country still lacks a
standardized national landslide inventory. The Chilean Geological
Survey (SERNAGEOMIN) plays a critical role in providing essential
information on geology, natural resources, and geological hazards,

enabling Chile’s economic development and population welfare.
The agency’s responsibilities extend beyond hazard management
as it also offer valuable insights that aid economic planning and
disaster preparedness. The involvement of SERNAGEOMIN in
landslide assessments often begins with technical reports issued
in response to national emergencies. Their focus is largely on
post-disaster contexts, where resources are allocated to analyze
and understand affected areas. The agency’s mandate extends
beyond landslides, encompassing tsunamis, earthquakes, and
volcanoes, and occasionally includes support for flood responses and
wildfire recovery.

The landslide cadastre of the Chilean Geological Survey
(SERNAGEOMIN), accessible through the GEOMIN Portal,
functions primarily as a viewer for the general location of
technical reports on landslide hazards, rather than as a detailed,
comprehensive inventory of landslide events. This database
provides approximate landslide locations and thus is unable
to capture the full scope of landslide factors and occurrences
across the country (Jorquera-Flores and González-Campos, 2024).
Consequently, raw data from SERNAGEOMIN is of limited use
for conducting detailed landslide assessments, as our analysis of
the RAW-SNGM demonstrated. Additionally, the database is not
regularly updated, missing recent information that is critical to
conduct detailed assessments.

While several scientific studies have compiled landslide
inventories across various regions of Chile, the lack of
standardization in landslide data collection and reporting has
resulted in a significant disparity of scales, identification protocols,
and criteria on what kind of event is worth recording. For instance,
Crosta et al. (2014) produced a polygon-based inventory of
large landslides in major valleys of northern Chile. Serey et al.
(2019) compiled a point-based inventory of earthquake-induced
landslides triggered by the Maule Earthquake that occurred in 2010,
focusing on lateral spreads, flows, disrupted slides, and coherent
slides. Morales et al. (2021) developed a polygon-based temporal
landslide inventory using machine learning for northern Chilean
Patagonia, concentrating on slides, rockfalls, and debris flows.
Subsequently, Morales et al. (2022) expanded this inventory using
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FIGURE 11
Flow and Fall Susceptibility for CMA. (A, B) Models for the whole study area; (C) Flow Susceptibility model for Chiguayante; (D) Fall Susceptibility model
for Talcahuano; (E, F) ROC Curve for the models’ performances. Blue rectangles in (A, B) indicate (D, E) locations. Legend represents elements of
(A–D). VL, L, M, H and VH in (A, B) indicate Very Low, Low, Moderate, High and Very High respectively.

deep learning techniques, albeit without differentiating between
landslide types.

Although these efforts have advanced the understanding of
landslide distribution in Chile, there is no consensus on a
standardized approach for inventorying landslides. A notable first
step towards this was proposed by Jorquera-Flores and González-
Campos (2024), who recommended the standardization of landslide
databases in the Aysén region, located in southern Chile, improving
the GEOMIN database field. Despite this, in Chile, an appropriate
mapping scale has not been defined, given the diverse geographic
and environmental contexts across the country. In our study, we
built upon this work to generate a detailed, multitemporal landslide

inventory that distinguishes between scarp and deposit areas as
much as possible with the available resources, using both point and
polygon data, following guidelines for local landslide hazard zoning
at a scale of 1:10,000 recommended in the landslide literature (e.g.,
Fell et al., 2008; van Westen et al., 2008). This approach aims to
provide detailed information for future analysis.

There are similarities between the database fields of Jorquera-
Flores and González-Campos (2024) and the inventory presented
in this study, such as the inclusion of a unique identification
code for each landslide, date of occurrence, type of movement,
type of material, coordinates and coordinate system, deposit
area and volume, triggering factors, and references. However,
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there are key differences. For example, Jorquera-Flores and
González-Campos (2024) presented a logic model for inventorying
landslides and did not specify whether their data were point-based,
polygon-based, or both, whereas our CMA inventory compiled
landslide information and incorporated both types of data records
depending on availability. Additionally, while both studies included
rainfall as a triggering factor, our inventory only considered
rain accumulation, whereas Jorquera-Flores and González-Campos
(2024) also accounted for rainfall intensity and the gauge source
of the data. Our inventory adds more detailed fields related to
the material, such as the geological unit, geological unit group,
type of material (distinguishing specific rock and soil types),
and weathering conditions. We also incorporated information on
anthropogenic activity, hillslope support systems for stabilization,
water presence, and photographs of the landslide deposit when
available.

4.2 SNGM and CMA landslide inventories
comparison

Our CMA Inventory expands on what is available from the
SERNAGEOMIN database (SNGM inventory), providing a more
comprehensive spatial distribution of landslide records. It also
adds significant new data in previously underrepresented areas,
identifying landslides in locations largely overlooked by the SNGM
inventory, such as Hualqui and Santa Juana. Although both
inventories agree that urban areas and major roads in Talcahuano,
Lota, Chiguayante, and Concepción have higher concentrations
of landslide records, there are differences in the ranking of
critical areas.

In turn, both the SNGM and CMA inventories agree that
Pleistocene deposits and Paleogene sequences are particularly
susceptible to landslides, and many of these deposits are found
in residential areas, particularly northern parts of Concepción
and the southern sector of Penco, where these deposits outcrop,
consisting primarily of unconsolidated conglomerates from the
Pleistocene deposits (Andalién Formation), sandstones and shales
of the Paleogene Sequences (Cosmito Formation). On the other
hand, CMA and SNGM inventories disagree on the impact of the
Cretaceous Sequences (Quiriquina Formation) as a notably larger
number of slides and rockfalls in the CMA inventory. This may
have resulted from possible biases in documenting older slides
and rockfalls (even pre-1990) along the coastal cliffs where the
Quiriquina Formation outcrops. Although the sandstones of the
Quiriquina Formation appear resistant, their numerous joints in
multiple directions increase their susceptibility to these types of
mass movement.

While the SNGM inventory provides a robust dataset for
the quantitative analysis of slides, it lacks sufficient data for
other movement types, such as flows, falls, and lateral spreads.
Addressing this limitation requires qualitative or heuristic methods
to develop susceptibility analyses. Given the size and level of
detail of the CMA inventory, it is well-suited for the quantitative
assessment of slides, flows, and falls. However, the analysis of
lateral spreads, topples, complex movements, and slow movements
remains a challenge due to the few available records for each
of these landslide types. Therefore, future data collection efforts

should focus on expanding the dataset for these underrepresented
processes. For instance, recent efforts made at particular locations,
such as the work of Fustos et al. (2017) on deformations of slow
movements in Chiguayante during the winter of 2006, can be
replicated across the entire area and integrated into the database.
Therefore, while both inventories enable quantitative analysis
of rainfall-induced slides, the detail of the CMA allows more
comprehensive characterization as it provides descriptions of a range
of landslides, including flows and falls. Nevertheless, conducting a
quantitative assessment of earthquake-induced landslides remains
challenging for both inventories due to limited availability of data
on slides and falls.

The temporal distribution of landslides in the SNGM and
CMA inventories reflects both seasonal and event-driven patterns.
Notably, both inventories indicate peaks in landslides due to
earthquakes and rainfall triggers, but they also reveal distinct
differences based on data availability. Monthly patterns reflect the
influence of seasonal factors, especially rainfall. Both inventories
demonstrate a clear trend for rainfall-triggered landslides during the
winter months (mainly June to August), with the CMA inventory
showing a normal distribution with its peak in July, characteristic
of Chile’s winter season. This aligns with the region’s rainfall
patterns, where heavy and prolonged rainfall saturates the slopes and
triggers landslides. In contrast, the February peak for earthquake-
induced landslides, observed in both inventories, underscores
the impact of the Maule Earthquake (Mw = 8.8; Mardones and
Rojas, 2012; Serey et al., 2019).

Both inventories identified significant landslide peaks in
specific years, primarily 2005, 2006, 2010, 2022, and 2023, each
corresponding to either extreme rainfall events or the Maule
Earthquake in 2010. The rainfall-triggered landslide peaks in 2005,
2006, and 2022 highlight the importance of threshold-based rainfall
monitoring. Defining thresholds is crucial for developing early
warning systems for communities in susceptible regions. Although
the region typically experiences moderate seismicity, the Maule
Earthquake triggered a significant number of landslides. Within
the SNGM inventory, 52% of the landslides were rainfall-induced,
whereas 38% were attributed to this seismic event. However, the
CMA inventory shows a greater influence from rainfall, with 69%
of its landslide records linked to rainfall events and only 6% related
to the Maule Earthquake. These contrasting trends suggest that
mitigation efforts should be tailored to address the predominant
triggers in each inventory. For instance, slope stabilization measures
may be particularly beneficial during the winter months, given
the high proportion of rainfall-triggered landslides. In contrast,
preparedness for earthquake-induced landslides should be a
continuous priority, given the unpredictability of seismic events and
their potential for widespread impact.

A key distinction between the SNGM and CMA inventories is
their data completeness. The CMA inventory’s reliance on multiple
data sources, including high-resolution satellite imagery, technical
reports, and photointerpretation, allows for more comprehensive
landslide documentation, especially rainfall-induced events that
may not have been captured in the SNGM dataset. Additional
sources in the CMA inventory have improved its resolution,
highlighting landslides that might otherwise go unrecorded. This
increased detail reveals the impact of data-collection biases.
The influence of field campaign timing, especially the increased
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documentation in 2022–2023 in the CMA inventory, raises
questions about temporal biases in landslide data collection. While
these efforts have enriched the data, they may have overrepresented
landslides during this period.This observation underscores the need
for continuous and systematic data collection across seasons and
years to enhance landslidemonitoring and risk assessment accuracy.

Landslide recurrence revealed by the CMA inventory suggests
underlying predisposing factors in particular areas, such as the
geological structure, slope gradient, and land cover. Regular
landslide activity in Concepción and Talcahuano may indicate
the need for enhanced monitoring and preventative measures in
these urban areas, especially given their population density and
infrastructure. Additionally, the emergence of landslide records
in municipalities such as Coronel, Lota, Penco, and Tomé after
2005 could reflect improved data-collection efforts. The increase in
recorded landslides in rural regions, such as the Hualpén Peninsula,
Hualqui, and Santa Juana, particularly in the latest interval
(2020–2023),may be attributed to the expanded photointerpretation
data. This increase suggests that landslides may have been
historically underreported in these areas due to data limitations.
Consequently, recent advances in data acquisition, particularly in
rural settings, enhance our understanding of landslide distribution
and suggest that comprehensive remote sensing data can reveal
previously overlooked patterns. The recent identification of active
landslide areas in rural regions suggests that these communities
may also benefit from early warning systems and improved land-
use planning.

Although landslide susceptibility analysis is generally not
considered time-dependent, it is sensitive to the timing of
landslide record acquisition (Jones et al., 2021). While a detailed
susceptibility analysis for each time interval in the CMA inventory
was not conducted, the variation in the number and spatial
distribution of landslide records across time periods suggests that
susceptibility results would differ accordingly. Thus, systematization
and standardization of landslide inventorying need to incorporate
protocols that account for the time-dependent evolution of
these dynamics.

4.3 Slide susceptibility

Comparative analysis of landslide susceptibility models
derived from the RAW-SNGM, SNGM, and CMA inventories
revealed notable differences due to variations in inventory
accuracy. The superior skill of the CMA model, according to
AUC highlighting the impact of detailed inventories for landslide
susceptibility assessments. The SNGM model also shows reasonable
predictive capability as a result of rectified locations of the
SERNAGEOMIN cadastre, The RAW-SNGM model, with the
lowest AUC, overestimated susceptibility, particularly along
urban areas that are known for their very low susceptibility to
landslides. This overestimation reflects the influence of uncorrected
landslide records, particularly in areas of flat urban terrain,
where the CMA model classifies them as low or very low
susceptibility.

Lithology is consistently a critical factor across all models,
yet its influence is most pronounced in the RAW-SNGM and
SNGM models, where it ranks as the leading conditioning factor,

highlighting the role of rocks and derived soils in predisposing areas
to landslides. In contrast, the CMA model assigns slightly lower
importance to lithology, reflecting a more balanced integration of
additional factors. Slope Angle also emerges as a critical predictor
across models, particularly in the CMA model, underscoring the
importance of steep terrain in landslide susceptibility. NDVI Land
Cover, particularly the “Built & Barren land” class, contributed
significantly to susceptibility in the RAW-SNGM model, indicating
that urban and sparsely vegetated areas are associated with high
susceptibility. However, the influence of this factor appeared
less pronounced in the SNGM and CMA models, suggesting
that curated inventories have adjusted for potential biases in
urban areas, where landslide susceptibility may have been
overstated.

Our findings point to the key positive impact of comprehensive,
corrected inventories in the development of robust landslide
susceptibility models, facilitating accurate and localized
susceptibility assessments, which are indispensable for risk-
informed planning and development in regions prone to landslides.
On the other hand, relying on less accurate inventories, such as the
RAW-SNGM, may result in unnecessary construction restrictions
in stable areas, leading to economic losses, reduced development
opportunities, and inflated property costs, ultimately hindering
urban expansion and impeding community growth.

Earlier studies, such as those by SERNAGEOMIN (2012),
conducted preliminary hazard assessments for the Biobio region
(including the CMA) using heuristic susceptibility assessments.
SERNAGEOMIN approach measured spatial relative probability
alone rather than spatial and temporal probability; thus, it
did not meet the requirements to be classified as a hazard
assessment. Instead, it aligns more closely with susceptibility
mapping. Following the recommendations of Soeters and van
Westen (1996), these assessments used qualitative methods that
focused on factors such as lithology, slope angle, and limited
landslide data. Another notable difference is that SERNAGEOMIN
classification grouped all landslide types—rotational and
translational slides, mudflows and debris flows, and rockfalls—into
Low, Moderate, and High susceptibility categories within
the same map. This combined classification is generally not
recommended, as different types of movements are governed
by distinct mechanisms and, therefore, should be analyzed
separately (Fell et al., 2008).

Another notable difference is that their classification grouped
all landslide types—rotational and translational slides, mudflows
and debris flows, and rockfalls—into Low, Moderate, and High
susceptibility categories within the same map. This combined
classification is generally not recommended, as different types of
movements are governed by distinct mechanisms and, therefore,
should be analyzed separately (Fell et al., 2008).

Overall, the High susceptibility zones identified in
SERNAGEOMIN’s preliminary maps align reasonably well with
the High and Very High susceptibility areas of our CMA Slide
model. However, in some cases, Moderate susceptibility areas of
the CMA Slide model also overlap with the SERNAGEOMIN’s
preliminary High susceptibility class. This apparent overestimation
of susceptibility in certain hillslopes might stem from unrealistic
high weight to the slope angle, potentially inflating the model’s
susceptibility predictions in certain areas.
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The only quantitative analysis of landslide susceptibility in
the region was conducted by López et al. (2021) for a specific
locality, Caleta Tumbes in Talcahuano, using Logistic Regression
and a Generalized Additive Model. Their models achieved
high AUC values (0.88–0.90), indicating a strong predictive
accuracy. However, this assessment was limited to a small area,
restricting its applicability to a broader region. Similar to the
SERNAGEOMIN approach, López et al., 2021 grouped rotational
slides and mudflows in a single model, a practice generally
discouraged because of the distinct mechanisms driving each
landslide type. Furthermore, they presented susceptibility as
a continuous probability value rather than classifying it into
distinct susceptibility levels, complicating comparisons with other
models in terms of the relative spatial probability distribution.
Although their AUC values outperformed those of our model, the
absence of discrete susceptibility classes limits the interpretability
of their results for broader spatial assessments and practical
applications in regional hazard management. Moreover, although
Logistic Regression, Generalized Additive Models, and Frequency
Ratio methods are powerful tools, they remain sensitive to
multicollinearity among predictor variables. López et al. (2021)
likely addressed this limitation by carefully selecting conditioning
factors, as was done in this study. In contrast, when many
predictors are involved, Reichenbach et al. (2018) recommend
using parametric and nonparametric techniques to evaluate
geoenvironmental datasets, identify collinearity, and isolate themost
relevant explanatory factors, thereby enhancing the robustness of
susceptibility assessments.

4.4 Flow and falls susceptibility

TheFlow andCMAFall susceptibilitymodels each offer valuable
insights into different types of landslide risks within the study
area. The CMA Flow susceptibility model achieved an AUC value
of 0.8284, reflecting a strong fit, particularly in regions such as
Chiguayante, where all major drainage systems are classified with
High to Very High flow susceptibility. This susceptibility aligns with
the recorded incidents of mudflows and debris flows in the area
(e.g., Mardones et al., 2004; Naranjo J. et al., 2006). The model’s
results highlight Curvature as a primary influencing factor, as
concave hillslopes tend to concentrate on flow-related landslide
events (see Supplementary Table S4). Other key contributors to flow
susceptibility include Lithology and Slope Angle, further validating
the model’s consistency with real-world flow dynamics.

In contrast, the CMA model for Falls was less skilled
in delineating susceptible areas. Despite an AUC value of
0.7783, which generally suggests fair performance, the model
overemphasizes Lithology, particularly withinCretaceous sequences
(Quiriquina Formation). This formation represents 93% of the
factor’s prediction rate (see Supplementary Table S5), skewing
susceptibility assessments in its favor owing to a high concentration
of fall events recorded within a relatively small surface area.
Consequently, areas such as Talcahuano are misrepresented:
flat zones within the Cretaceous sequences are assigned high
susceptibility values, whereas steeper zones, with known fall
events are assigned low to very low values. Addressing these
discrepancies could involve integrating additional conditioning

factors into the frequency ratio (FR) model, such as elevation,
rock outcrops, soil types, and proximity to lineaments and faults
(e.g., Nanehkaran et al., 2022; Cinosi et al., 2023). However,
careful consideration of the appropriate scale of these factors is
crucial. Another potential solution may be to refine the Lithology
classification by subdividing it into more specific units, thus
reducing the risk of overfitting.

Despite these challenges, both the Flow and Fall susceptibility
models demonstrated fair reliability, offering valuable insights
into the respective landslide types. These models offer practical
utility for identifying areas at risk and guiding appropriate
mitigation measures.

5 Conclusion

This study significantly enhances landslide susceptibility
assessments for the Concepción Metropolitan Area (CMA)
by creating a comprehensive, multi-source landslide inventory
spanning over three decades (1990–2023). Our compilation
of more than 1,200 events, exceeding existing datasets by far,
highlights the need for systematic and continuous landslide
registration, particularly in underrepresented nonurban areas
across Chile. Future efforts could address landslide zonification
in underrepresented nonurban areas through systematic
photointerpretation using high-resolution imagery, LiDAR surveys,
and SAR techniques to capture the deformation patterns.

The key results show substantial improvement in susceptibility
model performance. For slide susceptibility, the CMA model
achieved the highest predictive accuracy, outperforming the other
two models. The flow susceptibility analysis was also skilled, while
the fall susceptibility model showed some overestimation related to
the lithology factor despite its high AUC.

Limitations of this study include the absence of detailed soil
type data and fault mapping, which precluded the inclusion of
potentially influential conditioning factors. These gaps can be
addressed through further systematic surveys and collaboration
between institutions to enhance data availability. Additionally,
landslide inventories are temporally dynamic, as events are triggered
by storms, earthquakes, or anthropogenic activities. Therefore,
continuous updates are essential to maintain accuracy and support
real-time hazard assessments.

The findings of this study contribute new knowledge to
the field by demonstrating the value of detailed, well-curated
landslide inventories for improving susceptibility models. The
methodological framework applied here can serve as a pilot
approach for replication across Chile and other regions with similar
environmental conditions. Moreover, the expanded CMA inventory
lays the foundation for future research, including the analysis of
rainfall thresholds for early warning systems using meteorological
and remote-sensing data.

Ultimately, this study underscores the importance of
accurate and systematic landslide inventories for quantitative
susceptibility, hazard, and risk analyses. Such efforts are crucial
for risk-informed urban planning and resource management at
local, regional, and national scales, promoting safer and more
resilient communities.
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