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Expanding cryospheric landform
inventories – quantitative
approaches for underestimated
periglacial block- and talus
slopes in the Dry Andes of
Argentina

Tamara Köhler1*, Anna Schoch-Baumann1, Rainer Bell1,
Johannes Buckel2, Diana Agostina Ortiz1,
Dario Trombotto Liaudat3 and Lothar Schrott1

1Department of Geography, University of Bonn, Bonn, Germany, 2Wasserwirtschaftsamt Rosenheim,
Rosenheim, Germany, 3Geocryology, IANIGLA-CONICET, CCT CONICET, Mendoza, Argentina

There is a clear spatial discrepancy between the area potentially underlain by
permafrost and the landforms recorded in the national inventory of cryospheric
landforms in the Dry Andes of Argentina (∼22°–35°S). In the periglacial belt
around 30°S, these areas are often covered by extensive block- and talus
slopes, whose distribution and potential permafrost content have received
little attention so far. We present the first geomorphological mapping and
predictive modeling of these underestimated landforms in a semi-arid high
Andean catchment with representative cryospheric landform cover (30°S,
69°W). Random forest models produce robust and transferable predictions
of both target landforms, demonstrating a high predictive power (mean
AUROC values ≥0.95 using non-spatial validation and ≥0.83 using spatial
validation). By combining geomorphological mapping, predictive modeling, and
geostatistical analysis of block- and talus slopes, we enhance our knowledge
of their distribution characteristics, formative controls and potential ground ice
content. While both landforms provide suitable site conditions for permafrost
occurrence, talus slopes are expected to contain significantly higher ground
ice content than blockslopes due to their more favorable characteristics for
ice formation and preservation. Given their widespread distribution across
almost 79% of the modeled area, block- and talus slopes constitute potentially
important ground ice storages and runoff contributors that are not included
in current hydrological assessments of mountain permafrost. Our results
underscore the need to expand existing cryospheric landform inventories to
achieve a more comprehensive quantification of underrepresented periglacial
landforms and thus a realistic acquisition of cryospheric water resources in high
mountain environments. The newly compiled inventories can serve as a basis
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for further investigations (e.g., geophysical surveys, hydrochemical analysis,
permafrost distribution models) at different spatial scales.

KEYWORDS

predictive modeling, geomorphological mapping, mountain cryosphere, periglacial
landforms, blockslopes, talus slopes, Dry Andes

1 Introduction

Monitoring the effects of climate change on the mountain
cryosphere has become increasingly important in recent decades,
as solid-state water reserves are globally diminishing (Huss et al.,
2017; Rasul et al., 2020). Global water towers host water storage
and regulation systems in the form of glaciers, snow, ice,
permafrost and seasonally frozen ground. Yet, the periglacial
domain and its hydrological significance remain insufficiently
studied (Arenson et al., 2022; Hilbich et al., 2022; Mathys et al.,
2022). Predictive modeling is a powerful and time-efficient tool
for regionalizing local (field) observations using geostatistical
modeling techniques (Heckmann et al., 2014). Periglacial landform
inventories (e.g., rock glaciers, Azócar et al., 2017; Blöthe et al.,
2020; Boeckli et al., 2012), topoclimatic data (e.g., Mean Annual Air
Temperature (MAAT), altitude, aspect, vegetation, Gruber, 2012;
Boeckli et al., 2012), and geophysical surveys (e.g., Hilbich et al.,
2022; Schrott et al., 2012) help to identify, characterize, and
regionalize mountain permafrost and associated periglacial
landforms. In recent decades, numerous permafrost distribution
maps have been developed at varying spatial scales, integrating
geomorphological mapping, field surveys, and predictive modeling
(e.g., Deluigi et al., 2017; Schrott et al., 2012; Boeckli et al.,
2012). The globally adapted and widely applied Permafrost
Zonation Index (PZI), which is based on MAAT and topography
(Gruber, 2012), provides a broad overview. However, its resolution
remains inadequate for many local to regional studies requiring
precise distribution quantifications. A thorough and holistic
assessment at local to regional level is urgently needed in view
of growing water scarcity, aridity and drought reports (IPCC, 2023;
Dussaillant et al., 2019; Garreaud et al., 2020).

In the Southern Hemisphere, periglacial environments are
primarily restricted to Antarctica and a confined belt within the
Andes (Gruber, 2012; Obu et al., 2020). Likewise, significant
decreases in snowfall and snow persistence, along with glacier
retreat and increasing permafrost degradation have been observed
(Masiokas et al., 2020; Pitte et al., 2022; Dussaillant et al.,
2019). Consequently, assessing the spatial and temporal dynamics
of the Andean cryosphere is critical for quantifying freshwater
resources, particularly for the (semi-)arid lowlands of the Andes.
The establishment of a national inventory of cryospheric landforms
(IANIGLA-CONICET, 2018) has provided a valuable research
framework for a more accurate acquisition of the mountain
cryosphere at local to national scales in Argentina. The inventory
is part of a series of measures implemented to preserve glaciers
and the periglacial environment under a national legislation passed
in 2010. It lists cryospheric landforms under protection, including
(debris-covered) glaciers, perennial snowfields, and (in-)active
rock glaciers (IANIGLA-CONICET, 2018).

Rock glacier occurrences, their activity status and topoclimatic
site conditions along with coarse-resolution global climate models
are frequently used to model permafrost distribution and its
hydrological significance in the Andes (e.g., Brenning and Azócar,
2010; Blöthe et al., 2020; Esper Angillieri, 2017; Villarroel et al.,
2018; Azócar et al., 2017; Drewes et al., 2018; Gruber, 2012). Rock
glaciers are the most prominent ice-rich landforms studied in the
periglacial belt of the Dry Andes. Their downslope movement
produces characteristic surface patterns that can be identified by
remote sensing (e.g., Villarroel et al., 2018; Azócar et al., 2017;
Janke et al., 2015). However, they are certainly not the only
landforms with potential ground ice occurrence constituting the
periglacial belt (Hilbich et al., 2022;Mathys et al., 2022).Hilbich et al.
(2022) confirmed substantial ice content in non-rock glacier slope
formations in the semiarid periglacial belt of the Andes using
geophysical techniques. Ice was present as interstitial ice, thin
and patchy ice lenses, and ice layers exceeding 3,500 m asl in
Chile and 4,200 m in Argentina. Substantial subsurface ice may
also occur within the widespread block- and talus slopes of the
Dry Andes around ca. 27°-34°S, which are frequently associated
with periglacial conditions (e.g., Alonso and Trombotto Liaudat,
2013; Brenning, 2005; Buckel et al., 2023; Hilbich et al., 2022;
Lambiel and Pieracci, 2008; Sass, 2006; Stingl and Garleff, 1983;
Trombotto, 2000).

Blockslopes are associated with extremely cold and arid
conditions, consisting of a thin layer of angular, in-situ
weathered debris overlying the bedrock on which they develop
(Trombotto Liaudat et al., 2014; Ballantyne, 2018; French,
2017; Stingl and Garleff, 1983). Their characteristic straight
shape indicates a marked equilibrium between debris supply
primarily driven by frost and salt weathering, and its removal
by gravitational downslope transport and aeolian processes.
This equilibrium has led to various terminologies such as
rectilinear (debris-mantled) slopes (French, 2017; Iwata, 1987;
Trombotto Liaudat et al., 2014), Richter (denudation) slopes
(Augustinus and Selby, 1990; Fort and van Vliet-Lanoe, 2007; French
and Guglielmin, 1999), and planar (scree) slopes (Schrott and Götz,
2013). These differing terminologies and definitions complicate
comparative studies on blockslopes, which is why we do not claim
completeness in presenting the current state of research on their
characteristics and distribution patterns. Moreover, no studies
have investigated their internal structure with respect to potential
ground ice content.

Talus slopes are distinguished from blockslopes in that their
debris mantle is not composed of in-situ weathered material
but instead accumulates from rockfall originating from adjacent
cliffs (Lambiel and Pieracci, 2008; Otto, 2006; Messenzehl et al.,
2017). They are characteristic, sheeted or cone shaped sediment
storage landforms in alpine systems and have been widely studied,
particularly in the European Alps (Lambiel and Pieracci, 2008;
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Messenzehl et al., 2017; Scapozza et al., 2011; 2015). Several
studies have confirmed varying ice content within periglacial
talus slopes (e.g., Lambiel and Pieracci, 2008; Scapozza et al.,
2011; 2015; Sass, 2006; Trombotto, 1991). In the periglacial
belt of the semi-arid Andes, however, they have mainly been
studied in the context of rock glacier distribution and sediment
supply (e.g., Halla et al., 2020; Brenning and Trombotto, 2006;
Esper Angillieri, 2009; Brenning and Azócar, 2010; Janke et al.,
2015), but also of permafrost distribution (e.g., Hilbich et al.,
2022; Alonso and Trombotto Liaudat, 2013). Above the regional
lower permafrost limit at about 3,700 m asl (Esper Angillieri,
2009; Trombotto, 2000; Gruber, 2012), widespread block- and
talus slopes may contain a so far unknown amount of ground
ice and thus be hydrologically significant (Köhler et al., 2024).
By assessing and analyzing their regional distribution in the Dry
Andes of Argentina for the first time, we elucidate the relationships
between their occurrence and topographic, climatic, and
geomorphic patterns.

To achieve this, we conducted geomorphological mapping
in five sub-catchments, hereafter referred to as key sites, in a
representative mountain catchment called Agua Negra catchment
(ANC). Previous mapping results by Köhler et al. (2024) in
three out of the five key sites reveal an aerial coverage of up
to 77.5% (67% blockslopes, 10.5% talus slopes) of the mapped
area, highlighting their dominance within the periglacial belt.
This study expands on that dataset and employs predictive
modeling to transfer local block- and talus slope distribution
to the catchment scale, analyze their distribution characteristics,
and identify suitable locations for ground ice occurrence. To
ensure robust and high performance model results, we apply
and compare three different geostatistical classification techniques:
logistic regression, generalized additive models, and random forest.
All thesemodels are frequently applied in geomorphology to predict
the probability of a response variable based on a set of independent
environmental predictors (e.g., Blöthe et al., 2020; Brenning, 2009;
Goetz et al., 2015; Heckmann et al., 2014; Marmion et al., 2009;
Sattler et al., 2016; Schoch et al., 2018). By doing so,we aim to address
the following research questions:

1) Which statistical model performs best and most efficiently in
predicting the distribution of block- and talus slopes?

2) How are block- and talus slopes distributed in the ANC?
3) What factors determine the occurrence of block- and talus

slopes, and what do they imply about their potential ground
ice content?

The lack of proper consideration of potentially ground ice-
bearing landforms in alpine periglacial zones, beyond rock glaciers,
introduces substantial uncertainties regarding the ground ice
volume and fresh water resources in the Andes. This issue is
exacerbated by the ongoing retreat of the Andean cryosphere
and the social dependence on discharge from glacierized and
permafrost-affected mountain catchments in the Dry Andes of
Argentina. Therefore, we aim to contribute to a more holistic view
of the mountain cryosphere by expanding the national inventory
of cryospheric landforms (IANIGLA-CONICET, 2018) with block-
and talus slopes and by analyzing their distribution patterns and
potential permafrost conditions.

2 Study area

With a glacier cover of almost 8,500 km2, Argentina ranks
among the countries with the largest ice-cover in the world
(IANIGLA-CONICET, 2018). Periglacial processes are mainly
associated with mountain permafrost and also occur in regions
with little to no glacier cover (Corte, 1978; Schrott and Götz,
2013). Freshwater resources from the Andean cryosphere are a
crucial source of irrigation and domestic water supply, particularly
in the Dry Andes of Argentina (17°30' S to 35°S) (Borsdorf and
Stadel, 2013). This region is characterized by a semi-arid to arid
climate, with high incoming solar radiation that largely controls
surface temperatures and upper ground thermal regimes, shaping
the formation and distribution of glacial and periglacial landforms
(Esper Angillieri, 2009; Masiokas et al., 2020; Schrott, 1994). The
Dry Andes can be further divided into the Desert Andes (22°–31°S)
and the Central Andes (31°–35°S) (see Figure 1A). The transition to
the Central Andes is marked by a distinct increase in cryospheric
landform coverage, reaching elevations as low as 3,000 m asl.
In contrast, ice and snow formation is restricted to higher
elevations in theDesertAndes, where arid conditions, comparatively
low cloud cover, and extreme incoming solar radiation prevail
(Esper Angillieri, 2009; Köhler et al., 2024; Lliboutry et al., 1998).
Annual precipitation varies widely from 100 to 500 mm, falling
mainly during convective events in the summer months (Garreaud,
2009; Pitte et al., 2022; Viale et al., 2019). Snow cover is relatively
thin and short-lived (∼3 months) due to persistently high incoming
solar radiation, which regulates surface temperatures and upper
ground thermal regimes (Schrott, 1994; Lliboutry et al., 1998). The
highest elevations frequently exceed 5,000 m asl and the cryospheric
landscape is diverse, with large seasonal to perennial snowfields and
numerous small, scatteredmountain glaciers (IANIGLA-CONICET,
2018; Pitte et al., 2022; Schrott and Götz, 2013). The periglacial belt
frequently extends over 1,500 m vertically, rendering it increasingly
important as a water storage, hydrological regulator, and runoff
contributor (Jones et al., 2019; Villarroel and Forte, 2020).

The Agua Negra catchment (ANC) (∼30°S 69°W) is a high
mountain catchment located in the border region between
Argentina and Chile in the San Juan province. It lies within
the Desert Andes at the southern transition to the Central
Andes (see Figures 1A, B). The catchment spans over 1,315 km2 and
is partially traversed by the transnational pass road Ruta Nacional
150 connecting La Serena (Chile) and San Juan (Argentina).

The ANC covers an altitudinal range of 4,735 m and is drained
by the Agua Negra River, which is largely sustained by meltwater
from glaciers, seasonal to perennial snowfields, precipitation, and
runoff from active layer thawing and permafrost degradation
(Halla et al., 2020; Schrott, 1996). Based on Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS), mean
annual rainfall between 1981 and 2020 averaged ∼53 mm in the
lowland areas of the catchment and increased to 131 mm at
higher elevations, suggesting relatively low runoff contributions
(Funk et al., 2014). The proportion of rainfall falling as snow versus
rain and thus having a delayed or direct effect on runoff remains
unquantified. Similarly, infiltration and evaporation losses have not
been systematically measured. Still, high regional losses can be
inferred from meteorological data collected at a weather station in
front of the Agua Negra glacier (30.17°S, 69.80°W, 4,750 m asl),
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FIGURE 1
(B) Location of the Agua Negra catchment (ANC) and the key sites used for manual mapping within the cryospheric setting at the transition from the
Desert to the Central Andes in the Dry Andes of Argentina (A). Permafrost Zonation Index (very low to high probabilities) based on Gruber (2012)
(debris-covered) glaciers, perennial snowfields and (active/inactive) rock glaciers were taken from IANIGLA-CONICET (2018). Pie charts with size
encoding are shown to compare the quantity and relative share of cryospheric landforms recorded in the national inventory (IANIGLA-CONICET, 2018)
in the Desert Andes (22°-31°S, light grey), the Central Andes (31°-35°S, blue) and the study area (30°S, dark red). (C) View towards SW to predominant
block- and talus slopes exposed to NE in the upper catchment area (Photo: Lothar Schrott). (D) View towards SE to talus slopes with protalus rampart
formation on the lower talus in the upper catchment area (slope exposition = SW) (Photo: Tamara Köhler).

which recorded high global radiation levels of∼430 W/m2 d and low
mean relative humidity of ∼30% (Pitte et al., 2022).

Geological data for the ANC is limited to a resolution of
1:250,000 (SEGEMAR, 2019) (see Supplementary Figure S5). The
catchment is tectonically active and covers different geological units,

including the Agua Negra and San Ignacio Formations composed
of Paleozoic marine sedimentary rocks (SEGEMAR, 2019). These
are locally intruded by granite causing hydrothermal alterations
(Lauro et al., 2017). The Paleozoic basement is overlain by Permo-
Triassic and Cenozoic sedimentary, volcanic, and volcanoclastic

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1534410
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Köhler et al. 10.3389/feart.2025.1534410

rocks of the Choiyoi Group and the Doña Ana, Olivares and
Cerro de las Tórtolas Formations, with the Choiyoi Group being
the predominant unit in the upland area (Heredia et al., 2002;
Lauro et al., 2017; SEGEMAR, 2019).

The highest peak reaches 6,280 m asl (sp. Cerro de la Majadita)
and hosts the catchment’s largest glacier, covering nearly 10 km2.
The Agua Negra River originates from the fourth-largest glacier
(∼1 km2). The catchment outlet is situated at 1,563 m asl in the
small town of Rodeo, located within the intermontane Rodeo-
Iglesia Valley between the Cordillera Frontal and the Precordillera
(Mardonez et al., 2020). Approximately 50% of the ANC lies above
the regional lower permafrost limit at 3,700 m asl (Trombotto, 2000;
Gruber, 2012; see Supplementary Figure S4). It features a regionally
characteristic, diverse cryospheric landform coverwithmainly small
(debris-covered) glaciers, seasonal to perennial snowfields, and
rock glaciers that visually express the presence of permafrost (see
Figure 1B; Table 1). Within the periglacial belt, bare bedrock, block-
and talus slopes are predominant (see Figures 1C, D) (Köhler et al.,
2024). While no studies confirming Pleistocene glaciations exist
for this part of the Andes, scattered morainic remnants and the
U-shaped main valley suggest a more extensive past glaciation.

Approximately 668 km2 of the ANC provide suitable conditions
for permafrost, as indicated by the Permafrost Zonation Index
(Gruber, 2012). However the national inventory of cryospheric
landforms records only 27 km2 of mapped features, with rock
glaciers as the only periglacial landform recognized (IANIGLA-
CONICET, 2018). Over recent decades, their internal structure,
kinematics, and ice content have been studied systematically
(Blöthe et al., 2020; Brenning, 2005;Halla et al., 2020; Villarroel et al.,
2018). This substantial spatial discrepancy inevitably leads to an
inaccurate assessment of the periglacial area and its hydrological
significance on varying spatial scales.

3 Materials and methods

We applied a raster-based geostatistical upscaling approach
using three classification techniques to analyze the distribution
and morphometric site characteristics of block- and talus
slopes. A combined dataset of manually mapped landforms
(dependent response variables) and DEM-derived terrain attributes
(independent predictor variables) (see Figure 2; Tables 1, 2) was
used to run the different models predicting and explaining the
presence and absence of each target landform in the periglacial
belt of the ANC.

We determined the best trade-off between model performance
and interpretability by implementing logistic regression (LR), a
generalized additive model (GAM), and random forest (RF). For
training and testing, we conducted 10 model runs with 15-fold
validation each using stratified random samples from five manually
mapped key sites. To contribute to a more accurate assessment
of the hydrological significance of cryogenic landforms in the
Dry Andes, we focused on areas where ground ice formation is
possible within these underestimated periglacial landforms. Thus,
the random samples reflected the spatial heterogeneity of block-
and talus slope distribution within the periglacial belt of the ANC.
The model outputs were validated spatially and non-spatially using
statistical measures and geomorphic plausibility (Steger et al., 2016).

Additionally, we analyzed the influence of different sample sizes
and assessed environmental controls based onpredictor importance.
The final output consisted of a raster-based distribution map of
block- and talus slopes expanding the existing Argentinean national
inventory (IANIGLA-CONICET, 2018) and providing information
on the distribution and potential permafrost conditions of these
landforms.

3.1 Inventory of block- and talus slopes in
the Agua Negra catchment

We created a detailed inventory of bedrock, block- and
talus slopes (area ≥ 0.001 km2) within five key sites of the
ANC using satellite imagery (Esri, Google Earth Pro) and a
TanDEM-X DEM with a 12 m resolution (DLR, 2017) (see
Table 1, Supplementary Table S3). Satellite images from austral
summer months with minimal snow cover and shading were
selected to enhance mapping accuracy. All five key sites are
located within the periglacial belt (regional lower permafrost limit
≥3,700 m asl, Trombotto, 2000; PZI, Gruber, 2012) (see Figure 1B,
see Supplementary Figure S4). The lower limit of 3,700 m is a
conservative estimate to encompass the entire regional periglacial
belt, though other sources specify limits between 3,900 and
4,000 m asl (Brenning, 2005; Schrott, 1996; Croce and Milana,
2002). The selected key sites span different altitudes, slope angles,
valley orientations, and proportions of inventoried cryospheric
landform cover to adequately represent the spatial heterogeneity
of the ANC (see Table 1; Figure 1). In total, they account for
160 km2, corresponding to ∼24% of the study area potentially
underlain by permafrost (PZI, Gruber, 2012) and 12.2% of the
entire ANC. The key sites serve as (1) example regions to
illustrate regional topoclimatic, geomorphologic and cryospheric
conditions, and associated processes, (2) manual mapping areas,
and (3) calibration and validation areas for the three different
modeling techniques.

Mapping results from the first two manually mapped key sites
(ANC, SLC) were revised during a field trip in February 2022.
Field observations were consistently applied in the subsequent
mapping (Olivares, Cerro Pata, Cordón de las Minitas). (Debris-
covered) glaciers, rock glaciers and perennial snowfields (area ≥
0.01 km2) from the Argentinean national inventory of cryospheric
landforms (IANIGLA-CONICET, 2018), as well as manually
mapped bedrock were masked. The national inventory’s restricted
rock glacier delineation excluding frontal and lateral margins
(RGIK, 2022), was maintained to ensure model transferability
at regional scales. However, we consider the margins of rock
glaciers as part of the landform and intentionally left these areas
unmapped. A visualization of the mapping results in the three
key sites ANC, SLC, and Olivares can be found in Köhler et al.
(2024). We mapped only clearly distinct landforms and set the size
threshold for consistent and transferable mapping results. Thus,
the inventoried landform proportions slightly underrepresent their
actual distribution in the ANC. However, the high level of detail of
the geomorphological mapping, its validation by three co-authors,
and the use of the national inventory (IANIGLA-CONICET, 2018)
strongly reduce the uncertainties in the input dataset and thus in the
predictive modeling.
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TABLE 1 Characteristics of the five key sites, the upper Agua Negra catchment (Upper ANC), San Lorenzo catchment (SLC), a side valley further
downstream the Agua Negra river (Olivares) and two catchments along its northern tributaries (Cerro Pata, Cordón de las Minitias) (see Figure 1 for
locations). (Debris-covered) glaciers, perennial snowfields and (in-)active rock glaciers were taken from the national inventory of cryospheric landforms
(IANIGLA-CONICET, 2018). Lithology from SEGEMAR (2019). Mapping results of the marked key sites (∗) were revised during a field trip in 02/2022 (field
reconnaissance).

Study
area and
key sites

Total
area
[km2]

Elevation
[m asl]

Mean
valley
orien-
tation

Mean
slope
gradient
[°] ± 1SD

Lithology (Debris-
covered)
glaciers
[%]

Perennial
snowfields
[%]

Rock
glaciers
(active
and
inactive)
[%]

Agua Negra
catchment
(ANC)

1,315.7 1,564–6,280 WNW-ESE 19.6 ± 12.6 ∼36% Permian to Triassic
volcanic rocks and 12.5% of
Tertiary volcanic rocks
(mainly >3500 m asl).
Occurrence of Paleozoic
marine units (21%) and
Tertiary to Quaternary
sedimentary units (30.5%)
down valley

1.44 0.24 0.38

Upper ANC∗ 56.58 4,085–5,776 NNW- SSE 25.3 ± 10.3 Permian to Triassic volcanic
rocks (∼84%) of the Choiyoi
Group and Tertiary volcanic
rocks of the Doña Ana and
Cerro Las Tórtolas
Formations (∼16%) mainly
in the upper western part

3.00 0.35 1.59

San Lorenzo
(SLC)∗

54.04 4,088–6,051 WNW- ESE 25.5 ± 10.0 ∼47% Permian to Triassic
volcanic rocks from the
Choiyoi group. Tertiary
volcanic rocks from the
Doña Ana and Cerro Las
Tórtolas Formations (∼44%)
and the Olivares volcanic
center (∼9%)

3.52 1.67 2.04

Side valley in
the lower
ANC;
Cordillera de
Olivares
(Olivares)

20.98 3,871–6,210 SSW- NNE 18.8 ± 11.8 Towards the catchment
outlet Permian to Triassic
volcanic rocks from the
Choiyoi group (∼13%) and
Paleozoic to Mesozoic
marine units from the Agua
Negra/Ranchillos
formations with Agua Negra
granite intrusions (∼4%).
83% Tertiary volcanic rocks
of the Olivares volcanic
center upvalley

11.44 5.24 0.00

Cerro Pata
de Indio
(Cerro Pata)

12.57 3,831–5,252 NNW-SSE 24.1
±8.81

Towards the catchment
outlet ∼8% Agua
Negra/Ranchillos formation
and 92% Permian to Triassic
volcanic rocks from the
Choiyoi group

0.00 0.00 0.00

Cordón de
las Minitas
(Cordón
Minitas)

15.92 3,705–4,928 NE-SW 27.7
±9.57

100% Permian to Triassic
volcanic rocks from the
Choiyoi group

0.00 0.00 0.00

3.2 Set of predictor variables for the
predictive modeling approach

We used 15 predictor variables derived from the TanDEM-
X DEM (void-filled, resolution: 12 m, DLR, 2017) for predictive

modeling. The predictors directly or indirectly represented
topography, surface morphology, climatic conditions, and
contributing area characteristics across different spatial scales (see
Table 2, Supplementary Table S3). They characterize the spatial
distribution, topoclimatic conditions and geomorphic properties
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FIGURE 2
Conceptual workflow for the predictive modeling of block- and talus slopes in the periglacial belt of the Agua Negra catchment (ANC) based on the
geomorphological mapping of target landforms in five key sites (for location see Figure 1). (TRI = Topographic Roughness Index, TPI = Topographic
Position Index, AUROC = area under the receiver operating characteristics curve).

of block- and talus slopes in the ANC (Köhler et al., 2024). For more
information, please refer to the companion paper.

By using sine and cosine transformations, circular aspect
variables were decomposed into the directional components “north-
exposedness” and “east-exposedness” (Brenning and Trombotto,
2006; Brenning, 2009). Climate and moisture conditions are
represented by DEM-derivatives due to a lack of measured data
in the catchment. Potential incoming solar radiation (PISR) was
calculated as the annual sum for 2022. The size of the contributing
area (D8-flow algorithm) was log-transformed due to its skewed
distribution and wide range of values (Brenning, 2009). The scaling
of environmental predictors entering the predictive models is
highly dependent on the landform morphometry and its controlling
environmental conditions. Thus, we applied an automated scaling
procedure (Sîrbu et al., 2019) to identify optimal scaling for
slope inclination (slope), topographic position (TPI), and curvature
(overall, planform, profile) (see Table 2, Supplementary Table S3).
All analyses were conducted in Esri ArcMap (10.4) and open-source
GIS and data analysis tools, including QGIS (3.10.9), SAGA GIS
(9.3.0), and RStudio (4.3.2).

3.3 Data pre-processing

The quality of the input dataset has a high impact on model
quality, robustness and transferability. Various prerequisites were

addressed during data preparation: (1) The input data needed to
reflect the heterogeneity of the study area (Schoch et al., 2018). (2)
the mapped inventory of block- and talus slopes was converted into
binary rasters,where “1” indicated landformpresence and“0”denoted
absence. Each pixel was assigned with the site-specific characteristics
of the 15 terrain attributes. (3) (Multi-) collinearity between predictor
variables reduces model accuracy and complicates interpretation, as
the individual effect of correlated variables on the response variable
cannot be determined accurately (James et al., 2013; Heckmann et al.,
2014). Thus, geostatistical upscaling requires non-collinearity among
predictors, and we computed the variance of inflation factor (VIF) to
identify (multi-)collinearity within our predictor set (Aguilera et al.,
2006; James et al., 2013). (4) We used different models to predict
the probability of a pixel being classified as 1 (blockslope/talus slope
presence) or 0 (blockslope/talus slope absence) based on stratified
random samples from all key sites. Due to the high blockslope
occurrence in the ANC, a ratio of 1:1 (landform presence vs absence)
was implemented foreachrandomsample (Brenning,2005).Theaerial
share of talus slopes is lower, and thus an even ratio of landform
presence and absence in the samples might overestimate the talus
slope distribution at the expense of other landforms. Heckmann et al.
(2014) note that biases toward small probabilities may occur if
the ratio of events to non-events strongly overrepresents one of
the cases in the samples. To avoid this and to better reflect the
actual conditions, we created random samples with a ratio of 1:3
for talus slopes.
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TABLE 2 Input variables for the predictive modeling of block- (bs) and talus slopes (ts) on different spatial scales (derived from TanDEM-X DEM,
resolution: 12 m, DLR 2017). Subscripts indicate optimal moving window sizes for scaling of some predictor variables (Sîrbu et al.,
2019). See Supplementary Table S3 for a visualization of the input variables in the modeling domain.

Variable Description References (selection)

Dependent variables

Blockslope Manual mapping of blockslopes in five sub-catchments
of the ANC

Based on definition (see section 1 and Köhler et al.,
2024)

Talus slope Manual mapping of talus slopes in five sub-catchments
of the ANC

Variables representing topography, surface morphology, climatic conditions and characteristics of the contributing area

Elevation (DEM) Elevation [m asl] Kofler et al., 2020; Groh and Blöthe, 2019; Deluigi et al.,
2017

Slope5,7 Classification of the slope gradient [°] on different
scales derived from rectangular 5∗5 (ts) and 7∗7 (bs) cell
moving windows

Heckmann et al., 2014; Schoch et al., 2018; Villarroel
and Forte, 2020; Sîrbu et al., 2019

Topographic position index (TPI11,103) Classification of the topographic slope position on
different scales based on elevation comparison of one
cell to its surrounding neighborhood in rectangular
11∗11 (ts) and 103∗103 (bs) cell moving windows
TPI = z0 − zmean

Weiss, 2001; Salinas-Melgoza et al., 2018; Sîrbu et al.,
2019

Curvature (overall17, 139, planform11, 101, profile11,151)

Display of slope curvature as rate of change in slope by
computing the second derivatives of the surface raster
(DEM) in horizontal or vertical direction
Overall slope concavity and convexity on different
scales using 17∗17 (ts) and 139∗139 (bs) cell moving
windows

Deluigi et al., 2017; Janke, 2013; Groh and Blöthe, 2019;
Sîrbu et al., 2019

Planform/vertical slope concavity (negative values) and
convexity (positive values) on different scales using
11∗11 (ts) and 101∗101 (bs) cell moving windows

Deluigi et al., 2017; Janke, 2013; Groh and Blöthe, 2019;
Heckmann et al., 2014; Sîrbu et al., 2019

Profile/horizontal slope concavity (positive values) and
convexity (negative values) on different scales using
11∗11 (ts) and 151∗151 (bs) cell moving windows

Deluigi et al., 2017; Janke, 2013; Groh and Blöthe, 2019;
Heckmann et al., 2014

Aspect (N-exposedness
E-exposedness)

Transformation of the circular aspect into the two
continuous linear components
North-exposedness (-1 = 180° (South) to 1 = 0° (North))
calculated as cosine of the original aspect raster

Haeberli and Gruber, 2009; Deluigi et al., 2017;
Schoch et al., 2018; Arenson and Jakob, 2010;
Blöthe et al., 2020; Brenning and Trombotto, 2006

East-exposedness (-1 = 270° (West) to 1 = 90° (East))
calculated as sine of the original aspect raster

Haeberli and Gruber, 2009; Arenson and Jakob, 2010;
Schoch et al., 2018; Blöthe et al., 2020; Brenning and
Trombotto, 2006

Potential incoming solar radiation (PISR) Potential incoming solar radiation [MWh/m2] for the
entire year 2022 based on topographic position and
relief (DEM)

Deluigi et al., 2017; Blöthe et al., 2020; Sattler et al.,
2016; Messenzehl et al., 2017

Geomorphic protection Index (GPI) Mean multiple zenith (On) or nadir angles (Op) of eight
compass directions in a 60/120 m horizontal radius
around each cell, representing their topographic
enclosure or openness
GPI =

(Op–On)

2

Kofler et al., 2020; Yokoyama et al., 2002

Topographic wetness index (TWI) Areas with topography-controlled water accumulation
defined by slope (ß) and upstream contributing area
based on the D8-flow algorithm (A)
TWI = ln( A

tan(β)
)

Etzelmüller et al., 2001; Heckmann et al., 2014;
Otto et al., 2018

(Continued on the following page)
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TABLE 2 (Continued) Input variables for the predictive modeling of block- (bs) and talus slopes (ts) on different spatial scales (derived from TanDEM-X
DEM, resolution: 12 m, DLR 2017). Subscripts indicate optimal moving window sizes for scaling of some predictor variables (Sîrbu et al.,
2019). See Supplementary Table S3 for a visualization of the input variables in the modeling domain.

Variable Description References (selection)

Topographic roughness index (TRI) Elevation difference from a center cell and its
surrounding neighborhood based on a rectangular 3∗3
cell moving window in QGIS

Heckmann et al., 2014; Riley et al., 1999; Otto et al.,
2018; Cavalli et al., 2013

Size of the contributing area (SCA) Size of the contributing area [m2], calculated using the
D8-flow algorithm, log-transformed

Schoch et al., 2018; Brenning, 2009; Messenzehl et al.,
2014; Groh and Blöthe, 2019

Mean roughness of the contributing area (MRCA) TRI-weighted flow accumulation divided by
unweighted flow accumulation (both based on
D8-flow algorithm)

Heckmann et al., 2014; Messenzehl et al., 2014,
Cavalli et al., 2013

Mean slope of the contributing area (MSCA) Slope-weighted flow accumulation divided by
unweighted flow accumulation (both based on
D8-flow algorithm)

Brenning, 2009; Schoch et al., 2018; Messenzehl et al.,
2014; Groh and Blöthe 2019

Additional sources for mapping extent and landform distribution

(Debris-covered) glaciers, (in)active rock glaciers,
perennial snowfields

National inventory of cryospheric landforms with a
minimum surface area of 0.01 km2

(IANIGLA-CONICET, 2018) were masked from the
mapping and modeling area

Blöthe et al., 2020; Drewes et al., 2018; Villarroel et al.,
2022

3.4 Predictive modeling of block- and talus
slopes

We compared three different classification algorithms to analyze
the spatial distribution of target landforms: logistic regression (LR),
generalized additive models (GAM), and random forest (RF).

3.4.1 Logistic regression model
LR is one of the most established classification techniques

in geomorphology (e.g., Brenning, 2005; Goetz et al., 2015;
Marmion et al., 2009; Schoch et al., 2018). LR is a generalized linear
model (GLM) commonly used to analyze and predict the probability
of a binary outcome (i.e., landform presence or absence) based on
a known set of predictor variables using a maximum likelihood
approach (Brenning, 2005). GLMs are particularly advantageous
when working with spatial data, as they can process different types
of statistical distributions and are resistant to model overfitting. In
addition, the importance and effect of each predictor on the response
variable is comparatively easy to interpret geomorphologically
due to the assumed linear relationship (Brenning, 2005; Hjort
and Marmion, 2008). The probability of the response variable is
calculated as logit or log-odds in the logistic function:

Y = log (
p(x)

1− p(x)
) = β0 + β1X1 + ... + βnXn

where Y represents the dependent binary response variable with
p(x) being the predicted probability of landform presence (Y = 1;
blockslope or talus slope present) and 1-p(x) indicating its absence
(Y = 0; blockslope or talus slope absent) (Sattler et al., 2016). By
computing the log-odds, the odds are transformed into a continuous
range that is modeled as a linear combination of n predictor
variables (X1 …Xn) (Heckmann et al., 2014). β0 is the intercept
and β1 …n the coefficients for the set of independent input variables

entering the LR, estimated using a maximum likelihood approach
(Heckmann et al., 2014; Atkinson et al., 1998). Thus, the model
output is the logarithm of odds (log-odds) of the target landforms’
occurrence taking a specific value. It can be converted to predict the
occurrence probability of p(x) in a range between 0 and 1 by solving
for p(x) (Sattler et al., 2016):

p(x) = 1
1+ e−(β0+β1X1+…+βnXn)

For the final prediction of block- and talus slope distribution
across the entire ANC, we applied regularized LR for model training
and testing. The regularized LR uses all variables from the predictor
set but reduces model overfitting and complexity by introducing a
penalty term to the loss function that constrains the coefficients,
and thus their weight in the model, to be small (Reinwarth et al.,
2017). We applied ridge regression, also termed L2 regularization,
to retain all variables in the model but penalize them to reduce
their magnitude. This method is well-suited when dealing with
correlated variables, as it reduces the impact of multicollinearity
by constraining the coefficients instead of eliminating them
(Reinwarth et al., 2017). Additionally, we implemented an automatic
bidimensional stepwise model selection procedure based on the
Akaike Information Criterion (AIC) to evaluate predictor variable
selection frequency as a measure of their importance (e.g.,
Heckmann et al., 2014; Schoch et al., 2018; Brenning, 2005).

3.4.2 Generalized additive model
Given the limitations of non-parametric techniques such as

GLMs, e.g., inflexibility and lower predictive power (Hjort and
Marmion, 2008), we applied further classification techniques.GAMs
offer greater flexibility, allowing for linear, complex, and combined
relationships between predictor and response variables within the
samemodelwhilemaintaining the interpretability of a LR (Hjort and
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Marmion, 2008; Hastie and Tibshirani, 1990). As semi-parametric
extensions of GLMs, GAMs have been successfully applied in
landform distribution modeling (e.g., Brenning and Azócar, 2010;
Hjort and Luoto, 2006; Marmion et al., 2009; Schoch et al., 2018). In
GAMs, linear and non-linear smooth functions are independently
fitted to each predictor variable, with the resulting smoothed curve
best representing the effect of the predictor on the response variable
(Brenning and Azócar, 2010; Hastie and Tibshirani, 1990). The
final model is constructed by summing these smooth functions
(Marmion et al., 2009). The flexibility of the smooth functions
is determined by the degrees of freedom (df), where higher df
allow for more flexible smoothers capable of adapting to more
complex data patterns, while at the same time posing a risk of
model overfitting (Hastie and Tibshirani, 1990; Wood, 2017). We
deployed a stepwise selection of df across 10 model runs with 15-
fold validation and identified the best trade-off between over- and
underfitting when allowing three df for blockslope and four df for
talus slope modeling (see Supplementary Table S1).

In the final model, the response variable is not modeled directly,
but as a logit of the probability of landform occurrence as follows:

Y = log (
p(x)

1− p(x)
) = β0 + β1f 1X1 + ... + βnf nXn

where Y again represents the dependent binary response variable,
β0 is the intercept, β the coefficients, X represents the individual
independent predictor variables, andn is the number of independent
predictor variables entering the model. f adds the nonparametric
smoothing terms to each predictor, distinguishing GAMs from the
LR (Hastie and Tibshirani, 1990). As with LR, we used stepwise
variable selection to assess the importance of each predictor based
on selection frequency. GAM modeling was performed using
the gam and mgcv packages in R (Hastie and Tibshirani, 1990;
Hastie, 1992; Wood, 2015).

3.4.3 Random forest model
RF is a non-linear classification technique that is well established

in machine learning and increasingly applied in geomorphology
(e.g., Blöthe et al., 2020; Brock et al., 2020; Marmion et al., 2009;
Goetz et al., 2015; Steger et al., 2016). The dependent response
variable is predicted using classification trees based on a set of
binary decision rules that determine the class assignment of the
response variable according to the predictor variables (Breiman
et al., 1984). The model generates a large number of classification
trees, each fitted to bootstrapped subsets of the full training dataset
with randomly sampled predictors, creating a robust predictor
ensemble (“forest”) of decision trees (Brock et al., 2020; Breiman,
2001; James et al., 2013). Class assignment is then predicted through
the majority voting across all trees, with the proportion of trees
predicting landform presence indicating favorable conditions for
landform occurrence and vice versa (Goetz et al., 2015). When
building the trees, a newly randomized subset of predictors is chosen
as possible split candidates at each split, ensuring that only one
predictor from the subset is used per split (James et al., 2013). This
condition prevents dominant variables from driving the model and
leads to a decorrelation of the variables, thereby mitigating (multi-)
collinearity (James et al., 2013; Blöthe et al., 2020). By producing a
randomly sampled predictor ensemble of many decision trees, RF
effectively captures general patterns in the training data, reducing

the risk of variance, overfitting, and sensitivity to noise (Breiman,
2001). Additionally, it is capable of handling complex, non-linear
relationships between predictor and response variables (Goetz et al.,
2015). At the same time, RF is less interpretable than GAM and LR.
However, a summary of the importance of each predictor can be
obtained from the model training.

We used 500 classification trees per landform to build up the RF.
Predictor importance was determined using a combination of mean
Gini-based importance (mean decrease in impurity) and accuracy-
based importance (mean decrease in accuracy) (James et al.,
2013). We transferred these absolute measures of mean
variable importance into relative importance scores across all
predictors.

3.5 Assessment of ideal sample size, model
quality and formative controls

Sample size can strongly influence model robustness (i.e.,
reproducibility) and comparability due to over- or underfitting,
spatial autocorrelation, and overparameterization (Heckmann et al.,
2014). To determine the ideal sample size, we conducted a pixel-
based sample size analysis for all three models (number of pixels
per sample = 100, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000,
48,000), maintaining predefined ratios of landform presence and
absence for both target landforms (1:1 for blockslopes and 1:3
for talus slopes). The optimal sample size was identified based
on normalized changes in the area under the receiver operating
characteristic curve (AUROC) values and their interquartile ranges
(IQR) across ten model runs with 15-fold validation. The ideal
sample size was specified by the class above which model
improvements became insignificant (definedhere as <0.06) ormodel
performance impaired.

We evaluated the predictive power, robustness, and spatial
transferability using both spatial and non-spatial validation
(Brenning, 2009). Each classification algorithm was trained and
tested in 10 model runs with 15-fold validation each, using the
ideal sample size determined from the sample size analysis and
the predefined landform presence and absence ratios. Unique
stratified random samples from all key sites were selected without
replacement. We evaluated and compared model performances
based on AUROC values, IQR, and model accuracy (sum of the
true positive and true negative rate). We transferred probabilities of
landform occurrence into binary classes of presence (1) or absence
(0) using the optimal cutoff derived from AUROC values, which
was further examined for geomorphic plausibility (Heckmann et al.,
2014; Steger et al., 2016).TheAUROC scores themodel performance
based on sensitivity (true-positive rate) and specificity (true-
negative rate), and ranges from 0.5–1.0 (Brenning and Azócar,
2010). Higher AUROC values signify higher predictive power, with
values >0.9 implying an excellent, 0.9 to >0.8 a good, 0.8 to >0.7 a
fair, and ≤0.7 a poor model (Araujo et al., 2005). Common non-
spatial validation approaches based on splitting one dataset into
training and testing subsets have limitations due to dependencies
between datasets (Brenning, 2009; Schoch et al., 2018). Therefore,
we additionally performed spatial validation (10 model runs, 10-
fold validation each) and assessed the geomorphic performance and
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FIGURE 3
Comparison of the model performances of the three applied
classification techniques logistic regression model (LR), generalized
additive model (GAM) with three degrees of freedom for blockslopes
and four for talus slopes, as well as random forest (RF). Boxplots
visualize the area under the receiver operating characteristics curve
(AUROC) based on 10 model runs with 15-fold validation. Each model
was trained and tested on 32,000 samples with predefined ratios of
landform presence and absence (1:1 for blockslopes, 1:3 for talus
slopes). See Supplementary Table S2 for exact values.

plausibility in independent test areas outside the training domain
(Steger et al., 2016; 2021).

The model whose predictions most closely matched the actual
landform distribution (predictive power) and provided consistent
results across all model runs both inside (robustness) and outside
(spatial transferability) the training domainwas identified as the best
performingmodel.Thismodelwas then applied to the area above the
regional lower permafrost limit (≥3,700 m asl) in the ANC (model
domain = 686 km2).

Furthermore, we analyzed the environmental conditions
and formative controls of block- and talus slopes based on
predictor importance using variable selection frequency (LR &
GAM) and relative predictor importance (RF). We evaluated
the effect of the influential variables on predicted probabilities
to identify key characteristics of block- and talus slopes in the
study area.

4 Results

First, we compare the predictive performances of LR, GAM,
and RF for both target landforms using non-spatial statistical
validation measures. Subsequent analyses, i.e., sample size

FIGURE 4
Median, 10th, 25th, 75th and 90th percentile of AUROC (area under
the receiver operating characteristics curve) values for different
sample sizes derived from ten model runs with 15-fold validation of
the random forest model (RF). All random samples from the sample
size classes reflect the spatial distribution of block- and talus slopes in
the ANC, containing equal pixels of landform presence and absence
for blockslopes (ratio 1:1) and a smaller number of pixels with talus
slope presence than absence (1:3).

and spatial transferability, are only presented for the best-
performing modeling technique, while more information can be
found in the Supplementary Material.

4.1 Comparison of predictive
performances and effect of sample size

All models demonstrate good to excellent predictive
performances, with mean AUROC values ranging from 0.83 to
0.96 (blockslopes) and 0.85 to 0.95 (talus slopes), along with
mean accuracies of approximately 0.82 (blockslopes) and 0.85
(talus slopes) based on non-spatial validation (Araujo et al., 2005)
(see Figure 3, Supplementary Table S2). This confirms the model’s
ability to distinguish between the presence and absence of the
target landforms. Overall, the predictive performance of talus slope
modeling is slightly lower and characterized by higher uncertainty
compared to blockslope modeling when applying RF and GAM,
while the opposite is true for LR.

For both landforms, the predictive ability and geomorphic
plausibility of RF clearly outperforms LR and GAM, with LR
being least suited in model comparison. The Kruskal–Wallis rank
sum test demonstrates statistically significant differences in model
performances (p < 0.05) (Schoch et al., 2018). Thus, RF is the
most suitable classification algorithm for our predictive modeling
approach with small uncertainties, high robustness and good model
performance (high AUROC, low IQR).

Increasing sample sizes lead to improvements in AUROC
values and reductions in IQR (see Figure 4, for full sample
size analysis see Supplementary Figure S1). With the lowest mean
AUROC values starting at ∼0.86 and ∼0.82 for block- and talus
slopes, respectively, RF performs well even with small sample
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FIGURE 5
Comparison of the geomorphic plausibility of random forest modeling of block- and talus slopes depending on input data from (A) only the three key
sites upper Agua Negra catchment (upper ANC), San Lorenzo catchment (SLC) and the side valley further downstream (Olivares), compared to adding
the key site Cerro Pata (B), and using all five key sites for model training (C). Models were trained on 32,000 random samples from the respective key
site composition with defined ratios of landform presence and absence (1:1 for blockslopes and 1:3 for talus slopes). See Figure 1 for location of the
map section.

sizes. However, the smallest sample size class (n = 100) exhibits a
comparatively wide IQR (>0.3), indicating lower model robustness
and transferability. As sample size increases, AUROC values follow
a near-linear progression but show a slight dip at the largest sample
size class. For smaller sample sizes (n ≤ 2,000), talus slope modeling
yields higher uncertainties and lower predictive power compared
to blockslope modeling. However, performance measures converge
at sample sizes >2,000. Maximum mean AUROC values of ∼0.96
for both landforms and minimum IQR (≤0.0015) are reached at
n = 48,000. The ideal sample size was concordantly established to
be 32,000, beyond which model performances hardly improve or
possibly even decrease due to overfitting (mean AUROC >0.95,
IQR ≤0.0017).

4.1.1 Investigation of geomorphic plausibility and
spatial transferability

The key sites selected in this study were chosen to represent
the spatial heterogeneity of the ANC (see Figure 1; Table 1)
(Köhler et al., 2024).The selection of these diverse key sites is critical
for ensuring robustmodel performance and geomorphic plausibility,
which may not be fully captured in purely quantitative validation
approaches (Steger et al., 2016; Steger et al., 2021).

Training models exclusively with data from the upper ANC,
SLC, and Olivares yields excellent model performance with non-
spatial validation (mean AUROC ∼0.96 for both models), but
the geomorphic plausibility is poor in distant areas of the ANC
(e.g., northern and eastern sections) (see Figure 5A). There, the
predictive RF-model mainly confines blockslope occurrences to
the uppermost slope positions and low-relief plateaus, while talus
slopes are predicted to cover almost the entire vertical extent

of the slopes. By incorporating the key sites Cerro Pata and
Cordón de las Minitas, we were able to significantly improve model
quality in these areas, reduce uncertainty, achieve a clearer model
distinction between areas with high and low probability of block-
and talus slope occurrence, and thus greatly improve geomorphic
plausibility (see Figure 5C).

Furthermore, we analyzed the importance of individual key sites
based on the examination of the spatial transferability with varying
test and training key sites. For this, we conducted a spatial validation
approach where models were trained on four key sites and tested on
a fifth, spatially independent key site (see Figure 6). The results from
the spatial validation were compared to the non-spatial validation
using the full dataset (“all”, Figure 6).

Non-spatial validation yields higher predictive performances
than spatial validation. However, the spatial validation provides
a more realistic assessment of model performance, i.e., when the
model was transferred to larger spatial scales (Brenning, 2005;
Schoch et al., 2018). Blockslope models exhibit strong predictive
power in the upper ANC, SLC, and Olivares but perform less
effectively in Cerro Pata and Cordón de las Minitas, aligning with
the results from the geomorphic plausibility analysis (see Figure 5).
Similarly, talus slope models exhibit lower predictive performance
in Cerro Pata, Cordón de las Minitas, and the upper ANC. The IQR
are generally higher than for blockslopemodeling, signifying greater
uncertainty. Thus, a good predictive performance can be assumed
when applying the models to the entire ANC (mean AUROC of
spatial validation ∼0.85 for blockslopes and ∼0.83 for talus slopes),
while the excellent model performance revealed by non-spatial
validation is likely limited to the key sites or areas with similar
environmental conditions.
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FIGURE 6
Analysis of the spatial transferability of the random forest model (RF)
based on the comparison of predictive performances for (A)
blockslope and (B) talus slope distribution in different validation
regions (spatial validation). Mean area under the receiver operating
characteristics curve (AUROC) and accuracy values (dark and light
colored dots) as well as their interquartile ranges (IQR) (dot sizes) are
used as performance measures. The predictive performance of the
spatial validation is compared with the performance of the non-spatial
validation with the full dataset from all five key sites (“all”). Training and
testing consisted of ten model runs with 10-fold validation each, using
equal sample sizes (=32,000) and landform presence to absence ratios
of 1:1 for blockslopes and 1:3 for talus slopes.

4.1.2 Importance of predictor variables
The predictor variables included in the RF model vary in

terms of their relative importance (see Figure 7). Predictors
classified as independent through multicollinearity analysis can be
analyzed without restriction, whereas weakly collinear variables
require cautious interpretation. We identified a slightly critical
multicollinearity (VIF 10 to ≤13.5) for sr, twi, SCA, MSCA
and MRCA in blockslope modeling and for sr, MSCA and
MRCA in talus slope modeling. A VIF exceeding 10 indicates
problematic collinearity (Heckmann et al., 2014). All remaining
variables remained below this threshold and are thus considered as
independent.

In descending order of importance with relative shares of
≥10%, the most influential predictors for blockslope modeling
are topographic position (TPI103), altitude (DEM), overall terrain
curvature (curv139) and slope inclination (slope7). Although both

variables are deemed less critical for blockslope prevalence, profile
curvature151 (6%) plays a more significant role than planform
curvature101 (5%). Furthermore, topographic roughness (TRI, 9%)
and potential incoming solar radiation (PISR, 8%) are important
predictors for blockslope distribution, whereas contributing area
characteristics (MRCA, MSCA, SCA) tend to play a minor role
(3%). Regarding aspect, the importance of E-exposedness slightly
outweighs that of N-exposedness.

The variable importance ratio is more balanced in the talus
slope model. Altitude is by far the most influential predictor
(16%) for talus slope distribution in the study area, followed
by overall curvature17 and profile curvature11, each contributing
10%. PISR, E-exposedness, slope5, planform curvature11 and TRI
are of intermediate importance (6%–7%). Similar to blockslopes,
E-exposedness slightly outweighs N-exposedness. However,
characteristics of the contributing area, particularly the mean
slope inclination (MSCA) and mean roughness (MRCA), are
more decisive for the distribution of talus slopes than for
blockslopes, whereas topographical position (TPI11) is less
important. The least influential predictor (3%) is the size of the
contributing area (SCA).

Thus, the models exhibit few similarities. Except for sr
in both landform models, variables with slight collinearity
tend to play a minor role. The influence of multicollinearity
is further reduced by employing random forest for our
predictive modeling approach. This allows us to analyze the
relationships between the most important predictors and the
distribution of target landforms in more detail. The variable
importance analysis based on selection frequency using LR
and GAM is presented in the Supplementary Material (see
Supplementary Figure S2).

4.2 Block- and talus slope distribution in
the Agua Negra catchment

Modeled block- and talus slope coverage revealed that
both landforms account for almost 79% of the area above the
regional lower permafrost limit (3,700 m asl) and exhibit a
distribution ratio of ∼61% (blockslopes) to ∼17% (talus slopes),
similar to the key sites (see Figure 8A; Table 3). Overlapping
predictions affect approximately 5% of the modeled block- and
talus slope area, primarily in the eastern, lower part of the
ANC towards the lower permafrost limit and thus the model
boundary (see Figure 8B). Elsewhere, the overlaps are minimal
and mainly confined to transitional zones between block- and
talus slopes in middle slope positions and areas with small to
medium-sized bedrock outcrops. The remaining 21% of the
model domain, not covered by either the target landforms or
the inventoried cryospheric landforms (IANIGLA-CONICET,
2018), is occupied by other landforms, including bedrock, alluvial
fans, and floodplains, which are beyond the scope of this study.
These features are correctly excluded from both models, while
frontal and lateral aprons of rock glaciers, which are not included
in the national inventory (restricted rock glacier delineation,
see Section 3.1) are typically interpreted as talus slopes. The
model slightly underestimates the distribution of blockslopes
compared to manual mapping, whereas no clear: trend is observed
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FIGURE 7
Comparison of relative predictor variable importance for block- and talus slope distribution based on ten model runs of random forest (RF) with 15-fold
validation each (sample size 32,000 with a 1:1 ratio of blockslope and 1:3 talus slopes presence vs absence). The variable importance is derived as
relative importance compared to the total importance across all predictors.

FIGURE 8
(A)Modeled block- and talus slope distribution above the regional lower permafrost limit (≥3,700 m asl, 686 km2) in the ANC based on random forest
modeling (RF). Model outputs were classified based on the statistically derived optimal cutoff values and slightly corrected for talus slopes after
examining their geomorphic plausibility in the entire ANC. Part of the overlap in the western lower ANC is shown enlarged (B). (Debris-covered)
glaciers, perennial snowfields and rock glaciers from IANIGLA-CONICET (2018).

for talus slopes (see Table 3). Only in Cordón de las Minitas,
both models overestimate the respective landform distributions,
while the largest deviation occurs at the Olivares key site.
On average, the predictive models exhibit a negative offset of
−3% for blockslopes and a slightly positive offset of 0.5% for

talus slopes. However, the overlap has to be considered when
interpreting these values.

The relationship between themost influential predictor variables
in the RF model (see Section 4.1.2) and the predicted probability
of block- and talus slope occurrence highlights heterogeneous
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TABLE 3 Presentation of the mapped and modeled distribution of block- and talus slopes in the key sites and the periglacial belt of the ANC. Manual
mapping in the marked key sites (∗) was verified during fieldwork in 02/2022. Modeling was performed using a random forest model trained on 10
model runs with 15-fold validation each. 32,000 random samples with defined landform presence and absence ratio (1:1 for blockslopes and 1:3 for
talus slopes) were taken for training and testing.

Periglacial belt
of the Agua
Negra
catchment
(ANC
≥3,700 m asl,
686 km2)[%]

Upper ANC∗[%] San Lorenzo
(SLC)∗[%]

Side valley
lower ANC
(Olivares) [%]

Cerro Pata [%] Cordón de las
Minitas [%]

Mapped distribution

Blockslopes 67.16 64.02 73.36 70.26 50.80

Talus slopes 11.83 11.94 2.58 16.22 21.87

Modeled distribution

Blockslopes 61.37 60.55 60.67 65.20 69.89 54.51

Talus slopes 17.35 12.60 10.72 5.49 14.74 23.44

FIGURE 9
Comparison of the effect of influential predictor variables on the predicted probabilities of block- (light blue) and talus slopes (light purple) in the
periglacial belt of the ANC. TPI = topographic position index, TRI = topographic roughness index, and PISR = potential incoming solar radiation for the
entire year 2022. Note the different x-axis scaling for TPI103,11 and overall curvature139,17 for block- and talus slopes. See Supplementary Figure S3 for
comparison of all applied predictor variables.
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distribution conditions for both landforms. General trends rather
than specific statements can be drawn from this. Most predictors
show non-linear relationships with both landforms (see Figure 9, for
all variables see Supplementary Figure S3).

Blockslopes occur at all modeled elevations and at various
topographic positions but become more probable with higher
elevations and slope positions. Peak probabilities around 0.8 at
neutral to moderately positive TPI103 values confirm this and
indicate their primary occurrence on middle to upper, open slopes
with constant inclination or low-relief areas. Blockslopes show
a bimodal distribution at lower slope angles (≤15°), displaying
either very high or very low predicted probabilities. The maximum
likelihood of blockslope presence is observed at 30°–35°. Above this
value, the probability declines, making their classification highly
unlikely at slopes >45°. Blockslopes haveminimal dispersion around
zero for the overall curvature (curv139 ± 0.0015), suggesting they are
vertically and horizontally elongated with minor lateral convexity
and upward concavity. Their highest predicted probabilities are
associated with low roughness values (TRI) < 10. Potential incoming
solar radiation (PISR) has a considerable effect on the prediction of
blockslopes. Blockslopes are rare and highly unlikely below a PISR
of ∼1.3 MWh/m2 but become significantly more frequent above this
value. However, occurrence probabilities exhibit high dispersion.
Blockslope probability only begins to decline at approximately
2.4 MWh/m2. In contrast to talus slopes, however, they continue to
occur frequently and exclusively with high likelihoods.

Talus slopes are predominantly located at foot slopes towards
the valley bottom or at cliff bases, with the highest predicted
probabilities at low TPI11 values. TPI11 ∼0 indicate their occurrence
on open slopes with constant inclination or flat areas (Weiss,
2001). These locations are primarily in proximity to major bedrock
outcrops, below large headwalls and within the rooting zones
of inventoried rock glaciers (IANIGLA-CONICET, 2018) (see
Figures 8, 9). Supporting this, talus slopes reach highest probabilities
between 3,700 m asl (lower limit of predictive modeling approach)
and ∼4,000 m asl. With increasing altitude, they become less likely,
rarely existing above 5,000 m. Talus slopes display low sensitivity
to slope angle, primarily occurring between 20°–40° in the study
area. Overall curvature ∼0 confirms that talus slopes are vertically
and horizontally planar, thus slope angles vary only slightly. They
are mostly distributed at TRI values <10, with a few occurrences at
higher values. There, they are more likely to occur than blockslopes.
In general, talus slopes are less sensitive to the amount of incoming
solar radiation and occur across all recorded PISR quantities. Yet, the
parameter is ranked with high importance by the RF model, and a
negative correlation is observed beyond a potential annual budget of
∼1.8 MWh/m2. With increasing PISR, the likelihood of talus slope
formation declines to almost 0% above ∼2.3 MWh/m2.

5 Discussion

5.1 Model prerequisites for predicting
block- and talus slope distribution and
their limitations

The consistently high predictive performances of the RF model
with low uncertainties suggest that RF effectively captures the

distributional characteristics of block- and talus slopes in the
ANC. The significantly poorer performance of LR compared to
GAM and RF (see Figure 3) demonstrates that the widespread,
heterogeneous distribution of talus slopes, and even more so of
blockslopes, requires modeling techniques that can cope with
these heterogeneous, often non-linear relationships. The superior
model performance of RF in the sample size analysis (see
Supplementary Figure S1) highlights the advantages of data-driven
over more model-driven classification algorithms when working
with complex, non-linear data, although a thorough examination of
model plausibility is required (Breiman, 2001; Schoch et al., 2018;
Steger et al., 2021). However, achieving good to excellent model
performance requires careful consideration of various prerequisites
and limitations:

1. Addressing mapping uncertainties: Geomorphological
mapping based on remotely sensed imagery is subject to
uncertainties. These should be minimized to ensure high
accuracy in predictive modeling. Some studies demonstrate
large mapping heterogeneities of up to 30% due to variable
image resolution and quality, inter-operator mapping style,
and a lack of established guidelines for landform classification
and mapping, with the latter two appearing to produce the
highest uncertainties (Brardinoni et al., 2019; Paul et al.,
2013). It is recommended to provide transparency on how the
mapping was compiled to support accuracy assessment and,
if possible, to obtain reference data (e.g., higher resolution
satellite data) to better quantify mapping inaccuracies
(Chandler et al., 2018; Smith et al., 2006). In data scarce regions
like the Dry Andes of Argentina, reference data is often not
available. Thus, transparency about the datasets and software
used, the mapping procedure, landform definitions, and
associated errors and uncertainties is imperative. To minimize
inaccuracies in our inventory, we (1) used satellite imagery
from austral summer with minimal snow and cloud cover.
(2) Prior to mapping, we established consistent definitions
and respective guidelines for mapping block- and talus slopes
(see Section 1), and (3) the results of the first two manually
mapped key sites were revised in the field (ground truthing).
(4) Mapping was performed by one operator and reviewed
by three co-authors before entering the predictive models.
(5) The combination with the national inventory (IANIGLA-
CONICET, 2018) prevents an overestimation of block- and
talus slopes at the expense of these cryospheric landforms.
Still, mapping uncertainties exist due to themedium resolution
of the available data (Google Earth Pro, TanDEM-X DEM
and derivatives at 12 m resolution) and the associated size
threshold for landforms. Working in areas with limited data
availability is intertwined with higher uncertainties, but yields
valuable and needed information.

2. Predictor selection and processing per landform: To
construct and compare reliable predictive models, the choice
of predictors should be carefully examined and, if necessary,
adapted during the modeling process (Heckmann et al., 2014).
RF successfully excludes areas with favorable conditions
for the alternative target landform in most of the ANC,
indicating a strong alignment between the selected variables
and the underlying geomorphological processes. To minimize
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overlap at the margins of the model domain, incorporating
relative position indices, such as distance to ridge, alongside
absolute position information (DEM, TPI11,103) could improve
accuracy. Additionally, expanding mapping and modeling
beyond the area of interest may further reduce model
boundary effects. The model’s performance depends on the
quality of the input dataset, which must adequately represent
all relevant geomorphologic processes and conditions.
According to Brenning (2005), cofounding parameters such
as east-exposedness and elevation may provide indications
of geological units in large-scale modeling along the north-
south-trending Andes. Still, we acknowledge the influence of
lithology on the geomorphological processes and the resulting
debris properties acting on block- and talus slopes that we
cannot adequately account for.
Implementing an optimal scaling analysis for certain predictor
variables significantly enhanced the predictive performance
for both landforms and should be applied to identify and
further refine the distinction between both landforms. In
addition, we recommend using models that can adequately
capture the non-linear relationships in block- and talus
slope modeling.

3. Number of random samples: Robust distribution predictions
across the entire ANC require a high number of samples
with representative cases and controls of the target landforms.
The large sample size required indicates that block- and talus
slopes occur in a heterogeneous environment, necessitating
large training datasets to distinguish between favorable and
unfavorable site conditions. Whilst smaller sample sizes can
still yield reasonably accurate predictions, the uncertainties
in the (non-)spatial validation can be much improved by
increasing the number of samples. However, the effect of large
sample sizes should be analyzed carefully to prevent overfitting,
overparameterization, and spatial autocorrelation, which can
result in models with low robustness, poor transferability, and
reduced predictive performance (Heckmann et al., 2014; Hjort
and Marmion, 2008).

4. Reflection of spatial heterogeneity: Representative, spatially
separated training and testing datasets ensure that the
model’s predictive performance remains robust, transferable,
and geomorphically plausible at larger spatial scales
(Schoch et al., 2018; Steger et al., 2016). Block- and talus
slopes occur under highly variable environmental conditions
in the Dry Andes that need proper reflection in the training
data. Including information from multiple key sites with
distinct environmental characteristics is necessary to achieve
excellentmodel performances across the entiremodel domain.
Hence, the use of sufficiently large, representative and spatially
independent samples from comparable key sites is needed to
provide a proper base for a reliable geostatistical upscaling of
block- and talus slopes.

5. Safeguarding model quality: Our results illustrate the
importance of spatial validation and geomorphic plausibility
analysis next to the more commonly used non-spatial
validation (see Figures 5, 6) (Schoch et al., 2018; Goetz et al.,
2015; Brenning, 2009; Steger et al., 2016). Since these more
accurately reflect the model’s actual performance, especially
when applied to larger spatial scales (e.g., the ANC), they

should be consulted in statistical evaluations of each model.
By repeatedly training and testing the model using spatial and
non-spatial validation, as well as geomorphic plausibility, we
can present two robust and transferable models with good
predictive performances for block- and talus slopes in the
ANC. In addition, ground truthing via field work is time-
consuming but crucial when relying primarily on satellite data
to ensure that the model is trained on accurate and consistent
input data, adequately representing general and distinctive
features of the study area (Brenning, 2005).

5.2 The geomorphological niche of block-
and talus slopes in the Dry Andes of
Argentina

We identified several topoclimatic and geomorphic conditions
that favor or inhibit the formation of block- and talus slopes.
Conversely, their occurrence provides important insights into their
surrounding environment (Brenning, 2005;Messenzehl et al., 2017).

Blockslopes are dominant mesoscale landforms in the
periglacial belt and are found primarily at altitudes above 4,000 m in
the ANC. They occupy open middle to upper slopes, gently sloping
lateral and horizontal ridges, and low-relief plateaus. Slope angles
are evenly distributed up to 35°, but remain largely constant along
individual slopes. Garleff and Stingl (1983) found an almost uniform
distribution of all slope inclinations up to ∼35° on blockslopes in
the semi-arid Andes, similar to findings by Clow et al. (2003) in the
Colorado Front Range. However, they generally exhibit a narrower
range of slope angles around 20°–38°, depending on the angle of
repose of the prevailing bedrock (e.g., Selby, 1974; Ballantyne, 2018;
French, 2017; Fort and van Vliet-Lanoe, 2007). Unlike talus slopes,
blockslopes are covered by finer surfacematerial, with no indications
of grain-size induced sorting, and are intersected by small, isolated
and resistant bedrock outcrops. They are often bounded downslope
by large rock formations, talus slopes, and rock glaciers.Where these
landforms do not limit blockslope propagation, they occupy entire
slopes down to the valley bottoms. Extensive blockslope coverage
down to the basal slope is mostly found on NE-exposed slopes
of the ANC, while SW-exposures are dominated by an upslope
sequence of talus slopes, bedrock, and blockslopes with occasional
bedrock outcrops (see Figure 8). Blockslopes demonstrate a distinct
horizontally and vertically elongated, undissected morphometry
that has also been described in numerous studies (e.g., French,
2017; Köhler et al., 2024; Garleff and Stingl, 1983; Höllermann,
1983), contributing to their varying terminologies (compare
Section 1). Processes such as erosion, accumulation, channeling,
and gully formation are mostly absent, as confirmed by field
observations and geomorphological mapping. Local incision is
limited to snow and glacier meltwater streams, and major erosion
and deposition are more likely to be anthropogenically induced
(e.g., road construction, see Figure 1C). Their topographic position,
shape and characteristics of the contributing area do not promote the
production and deposition of allochthonous material (Weiss, 2001).
Unlike talus slopes, they are least likely to develop beneath extensive
bedrock outcrops with ongoing rockfall activity and steep, laterally
converging topography. Blockslopes are described as characteristic
features in upland areas with relatively uniform geology and
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high porosity that have not been affected by glacial steepening
(Ballantyne, 2018; Trombotto Liaudat et al., 2014; Selby, 1974).
Although the resolution of the available geological data does not
allow for more precise statements, this observation aligns with the
widespread occurrence of blockslopes in the relatively homogeneous
geology of the ANC (see Table 1, Supplementary Figure S5). These
observations support their classification as allochthonous debris
deposits (Ballantyne, 2018; Höllermann, 1983; van Steijn, 2002;
Otto, 2006; French, 2017; Trombotto Liaudat et al., 2014).

The altitude, position-dependent distribution, and topographic
openness of blockslopes suggest climatic control factors, e.g.,
exposure to high solar radiation, large seasonal and diurnal
temperature fluctuations, and wind action. Due to its subtropical
location, the ANC experiences exceptionally high solar radiation,
comparatively low cloud cover throughout the year, and low solar
absorption by atmospheric constituents (Schrott, 1998; Viale et al.,
2019; Barry and Chorley, 1992). Peaks in global radiation exceeding
1400 W/m2 and maximum daily sums of 35.6 MJ/m2 were recorded
above 4,000 m asl by Schrott (1998) in December 1990 and 1991,
which is roughly consistent with more recent measurements by
Pitte et al. (2022) (see Section 2). Although aspect and PISR are
not the primary drivers of block- and talus slope distribution, their
influence is evident in the observed asymmetric zonation, withmore
extensive blockslope distribution onNE-facing slopes (see Figure 8).
The high prevalence of blockslopes on exposed upper slopes, gently
inclined ridges, and low-relief plateaus favors high solar irradiation,
aridity, and elevated ground temperatures depending on altitude,
which also influences the formation of permafrost (Gruber, 2005;
Arenson and Jakob, 2010). Decreasing landform probabilities with
rising topographic wetness indices (TWI) further indicate that
blockslopes form in well-drained, arid areas, although both target
landforms are generally associated with dry conditions (low TWI),
consistent with the dry climatic conditions in the ANC (see Section
2) (Pitte et al., 2022; Schrott, 1998). In addition, the high exposure
of blockslopes to wind action results in minimal snow cover and
duration, further promoting dryness and little protection against
temperature fluctuations throughout the year (Clow et al., 2003;
Köhler et al., 2024). This leads to intense physical weathering under
extremely cold and arid conditions, which is strongly associated
with blockslope formation (e.g., French, 2017; Fort and van Vliet-
Lanoe, 2007; Iwata, 1987; Trombotto Liaudat et al., 2014). Intensive
physical rock decomposition, mainly caused by salt weathering
and frost action, is considered to be the dominant driver in
forming the thin debris layer covering the retreating bedrock
they develop on (Trombotto Liaudat et al., 2014; Ballantyne, 2018;
Shaw and Healy, 1977; Höllermann, 1983). Brettschneider (1980)
recorded the highest weathering intensities on subtropical sun-
exposed mountain slopes around 30°, aligning with the maximum
blockslope distribution between 30° and 40°S on the Southern
Hemisphere (Höllermann, 1983).

Grain size compositions range from mainly silt to medium
and coarse sand, with surface clasts primarily consisting of
block-sized debris (Otto, 2006; Selby, 1974; Garleff and Stingl,
1983). The thin debris layer varies from decimeters to several
meters in thickness (Ballantyne, 2018; Fort and van Vliet-Lanoe,
2007; Garleff and Stingl, 1983). Downslope movement occurs at
low velocities through various processes, including solifluction,
frost creep, and potentially permafrost creep, depending on the

presence of ground ice (Ballantyne, 2018; Selby, 1974; Fort and
van Vliet-Lanoe, 2007; Garleff and Stingl, 1983). Denudation by
wind action, rather than linear erosion, is responsible for debris
removal along slopes (French, 2017; Selby, 1974; Otto, 2006;
Höllermann, 1983). Limited downslope accumulation produces a
slight basal concavity (slightly positive profile curvature151, see
Supplementary Figure S3), and may also be a relic of the ANC’s
glacial legacy. Still, material supply and removal appear to be in a
dynamic equilibrium, resulting in the characteristic rectilinear shape
of blockslopes (e.g., Trombotto Liaudat et al., 2014; Ballantyne,
2018; French, 2017; Brenning, 2005). With increasing elevation,
unvegetated, rocky blockslopes become predominant in the ANC.
However, in climatically suitable areas at lower altitudes, a sparse
vegetation composed of adapted species was observed in the field,
suggesting an overall lower level of process activity.

Even sparse vegetation cover is almost absent on active
talus slopes, indicating much higher process activity on one
of the most common debris storage landforms in mountain
environments (Messenzehl et al., 2017; Sass, 2006; Phillips et al.,
2009; Scapozza et al., 2011). In the Dry Andes above 3,700 m asl,
talus slopes extend up to 5,000 m asl, favoring large contributing
areas (≥103 m2) with steep, massive bedrock outcrops. Therefore,
they are mostly concentrated on middle to lower slopes below
ascending headwalls, cirques, rock glacier rooting zones, or cliff
bases. They may extend into the floodplain, where they are partly
covered by alluvial fans and eroded by fluvial processes (Alonso and
Trombotto Liaudat, 2013; Köhler et al., 2024).Their vast distribution
is embedded in a heterogeneous, rugged terrain with juxtaposed
small-to large-scale landforms (Messenzehl et al., 2017). Talus slopes
are more prevalent on SW-facing lower slopes in the ANC, resulting
in lower exposure to solar radiation (see Figures 8, 9). As PISR is
ranked with medium to high importance by the RF, talus slope
formation is favored by topographically induced shading, leading to
cooler conditions year-round (Phillips et al., 2009).

Köhler et al. (2024) identified the characteristics of the
contributing area as useful indicators for analyzing and
distinguishing the distribution of target landforms, as they
relate to the type of material supply (in situ or ex situ), process
intensity, and topographic position. This is confirmed by the
greater influence of these variables on the prediction of talus
slopes, consistent with their formation by gravitational processes
from adjacent steep slopes (Brenning, 2005; Moore et al., 2009;
Ballantyne, 2018; Alonso and Trombotto Liaudat, 2013). While the
probability of blockslopes decreases with increasing mean slope
and roughness of the contributing area (MRCA, MSCA), talus
slopes become more likely (see Supplementary Figure S3). Since
rockfall activity and granular disintegration of cliff faces are the
primary sources of talus accumulation, their formation is mainly
controlled by weathering and topography, forming steep and thick
talus deposits of varying sizes and shapes over time (Brenning,
2005; Ballantyne, 2018; Messenzehl et al., 2017; Clow et al., 2003).
Their slope inclination corresponds to the angle of repose of the
coarse rockfall material, resulting in a much higher prevalence
of talus slopes with angles >35° than blockslopes. Slope gradients
between 31° and >40° are frequently reported (Clow et al., 2003;
Messenzehl et al., 2017; Scapozza et al., 2011).

The ANC encompasses a wide range of talus slopes that vary
in size, shape and thickness depending on the characteristics of
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the adjacent bedrock, and topography. Talus material may be
redistributed by snow avalanches, fluvial processes, and debris-
and dry grain flows (Otto, 2006; van Steijn, 2002). Compared to
blockslopes, these landforms are significantly smaller and more
spatially confined, as reflected in the smaller optimal moving
window sizes determined for predictive modeling (Sîrbu et al.,
2019). We identified the three main types of talus slopes through
geomorphological mapping and field observations: (1) talus sheets
with fairly uniform rockfall activity, along with widespread (2)
talus cones, and (3) coalescing talus cones, formed by extensive
channeling of rockfall debris and lateral merging of individual
cones (see Figure 1D) (Ballantyne, 2018; Brenning, 2005). The
accumulation and channelization of material favor the formation
of talus sheets and cones in the ANC, supported by the greater
influence of horizontal (profile) and vertical (planform) curvature
in the predictive modeling of talus slopes than in blockslopes.
In addition to their predominantly straight shape, talus slopes
exhibit a slight tendency toward upward convexity and lateral
concavity, indicating horizontal material deposition and vertical
convergence of flow (see Figure 9 and Supplementary Figure S3)
(Etzelmüller et al., 2001; Sîrbu et al., 2019; Deluigi et al., 2017).
Although talus slopes also have low topographic wetness indices,
the conditions for moisture concentration are more favorable. Their
environmental characteristics promote higher water availability and
moisture storage capacity due to reduced exposure to wind and
sun. Local snow accumulations are often found at upper talus
slopes, especially below large rock cliffs (Brenning, 2005). During
field work, we frequently observed erosion rills, debris flows, and
alluvial channels likely attributed to meltwater on the surfaces of
talus slopes, which could not be captured in the models due to
the coarse resolution (Brenning, 2005). The cold climate of the
ANC promotes strong physical weathering with frost action and
frequent freeze-thaw cycles resulting in bedrock fracturing, and
rockfall activity, thus acting as a sediment source (Clow et al., 2003;
Messenzehl et al., 2017; Matsuoka and Murton, 2008).

Field observations confirmed a much coarser, poorly sorted
debris composition than on blockslopes. Subsurface investigations
reveal layers of coarse, open-workmaterial with a higher proportion
of decimeter-to meter-sized boulders at the surface and basal
talus overlying interbedded fine and coarse-grained clastic material
(Ballantyne, 2018; Sass, 2006; Clow et al., 2003; Lambiel and
Pieracci, 2008; Scapozza et al., 2011). The deposition of finer
material mainly covering silt, sand, and gravel implies that talus
formation is not only driven by rock fall deposition but also
by alluvial deposition from disintegrated material from source
rockwalls (Ballantyne, 2018; Clow et al., 2003). Studies from the
Alps and Svalbard using geophysical methods found sediment
thicknesses of 3–45 m overlying bedrock (e.g., Hoffmann and
Schrott, 2003; Sass, 2006; Clow et al., 2003; Lambiel and Pieracci,
2008). In periglacial environments, talus deposits often contain
varying amounts of ground ice and their formation is frequently
modified by processes such as periglacial creep, snow avalanches,
and debris flows (Ballantyne, 2018; Scapozza et al., 2011; 2015;
Sass, 2006; Hilbich et al., 2022). In such environments with
ongoing creep, talus slopes may evolve into protalus ramparts and
rock glaciers (Otto, 2006; Ballantyne, 2018; Buckel et al., 2021;
Scapozza et al., 2011). Their dominant formation at the foot of
rockwalls on glacially oversteepened valley sides and cirques in

the ANC is conditioned by the glacial heritage that enhances talus
supply (Brenning, 2005; Messenzehl et al., 2017). Despite missing
information on past or present glacier retreat, increased paraglacial
rockfall activity on talus slopes following glacier recession is
expected in the ANC (Brenning, 2005).

5.3 Toward a more comprehensive
cryospheric landform inventory of the
ANC?

Using geomorphological mapping and predictive modeling,
we significantly reduced the spatial discrepancy between the
cryospheric landforms recorded in the national inventory (∼27 km2)
and the area potentially underlain by permafrost (regional
lower permafrost limit ≥3,700 m asl, ∼686 km2 (Trombotto,
2000; Esper Angillieri, 2009); PZI ∼668 km2 (Gruber, 2012)).
Approximately 516 km2 (>75%) of the area is covered by block-
and talus slopes, making them extremely abundant in this part of
the Dry Andes.

Rock glaciers are the most prominent permafrost landforms
in the periglacial belt of the Dry Andes, and their formation
and topoclimatic conditions result in a higher permafrost content
and thus greater hydrological significance than other periglacial
landforms (Corte, 1978; Halla et al., 2020; Arenson and Jakob,
2010; Jones et al., 2019; Schaffer et al., 2019). Beyond these,
however, knowledge about permafrost distribution and fresh water
storages in periglacial landforms remain limited, despite growing
evidence of ground ice presence in areas without rock glaciers
(e.g., Hilbich et al., 2022; Mathys et al., 2022; García et al., 2017;
Arenson and Jakob, 2010). For the Dry Andes of Argentina,
the PZI (Gruber, 2012; see Figure 1, Supplementary Figure S4)
and the regional permafrost distribution model developed by
Tapia Baldis and Trombotto Liaudat (2020) show that permafrost is
not restricted to rock glaciers. Low MAAT at high altitudes, strong
temperature gradients, and the rugged mountain topography with
varying exposures promote frost action,mechanical weathering, and
associated geomorphological processes that define the periglacial
domain (French, 2017; Trombotto, 2000). Garleff and Stingl (1983)
describe the intensiveweatheringwith high finematerial production
as a characteristic feature of the semi-arid periglacial stage that
is further enhanced by pronounced temperature fluctuations and
frequent frost cycles. In addition, widespread and intense rockfall
activity produces large accumulations of coarse debris (Lauro et al.,
2017; Halla et al., 2020). Depending on the thickness and physical
properties of the debris layer, these accumulations effectively
insulate the ground and thus provide favorable conditions for
ground ice formation and preservation (Arenson et al., 2022).
High insolation and wind action, low cloud cover, relative
humidity, and precipitation contribute to high sublimation rates
and a thin, short-lived seasonal snow cover (Pitte et al., 2022;
Ayala et al., 2023; IANIGLA-CONICET, 2018; Brenning, 2005).
Minimal snow cover offers fragmented protection against rising
summer temperatures and radiation exposure, especially on exposed
blockslopes (Arenson et al., 2022; Delaloye et al., 2003; Selby,
1974; Morard et al., 2010). Simultaneously, these conditions reduce
the diurnal to seasonal effect of snow insulation and allow deep
penetration and circulation of cold air, depending on the physical
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properties of the debris layer, in winter (Phillips et al., 2009; Lambiel
and Pieracci, 2008; Morard et al., 2010). This distinctive thermal
regime favors permafrost conditions and ground ice formation,
underscoring the high potential of yet unidentified freshwater
resources in the periglacial belt of the Dry Andes. Based on our
findings, we can evaluate the conditions for the formation and
preservation of permafrost based on the environmental distribution
conditions of block- and talus slopes.

Overall, the probability and extent of permafrost are
significantly higher in talus slopes than in blockslopes due to their
differences in spatial distribution and formation conditions. The
topoclimatic and geomorphologic characteristics of talus slopes
result in thick, coarse debris deposits, greater topographic shading,
snow accumulation, and enhanced moisture availability, creating
much more favorable conditions for permafrost occurrence. The
coarse, open-work debris accumulations lead to high air content
near the surface, facilitating deep penetration and circulation of cold
air within the talus deposits (Scapozza et al., 2015; Hilbich et al.,
2022). Studies investigating the internal structure of talus slopes
in the European Alps have revealed variable ice content of up
to 60%, primarily located in the lower taluses (Scapozza et al.,
2015; Lambiel and Pieracci, 2008; Sass, 2006). Furthermore, talus
slopes form geomorphological niches similar to rock glaciers,
frequently covering their rooting zones and thus occurring in
close proximity to common permafrost indicators (Brenning,
2005). As the formation of protalus ramparts is also an indicator
of ground ice (e.g., García et al., 2017; Lambiel and Pieracci,
2008; Ballantyne, 2018), we further mapped their distribution
in the upper ANC and SLC, where they were found on at least
1.85% of the surveyed talus slope area, primarily in the lower talus
(see Figure 1D).

In contrast, no clearly visible indications of ground ice
were identified on blockslopes, although creeping structures were
observed on some of these landforms. These resemble small,
transversely elongated lobes formed by gelifluction described by
García et al. (2017), which are produced by freeze-thaw cycles in the
active layer.The authors describe thewidespread occurrence of these
landforms (referred to as gelifluction taluses in the publication),
which are almost exclusively associated with permafrost in the
Atacama region of Chile and the arid Andes of San Juan. Yet,
the greater aridity caused by high solar and wind exposure in
upper, topographically open positions, combined with the thin,
in-situ weathered debris mantle, limits their storage capacity and
insulation of potential ground ice content (Köhler et al., 2024).
However, no studies have examined their internal structure with
respect to potential ground ice content, even though blockslopes
have been repeatedly described as characteristic periglacial features
in the Andes (e.g., Garleff and Stingl, 1983; Hilbich et al., 2022;
Brenning, 2005; Köhler et al., 2024) and other cold-climate regions
(e.g., Oliva et al., 2022; Ballantyne, 2018; Clow et al., 2003;
French, 2017; French and Guglielmin, 1999). While ice content
in blockslopes may be limited to small ice lenses or absent
depending on local site conditions, they meet several criteria for
permafrost presence and their high prevalence in the periglacial
belt of the Dry Andes makes them an important subject for
further investigation.

Accurately estimating the permafrost content in block- and talus
slopes remains challenging due to a lack of subsurface investigations

involving boreholes, ground temperature measurements, and
geophysical surveys. By modeling their distribution characteristics
and analyzing their main controlling factors, however, we identified
multiple conditions favorable for permafrost presence in these
landforms. Although their permafrost content is likely lower
than that of rock glaciers, these periglacial landforms gain
hydrological significance due to their widespread occurrence.
Estimating the distribution and hydrological significance of ground
ice based solely on rock glacier occurrence will inevitably lead
to inaccurate quantifications of freshwater resources stored in
ground ice and runoff contributions from the alpine periglacial
belt (Mathys et al., 2022; Hilbich et al., 2022). A comprehensive
asssessment of the periglacial belt in the mountain cryosphere is the
basis for further research and accurate quantification.

6 Conclusion and outlook

Weapplied geomorphologicalmapping and predictivemodeling
to transfer the distribution of block- and talus slopes from the sub-
catchment to the catchment scale, aiming to expand the national
inventory of cryospheric landforms (IANIGLA-CONICET, 2018) in
theDryAndes ofArgentina. By regionalizing the occurrence of these
landforms within a regionally representative cryospheric setting,
we gained insights into their distribution and potential permafrost
conditions. The methodological approach allows us to verify the
small-scale findings by Köhler et al. (2024) at the catchment scale
and to extend them by introducing the first predictive modeling
of block- and talus slopes in the periglacial belt of the Dry Andes
around 30°S. This approach should be tested and transferred to even
larger spatial scales.

Block- and talus slopes cover nearly 79% of the area above
the lower permafrost limit in the ANC, making them the most
abundant periglacial landforms in this part of the Andes. The
comparison of different classification techniques (logistic regression,
generalized additive model and random forest) revealed good
to excellent predictive performances for both landforms, with
random forest being the most suitable modeling technique for
block- and talus slope prediction (mean AUROC values ≥0.95
using non-spatial validation and ≥0.83 using spatial validation).
Elevation, slope inclination, curvature, topographic roughness and
position, and potential incoming solar radiation are among themost
important variables used by RF to understand and predict block-
and talus slope distribution. Modeled predictions suggest that talus
slopes are primarily determined by elevation, while blockslopes
are mainly influenced by topographic slope position. Incorporating
additional relative position indices could further improve the spatial
delineation and thus model performance, especially for talus slopes.

The topoclimatic and geomorphic conditions of the Dry Andes
favor the formation of block- and talus slopes within the region’s
exceptionally large periglacial belt. Both landforms provide suitable
conditions for permafrost presence, though the probability is
expected to be significantly higher for talus slopes. The thick and
coarse debris deposits that build up talus slopes from rockfall activity
offer greater insulation for ground ice formation and preservation.
Additionally, their confined positions at sheltered, water-converging
lower slopes enhance moisture availability. In contrast, the thin
debris layer of finer, in-situ weathered material forming rectilinear
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blockslopes provides lower storage capacity and insulation for
the underlying ice. Corresponding to their formation conditions,
their preferred distribution at upper slopes and low-relief plateaus
exposes them to high solar radiation and wind, contributing to drier
site conditions.

Additional geophysical and hydrogeochemical studies, as well
as testing the newly developed block- and talus slope models
at larger spatial scales in different locations, will refine our
understanding of their distribution and potential ice content in the
periglacial belt. Even if these landforms contain only minor ice
content, they gain hydrological significance due to their widespread
distribution compared to other periglacial landforms. Estimating
the distribution and hydrological significance of the periglacial
environment solely based on rock glacier occurrence will inevitably
lead to inaccurate quantifications of solid-state water reserves and
runoff contributions in mountain systems. Given the accelerating
impacts of climate change and the high societal dependence onwater
resources from the mountain cryosphere in water-scarce regions, a
comprehensive assessment of these reservoirs is crucial. A holistic
inventory of cryospheric landforms, including not only the most
prominent but all potentially ice-rich permafrost landforms, is the
first step toward achieving this goal.
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