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the 2017 Mw8.2 Tehuantepec
earthquake

M. Manea1, V. C. Manea1*, S. Yoshioka2,3, E. J. Moreno2† and
N. Suenaga2

1Computational Geodynamics Laboratory, Instituto de Geociencias, Universidad Nacional Autónoma
de México, Campus Juriquilla, Querétaro, Mexico, 2Research Center for Urban Safety and Security,
Kobe University, Kobe, Japan, 3Department of Planetology, Graduate School of Science, Kobe
University, Kobe, Japan

Tectonic plates bend and deformwhen approaching a subduction zone, creating
intense faulting and highly variable stress and strain fields across short distances
inside the slab. In September 2017, a largeMw8.2 intraplate normal fault occurred
in southern Mexico, with an epicentral area located within a seismic gap where
no megathrust had struck in more than a century. Despite the relatively young
and hot Cocos plate, this seismic episode ruptured almost the entire slab
below the brittle–ductile transition zone that normally limits the depth extent
of such events. Here, we present a high-resolution thermomechanical model
of spontaneous subduction for this area, where bending-induced brittle and
ductile deformation and grain plate damage are considered. Modeling results
show that the 2017 Mw8.2 Tehuantepec normal fault earthquake occurred due
to the reactivation of one of the outer-rise-formed abyssal faults. In addition, the
hypocenter was located in a stable, hydrated region of the lithospheric mantle
at the transition limit between the elastic and ductile regimes. We found that
earthquake rupture orientation is consistent with a regionwhere a clear localized
shear band of reduced effective viscosity is predicted. We propose that the
rupture of this large intraslab event propagated in the ductile portion of the slab
initially by a transformational faulting process, followed by a thermal runaway
mechanism at greater depths and higher temperature.

KEYWORDS

subduction, abyssal faulting, intraslab earthquake, numerical modeling, slab
segmentation

Introduction

In the forearc segment of subducting plates, the occurrence of large intraslab seismic
events is relatively a rare phenomenon, especially in young oceanic plates. Bending of
oceanic plates before entering into subduction generates stresses in the oceanic plate that
can produce the so-called trench-outer-rise events, which are characterized by horizontal
T-axes in the shallow part and P- axes in the deeper region (Seno and Yamanaka, 1996).
This state of stress is not usually preserved after subduction when the slabs unbend at
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intermediate depths (Kawakatsu, 1986), and the occurrence of large
intraslab events in the first tents of kilometers after subduction is
expected to be uncommon. Although such large seismic events are
sporadic, they have a real potential to cause severe local damage
(i.e., the El Salvador earthquake, Mw 7.6, and the Geiyo earthquake,
Mw 6.8, in Southwest Japan). Compared with megathrusts, intraslab
earthquakes occurred in the past have shown a rather limited
magnitude. Several relevant examples include the 1931 Oaxaca
earthquake (Mw 7.7) in Mexico (Singh et al., 1985) and the 1970
Peru earthquake (Mw 7.9) (Abe, 1972). However, in 2017, a large
Mw 8.2 intraslab normal fault earthquake unexpectedly struck
southern Mexico and generated even a tsunami with peak waves
reaching up to 1.75 m in amplitude (Melgar et al., 2018). Its
seismological features, including the rupture process, aftershock
sequence, and tsunami generation, have been extensively studied,
providing valuable insights into the tectonic processes of the region.
Meng et al. (2019) reported that the mainshock is characterized
by a fast rupture velocity of 3.6 km/s, approaching 85% of the
local shear wave velocity. Using relocated aftershocks, Suárez et al.
(2019) determined a 160-km-long fault, sub-parallel to the oceanic
trench, located beneath the interplate contact. In addition, the
aftershock sequence revealed a secondary intraslab fault located
∼50 km down-dip from the mainshock rupture. This suggests
that the Cocos slab in the Tehuantepec region is characterized
by tensional stresses, possibly induced by strong slab pull forces
(Suárez et al., 2019). Song and Ge (2019) revealed that the rupture
of the 2017 Tehuantepec earthquake can be explained by a two-
fault model, based on the intersection with the Tehuantepec fracture
zone, which transversely intersects the Middle America Trench
(MAT) (Figure 1) (Manea et al., 2005). In this model, the subducted
Tehuantepec fracture zone acts as a temporarily barrier, where the
first coseismic rupture is temporarily blocked and decelerates but
crosses over and continues due to the accumulated stress. Despite
the large magnitude, the intraslab earthquake generated a tsunami
with a height of ∼3.5 m, as recorded in Puerto Chiapas, Mexico
(Gusman et al., 2018; Adriano et al., 2018). Moreover, a detailed
seafloor survey carried out in the epicentral area relatively shortly
(in 2019) after the 2017 Tehuantepec earthquake reveals that no
submarine landslides have occurred on the gulf of Tehuantepec
continental slope, probably due to limited seafloor uplift during
the intraslab event (Aguilar-Anaya et al., 2025). Apart from its
unusually large magnitude (it is one of the largest instrumentally
recorded earthquakes in Mexico) for this type of earthquake,
there are a series of characteristics that make it more peculiar.
It occurred in a region known as the Tehuantepec seismic gap
(Figure 1), where no large megathrust earthquake had occurred
in the last century or more (Suárez, 2021); its rupture area cut
almost the entire Cocos slab, reaching regions with predicted
temperature exceeding 1,000°C (Manea and Manea, 2008), and
finally, the rupture area stopped in the regionwhere the Tehuantepec
fracture zone enters into subduction (Okuwaki and Yagi, 2017;
Ye et al., 2017; Melgar et al., 2018). Moreover, its focal mechanism
indicates an intraslab normal fault type, steeply dipping at ∼75°
(Ye et al., 2017), and the epicenter is located only 55 km from
the MAT (Figure 1A), which represents an uncommon location for
large intraplate normal-faulting earthquakes (Astiz et al., 1988).
Meng et al. (2019) reported that the mainshock is characterized
by a fast rupture velocity of 3.6 km/s, approaching 85% of the

local shear wave velocity. Using relocated aftershocks, Suárez et al.
(2019) determined a 160-km-long fault, sub-parallel to the oceanic
trench, located beneath the interplate contact. In addition, the
aftershock sequence reveals a secondary intraslab fault located
∼50 km down-dip from the mainshock rupture. This suggests
that the Cocos slab in the Tehuantepec region is characterized
by tensional stresses, possibly induced by strong slab pull forces
(Suárez et al., 2019). Therefore, these rather unique characteristics
of the 2017 Mw8.2 Tehuantepec earthquake offer us a good
opportunity to investigate why these types of events occur and
what is the possible mechanism. The hypocenter of the 2017 Mw8.2
Tehuantepec earthquake is located at 50 km in depth (Figure 1B),
where the lithostatic pressure approaches approximately 2 GPa and
the temperature can reach 700°C. At such large temperature and
pressure rates, laboratory experiments show that rocks deform by
ductile creep rather than brittle deformation (Kirby, 1980; Kirby
and Kronenberg, 1987). Nevertheless, the 2017 Mw8.2 Tehuantepec
earthquake shows that this is rather possible, and therefore,
some special mechanisms should be responsible for rupture
propagation in regionswhere temperature can reach 1,200°C or even
more.

Numerical modeling became an essential instrument for
understanding the mechanical behavior of subduction systems.
Advances in computational power enabled higher-resolution
models that capture small-scale processes in subduction zones.
Currently, ongoing research focuses on improving computational
efficiency, material property representation, and data integration.
These advancements are paving the way for more accurate
and predictive models of subduction zone dynamics (Gerya,
2022). One common approach in numerical modeling is to
integrate thermal and mechanical processes to simulate the
heat transfer and rheological changes in subducting slabs
and also the surrounding mantle. Coupled thermomechanical
models are used to study the thermal evolution of subduction
zones and its impact on slab dehydration and mantle wedge
melting (van Keken et al., 2008; Gerya and Meilick, 2011;
Crameri et al., 2020; van Keken and Wilson, 2023). The
mechanical behavior of subducting plates is strongly linked
with the occurrence of intraslab earthquakes. As they travel
long distances with almost no internal deformation, oceanic
plates are considered mechanically strong before subduction.
After subduction, slabs can preserve a cold core to greater
depths, and numerical modeling of subduction predict rather
high viscosity (i.e., 1024 Pa s) specific for strong slabs (Zhong
and Davies, 1999; Faccenna et al., 2007; Billen, 2008). As
strong plates are difficult to segment along fault planes under
the elevated lithostatic pressure during subduction, it is
challenging to understand what the actual mechanism for intraslab
earthquakes is.

Observations indicate that prior to subduction, plates undergo
upward bending, creating tensional stress in the upper portion of
the oceanic plate and compressional stress at deeper levels, below the
neutral plane (Watts, 2001). Oceanic plate morphology off trenches
(i.e., distances less than 80 km) (Nakanishi, 2017) indicates that
plate bending is not mechanically an elastic process, but rather
it reactivates in the form of normal faulting along pre-existing
seafloor spreading fabric and bathymetric structures (Ranero et al.,
2003). Therefore, slabs are rendered mechanically weak just before
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FIGURE 1
(A) Topography/bathymetry map of the Mexican subduction zone showing the location of the 2017 Mw8.2 Tehuantepec intraslab normal fault
earthquake. Red dots represent active volcanoes, and magenta diamonds show the location of intraslab earthquakes (Singh et al., 2020). Slab surface
isodepths are derived from Slab 2.0 model (Hayes et al. 2018). EPR, East Pacific Rise; MAT, Middle America Trench; TFz, Tehuantepec fracture zone;
NAM, North America Plate; CP, Caribbean Plate; RP, Rivera Plate. The semitransparent arrow shows the Cocos plate convergence rate (67 mm/yr) in the
region of the 2017 Mw8.2 Tehuantepec earthquake. The red colored round region depicts the location of the Tehuantepec seismic gap bounded by two
past rupture areas (yellow colored round regions), the 1965 M7.4 and the 1902 M7.7 megathrusts. (B) Slab geometry along the cross-section A-A′

shown in (A). The slab geometry, location of the 2017 Mw8.2 Tehuantepec earthquake hypocenter, and the strike-averaged amount of slip of the
mainshock are derived from the study by Zhang and Brudzinski (2019). Maps were created based on ETOPO1 Global Relief Model dataset from
the study by Amante and Eakins (2009) and generated with the open-source software ParaView (http://www.paraview.org) version 5.0.1, licensed
under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

subduction, and weakening of the oceanic lithosphere is key
for understanding how subduction is initiated (Bercovici and
Richard, 2012).

As tectonic plates advance from oceanic ridges toward plate
boundaries, where they eventually enter subduction, the grain size
of minerals (as olivine and pyroxene) specific to the lithospheric
mantle also evolves. Observations show the existence of localized
shear bands coupled with grain-size reduction in mantle peridotites
(Furusho and Kanagawa, 1999). Inspired by metallurgical research,
Bercovici and Richard (2012) proposed a novel mechanism of
lithospheric weakening by grain evolution and Zener pinning in
two-phase lithospheric rocks. Lithospheric weakening by grain
evolution refers to the processes by which changes in the size, shape,
and arrangement of mineral grains within the oceanic lithosphere
reduce its overall strength and rigidity. This weakening can
significantly influence the mechanical behavior of the lithosphere,

including its ability to deform and transmit stress. Grain evolution
mechanically weakens the lithosphere through several processes,
such as the grain-size reduction, where smaller grains increase
the surface area of grain boundaries, which are weaker than
the grains themselves. This process enhances considerably the
deformation mechanisms like grain boundary sliding and diffusion
creep, which are more efficient at smaller grain sizes, and as a
result, the lithosphere becomes more ductile and less rigid. Zener
pinning is specific for polycrystalline mediums and shows that
grain size is significantly reduced in damaged regions, switching
the rheology into the grain-size-dependent diffusion creep regime.
In a two-phase medium (pyroxene + olivine) subjected to a strong
deformation process (Supplementary Figure S1), the percolation of
the olivine phase along the grain boundaries of the pyroxene phase
has several effects: producing a rougher interface, obstruction of
grain growth in a region near the interface between the two phases
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(known as Zener pinning), and simultaneously, splitting of pyroxene
grains into new smaller grains. The severe splitting of pyroxene
grains into new smaller grains leads to a reduction in the average
grain size and produces a grain damage zonewhere shear is localized
in narrow bands.

The physics behind rock deformation at high pressure and
temperature is still not well understood, and the Zener pinning
process in the lithosphere appears to play a key role in the formation
of tectonic plates (Mulyukova and Bercovici, 2019). Gerya et al.
(2021) numerically investigated the consequences of off trench
bending induced for oceanic plates and found that grain-size
reduction by Zener pinning in the outer rise focuses plate damage
and mechanically segments the slab into relatively rigid blocks.
This implementation of Zener pinning processes into numerical
geodynamic models is a novel approach that reconciles the apparent
inconsistency between strong tectonic plates at the surface and
weak slabs, and is consistent with seismic tomography images
beneath Japan, where the Pacific slab appears segmented into
blocks with coherent vp velocity anomalies (Tao et al., 2018).
Motivated by the occurrence of the large 2017 Mw8.2 Tehuantepec
intraslab earthquake, and based on the new numerical model
of Gerya et al. (2021), here we present results from 2D high-
resolution thermomechanical modeling of spontaneous subduction
for southern Mexico, where bending-induced brittle–ductile
deformation and grain damage [the race between normal grain
growth and dynamic recrystallization changes grain size at time
scales comparable to earthquake cycles (Mulyukova and Bercovici,
2019)] are considered. We aim to investigate the thermomechanical
conditions inside the Cocos slab that led to the occurrence of the
2017 Mw8.2 Tehuantepec intraslab earthquake.

Materials and methods

Previous generations of 2D thermal models applied to the
southern Mexico subduction zone (Manea and Manea, 2008) used
a system of Stokes equations coupled with the steady-state heat
transfer equation. This system is solved using the finite element
solver PDE2D (http://pde2d.com/). One main limitation of these
previous models is the shape of the slab that is considered fixed.
Although this approach allows for the incorporation of complex
geometries, material heterogeneities and nonlinear rheologies
(e.g., viscoelasticity and plasticity) are not incorporated. Recent
works emphasize the importance of integrating realistic rheologies,
including temperature- and pressure-dependent behaviors (Billen,
2008; Čížková and Bina, 2013; Behr et al., 2022; Hummel et al., 2024)
and, more recently, grain-size evolution due to brittle–plastic and
ductile deformation (Gerya et al., 2021) (Supplementary Table S1).
This novel approach explains several key features related with
tectonic plates, such as the apparent inconsistency between strong
plates and weak slabs, the formation of large-offset normal faults
in the vicinity of trenches, and the segmented nature of seismic
velocities within slabs.

Plasticity is implemented using a yield criterion which
limits the creep viscosity, which is represented as a function of
temperature and stress in terms of deformation invariants through
experimentally determinedflow laws.Constant grain size is assumed
for the oceanic and continental crusts, and a ductile creep is

used for the mantle considering grain-size reduction and growth
processes assisted by Zener pinning for a bi-material mixture
(olivine 60% and pyroxene 40%). The grain size is controlled by
the roughness of the interface between the olivine and pyroxene
phases and is computed based on several factors, including grain-
growth rate and the fraction of mechanical work converted
to interface damage (see Supplementary Material). We opt for
free bending to initiate subduction, and the initial model setup
(Supplementary Figure S2) incorporates a mechanically weak zone
(see parameters in Supplementary Table S2) between the oceanic
and continental domain. We also include a small vertical strip (5 km
× 50 km) weak zone at the left-hand boundary to ensure oceanic
lithosphere decoupling from the boundary. The model domain
is 3,000 km wide, 1,000 km deep, and has a high-resolution grid
(1 km × 1 km) centered in the region (1,000 km × 200 km), where
subduction takes place. This high resolution is sufficient to allow
the simulation to resolve shear localization. Outside the region of
interest, the resolution is gradually decreased to 10 km × 10 km
along the model domain boundaries. The grid is composed of
1,261 × 351 nodes, and we use 13 million randomly distributed
markers used for rock composition (Supplementary Table S3). Free-
slip mechanical boundary conditions are considered for all four
sides. In terms of initial temperature distribution, for the oceanic
plate, we use a vertical thermal structure as a function of plate
age. The oceanic plate age varies from 0.001 Ma to the left-hand
limit to a value between 25 and 35 Ma at the right-hand limit
(Supplementary Table S2; Supplementary Figure S2).

Temperature at the surface is 0°C and mantle potential
temperature (Tm) at the base of lithosphere, and for the mantle,
we use an adiabatic gradient of 0.5°C/km. At the lateral sides, we
consider zero heat flux as the thermal boundary condition. The
continental plate consists of uniform sediments, and the upper
and lower crusts with a total thickness of 30 km, followed by a
60-km-thick lithosphere (Supplementary Figure S2). To avoid
surface oscillations and to ensure heat transfer from the
surface of the crust, on top of the oceanic plate, we
insert a weak zone and continental plate called “sticky”
air/water with a constant viscosity of 1017 Pa s and a constant
temperature of 0°C (Supplementary Figure S2). We performed
a series of models where we varied the initial oceanic plate at
the trench (25, 30, and 35 Ma), the overriding plate age (60, 70,
and 80 Ma), mantle potential temperature Tm (1,623, 1,648, and
1,673 K), and the initial width of the weak zone between the oceanic
and continental domains (80, 90, and 100 km).

Modeling results

For a young plate such as the Cocos plate in southern Mexico
(Sdrolias and Muller, 2006), grain-size reduction and ductile
damage in the outer rise region facilitate spontaneous subduction
initiation. The numerical model incorporates the damaged fault
zones, owing to the reactivation at the outer rise. We varied the
initial oceanic plate age at the trench from 25 to 35 Ma, with 5 Myr
increments, and other parameters were set as follows: overriding
plate age 70 Ma, potential temperature Tm = 1623 K, and the
initial width of the weak zone between the oceanic and continental
domains set at 100 km. Modeling results show that for oceanic
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FIGURE 2
Modeling results: (A) effective viscosity, (B) temperature, (C) rock composition. Location of the 2017 Mw8.2 Tehuantepec earthquake hypocenter and
the strike-averaged amount of slip of the mainshock are derived from the study by Zhang and Brudzinski (2019), and (D) grain size. White dashed curve
represents the present-day Cocos slab geometry along profile A-A′ shown in Figure 1A. The black thin curve at the base of oceanic lithosphere in (A, D)
represents the 1,300°C isotherm. The horizontal axis corresponds to the localization of the real MAT relative to the position of the 2017 Mw8.2
Tehuantepec earthquake.

plate ages of 30 Ma (Figure 2; Supplementary Figures S3–S6) or
35 Ma (Supplementary Figure S7), predicted plate geometries are
similar with the present-day slab shapes (Zhang and Brudzinski,
2019). However, for the model with a plate age of 25 Ma, the
slab bends easier into the upper mantle, and slab geometry misfits
the slab shape. At the same time, we observe that irrespective
of oceanic plate age, model simulations predict slab segmentation
through localized shear bands. For the model with an oceanic
plate age of 35 Ma, we observe the presence of two V-shaped
concentrated shear band regions in the area of the 2017 Tehuantepec
intraslab earthquake. They merge into a single region but at higher
depths (Supplementary Figures S8–S10). On the other hand, the
influence of the overriding plate thermal structure is not significant.
A thermal gradient specific for plate ages of 60 Ma and 80 Ma
produces slab segmentation and geometries that fit the observations
(Supplementary Figures S11–S14). Increasing the mantle potential
temperature with 25 K (Tm = 1648 K) and 50 K (Tm = 1673 K),
respectively (Supplementary Figures S15–S18), leads to increased
slab dips, with the clear formation of slab segments delimited
by focused damaged zones (Supplementary Figure S16), as in the
previous simulations.

The width of the weak zone plays a crucial role in subduction
initiation. Models with an initial width of 80 km or less fail to
subduct (Supplementary Figures S19–S22), whereas increasing the
width to 90 km or more facilitates subduction. In the following
sections, we discuss modeling results for one simulation (Tm
= 1625 K, oceanic plate age = 30 Ma, overriding plate age =
70 Ma, and the width of the weak zone = 100 km) that best fit

the present-day geometry and other observations. Owing to its
weak mechanical properties, the initial stage of the modeling is
marked by the weak zone dripping into the mantle, and slab starts
to bend downward gently only after approximately 0.25 Myr of
evolution (Supplementary Figure S3). As the subduction proceeds,
the overriding portion initially located above the weak zone is
exposed to extension that even creates a small short-lived transitory
region of partial melt (Supplementary Movies SM1, SM2). Once
the highly viscous Cocos plate starts to bend, we observe the
formation of a wide region of bending-induced damage in front of
the trench at the outer rise (Supplementary Figure S4). The viscosity
in the damaged area characterized by a sequence of parallel shear
bands decreases several orders of magnitude compared with the
undamaged plate. Therefore, we can consider these low-viscosity
shear bands the equivalent of plate faulting. In the outer rise, the
faulting network has a lenticular shape controlled by the amount of
slab bending in the region. It penetrates the first half (∼25 km) of the
Cocos plate in the brittle region, and the lower part of the damaged
region is limited to the ∼700°C isotherm.

As depicted in previous studies of outer rise faulting
(Faccenda et al., 2008), our model also shows the formation of
a dense arrangement of shear bands disposed symmetrically at
∼30° from the vertical (Figure 3A). Below the ∼700°C isotherm
in the outer rise region, no brittle faulting is observed, indicating
that the slab entered into ductile regime at that depth. The thin
grain reduction band system in the outer rise starts forming as
early as 0.25 Myr after model initiation and continues to grow
in length and thickness as the slab bending further progresses
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FIGURE 3
(A) Effective viscosity distribution and the location of the 2017 Mw8.2 Tehuantepec earthquake hypocenter. (B) 3D view of the Cocos plate bathymetry
[Global Multi-Resolution Topography (GMRT) Data Synthesis, distributed by OpenTopography: https://doi.org/10.5069/G9BG2M6R] and the forearc in
the vicinity of MAT showing the distribution of reactivated seafloor faulting fabric. MAT, Middle America Trench; TFz, Tehuantepec fracture zone. (C)
The observed bathymetry across the B-B′ cross-section shown in (B). Based on ocean floor bathymetry, dashed black lines mark our interpretation of
depth distribution of abyssal faulting in the vicinity of MAT.

(Supplementary Figure S5). In terms of Cocos plate damage before
subduction in southern Mexico, the oceanic plate is clearly affected
by abyssal faults disposed in a rather regular network subparallel
with the MAT orientation (Figure 3).

Analyzing the faulting patterns using effective viscosity along the
downgoing plate (Figure 2A), we observed that brittle deformation
is concentrated in narrow low-viscosity shear bands, or faults,
which cut the oceanic plate up to the surface. In the outer rise
region at the surface, we note values of faulting spacing that vary
from ∼5 km off trench to ∼8 km near the trench (Figure 3A). The

outer rise population of several abyssal faults is clearly visible in
the bathymetry map (Figure 3B-inset), and this is partially due
to a quite thin (<200 m) sedimentary layer of the Cocos plate in
that area (Manea et al., 2003). As the subduction model evolves
and the slab sinks further into the mantle, the brittle–plastic
deformation and grain-size reductionwider regions shrink at depths
until a localized narrow region (∼25 km in length) composed of
only few shear bands is observed (Figure 2). We also observe
that the cold core of the slab reaches 150 km depth or more
(Figure 2B), and it is consistent with the intraslab seismicity in
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this area (Rebollar et al., 1999). Following the plate curvature
deeper into subduction, faulting fabric gradually ceases in the upper
part of the downgoing slab, owing to the increase in yielding
stress due to the continuous increase in pressure (Figure 2A).
However, due to the feedback between grain-size reduction and
brittle and ductile deformation, slab damage merges at depth
into a quite narrow area (Figure 2A; Supplementary Figure S4).
This process represents the slab segmentation process that creates
integral high-viscosity slab blocks loosely linked in a chain-like
manner by a quite narrow faulted zone (Gerya et al., 2021). In our
simulation, the location of the 2017 Mw8.2 Tehuantepec earthquake
hypocenter corresponds to the 700°C isotherm and to one of
the localized plate damage zones. The high temperature observed
above the slab (Figure 2B) represents a remnant of the initial
hot temperature in the weak zone, necessary to allow subduction
initiation (Supplementary Figure S6; Supplementary Movie SM2).

Grain-size reduction inside the Cocos slab is unevenly
distributed due to normal fault weakening. Regions with increased
plate damage by fault weakening show concentration of the grain-
size reduction area (Figure 2D). Our model prediction suggests that
the 2017 Mw8.2 Tehuantepec earthquake might have occurred in
a region inside the slab marked by the transition from a normal
grain slab to grain-size reduction. At the same time, the dip of
the mainshock slip (Figure 2C) is in a fairly good agreement with
the orientation of one of the main shear bands in the localized
damaged region (Figure 2A).

Discussion and conclusions

In this work, we present an updated thermomechanical model
of subduction in southern Mexico in the region where a large Mw8.2
Tehuantepec intraslab earthquake occurred in 2017. The main goal
is to better understand the thermomechanical conditions inside
the Cocos slab that control the occurrence of such unusual event
where the rupture area propagated extremely deep and cut through
almost the entire oceanic lithosphere. Currently, based exclusively
on seismological evidence, it is difficult to identify the actual
mechanism that could be the main cause of the large 2017 Mw8.2
Tehuantepec intraslab earthquake. However, using our numerical
predictions, we can explore different hypotheses and propose a
model that explains how it was possible to accommodate such an
extensive rupture area through the Cocos slab (Melgar et al., 2018).
Compared with the previous version of the thermal model (Manea
and Manea, 2008), this updated simulation includes spontaneous
bending, a realistic visco-plastic rheology, grain-size reduction,
and growth processes assisted by Zener pinning for the ocean
lithospheric mantle (see Methods). Figure 3A shows the viscosity
distribution of the subducting Cocos plate, where ∼100 km-wide
slab segments of high viscosity (∼1025 Pa s) are formed, separated
by narrow low-viscosity zones (∼1020 Pa s) concentrated in shear
bands. These slab segments are strong (i.e., have high viscosity),
whereas the joints between these segments are mechanically weak.
This specific viscosity pattern forms as a consequence of localized
brittle–ductile deformation that is linked with grain-size reduction
initially formed at the outer rise (Figure 2D). A dynamically
self-consistent process is responsible for such Cocos slab
segmentation, where ductile damage (through grain-size reduction)

at the outer rise creates the conditions, which, at depth, when
combined with fault weakening result in a localized slab
segmentation. The feedback between faulting and grain-size
reduction has to be strong in order to obtain such sharp slab
segmentation. Supplementary Movie SM3 shows how an initial
reduction of grain size is formed at the outer rise, and then, once
formed, it propagates with the slab.Then, at depth, due to strong slab
bending coupled with the grain-size reduction zone, a ductile strain-
localization deformation (where slab viscosity is reduced along high-
strain-rate shear bands) pattern occurs. The relationship between
trench faulting at the outer rise and intraslab seismicity is well
known along MAT, where there is a good correlation between bend
faulting with sectors of the slabs with higher intermediate-depth
seismicity (Ranero et al., 2005).

We explore the evolution of Cocos plate subduction in
terms of slab shape, temperature, and viscosity and compare
with observations, including the location and the mainshock slip
distribution of the 2017 Mw8.2 Tehuantepec intraslab earthquake
off trench bathymetry in southern Mexico, showing the existence of
an extensive system of faulting (Figures 3A, B), which is the plate
reaction to slab bending as the Cocos plate organizes the state of
stress before entering subduction. In southern Mexico, south of
the Tehuantepec fracture zone (Figure 1A), the fault pattern makes
an angle with MAT of ∼30°, and this suggest that they are not
new faults but rather a reactivated abyssal hill fabric formed at
East Pacific Rise (Masson, 1991). When the system of abyssal faults
near trench maintains a systematic angle (e.g., 30°), this strongly
suggests that they are relict from mid-ocean ridge spreading and
reactivated near trench. This contrasts with newly formed faults,
which would align with the local stress field characterized by thrust
faults aligned at a lower angle (e.g., 10°–30°) with the trench.
Our numerical simulations satisfactorily capture the dynamics of
outer rise deformation. We predict a faulting pattern where the
slab is damaged upon entering subduction, with a system of
localized shear zones spaced between 5 and 8 km, similar with the
observations (Figure 3B, C).

The maximum depth extent of this fault system is approximately
20 km, and it is temperature controlled by the 700°C isotherm
(Figure 4). This fault length is comparable with the maximum
observed depth of abyssal (normal) faults along MAT, where they
typically extend down to 15–20 km within the oceanic lithosphere
(Ranero et al., 2003). In addition, Craig et al. (2014) revealed that
several focal mechanisms recorded in the outer rise in southern
Mexico along MAT are located based on their focal mechanism.
The normal-fault events are concentrated in the upper part of
the Cocos plate at depths <10 km, whereas the thrust events are
located deeper (i.e., 26 km depth). This observation suggests that
the transition from extension to compression in the oceanic plate
takes place at ∼15 km depth below the seafloor or even more. As the
oceanic plate proceeds into subduction due to the strong interaction
between brittle and ductile damage localization, the ∼150-km-wide
outer-rise area affected by the reactivated hill fabric merges into
a fairly compact “V”-shaped deformation zone (Figure 4A). The
depth orientation of one of our main deep shear bands in this is in
good agreement with the orientation of the main shock slip of the
2017 Mw8.2 Tehuantepec intraslab earthquake. This suggests a close
relationship between the two, at least for the upper half of the Cocos
slab, where most of the slip is localized. In terms of temperature, we
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observe that the 2017 Tehuantepec intraslab earthquake is localized
in the near proximity of the 700°C isotherm, which marks the
transition from brittle to ductile regimes. Although the predicted
slab temperature in the hypocenter area is high, the estimated
amount of fluids potentially contained in the oceanic lithosphere
show that the Mw8.2 Tehuantepec intraslab earthquake occurred
in the stability field of chlorite (2.4 H2O wt% - Figures 5A, B). As
the intraslab earthquake occurred in the lithosphere, our models
do not predict breakdown of chlorite lherzolite in the hypocenter
region, and it is possible that a mechanical origin (that reflects
strong internal deformation to accommodate downward bending
of the Cocos slab) prevails. What is quite unusual is that slip
also propagated downward below the hypocenter, however in a
smaller amount (<1.5 m) (Melgar et al., 2018; Okuwaki and Yagi,
2017; Ye et al., 2017; Melgar et al., 2018; Meng et al., 2019).
Here, the slab temperature exceeds even 1,200°C and extends in
the region where the slab gradually returns to the larger grain
size (Figure 5C), and weakening of the lithosphere is essential to
permit slip propagation in this area. In subduction zones, under
upper mantle conditions, smaller grain size reduces viscosity. Fine-
grained rocks formed due to strong deformation (i.e., mylonites)
tend to facilitate strain localization and weakening. It is known
that the nature of deep intraslab earthquakes is still difficult to
be explained due to high-temperature and high-pressure regime.
In general, several individual hypotheses are proposed to explain
what causes intraslab earthquakes within the subducting slabs under
extreme P-T conditions: dehydration embrittlement (Green and
Houston, 1995;Hacker et al., 2003; Frohlich, 2006), transformational
instability or faulting (Green and Houston, 1995; Seno, 2009;
Ferrand et al., 2017; Hasegawa and Nakajima, 2017), and thermal
runaway (Hobbs et al., 1986; Ogawa, 1987; Kelemen and Hirth,
2007; Kita and Katsumata, 2015; Thielmann, 2018). In Figure 5C,
we observe that the hypocenter of the 2017 Mw8.2 Tehuantepec
intraslab earthquake is located in a region characterized by a reduced
grain size. Actually, most of the reduced grain size area is located
below the hypocenter, at depth below the brittle–ductile boundary.
It is proposed that if the grain size is sufficiently reduced, then
lithospheric rocks can easily deform and facilitate rock failure by
transformational faulting. Grain-size reduction and rock failure by
transformational faulting can be interconnected processes and play
a meaningful role in the deformation and mechanical behavior of
rocks, particularly in tectonic settings like subduction zones. Grain-
size reduction indicates the decrease in the size of mineral grains
within a rock; transformational faulting refers to the formation of
faults or narrow shear zones, where deformation is accompanied by
significant changes in mineralogy and microstructure (Hirth and
Kohlstedt, 2003).

In terms of mechanical strength, grain-size reduction weakens
the rock, making it more susceptible to localized deformation and
faulting. At the same time, fine-grained rocks are more prone
to ductile deformation mechanisms, which can cause transition
to faulting (Bercovici and Richard, 2014). On the other hand,
transformational faulting is a driver of grain-size reduction, where
intense deformation along faults can cause cataclasis and dynamic
recrystallization, further reducing grain size. There is a feedback
loop between the two processes: grain-size reduction weakens the
rock, promoting faulting, and faulting generates further grain-
size reduction through deformation. This feedback loop can lead

to the development of highly localized shear zones or fault
systems, including in regions where temperature is above the
brittle–ductile limit.

Althoughwe do not have incorporated transformational faulting
mechanisms in our numerical simulations, we suggest that the
hypothesis is worth future investigation for the case of the 2017
Mw8.2Tehuantepec intraslab earthquake, where, due to the interplay
between the bending-induced plate damage and grain reduction,
our models predict an increased volume of the grain reduction zone
just below the hypocenter (Figures 2, 5C). Grain-size reduction in
this area is significant as it decreases from ∼3 mm inside the slab
in the brittle region to ∼0.05 mm (Figure 2D). The occurrence of
transformational faulting is hypothesized based on the presence,
at the base of the brittle upper plate, of a zone of reduced grain
size, as also predicted in the models of Gerya et al. (2021).
The fine grain size of the parent rock is a prerequisite to allow
garnet exsolution in orthopyroxene to have a significant rheological
weakening effect. Garnet exsolution in orthopyroxene can separate
from the hostmineral orthopyroxene due to changes in temperature,
pressure, or chemical composition. Fine-grained rocks, as predicted
by our model (Figure 2D), tend to have a higher density of grain
boundaries, which act as nucleation sites for garnet exsolution.
Smaller grains provide more surface area for chemical reactions and
phase transformations, facilitating the exsolution process. At the
same time, garnet exsolution along grain boundaries can enhance
grain boundary sliding, a deformation mechanism that weakens the
rock (Faryad et al., 2009). In subducting slabs such as the Cocos slab,
fine-grained rocks undergoing garnet exsolution have the potential
to localize deformation, facilitating slab bending and segmentation.
In our model, we observe four orders of magnitude reduction in
slab viscosity (from 1025 Pa s to 1021 Pa s) in the region below the
brittle–ductile limit and focused toward the hypocentral area of the
2017 Tehuantepec earthquake (Figure 4A).

The abovementioned assumptions are based on the
experimental results of Shi et al. (2022), who recorded acoustic
emissions in peridotite samples deformed under conditions that led
to the formation of ultrafine (sub-micrometric) garnet exsolution in
orthopyroxene, which can further decrease the fine grain size of a
shear zone. According to Shi et al. (2022), for the transformational
faulting mechanism to be effective, the mantle peridotite should
be in a temperature range, where localized shearing can occur, of
1,000–1,100 K (727°C–827°C). This is relatively consistent with
our model prediction that shows a temperature range below
the hypocenter of 700°C–900°C (Figure 5). As extrapolating the
experimental results of Shi et al. (2022) to natural tectonic systems
is not straightforward, another alternative explanation for the
downward propagation of the 2017 Tehuantepec intraslab seismic
rupture, independent of a specific occurrence of a metamorphic
reaction, might be the sudden increase in strain rates (Ellis and
Stöckhert, 2004).

Our models show that the rupture plane propagated further
down under even higher P-T conditions and beyond the predicted
grain reduction zone. As transformational faulting is limited by P-
T conditions inside the slab, the rupture propagation at extreme
temperature levels points toward a different rupturemechanism.We
propose the conversion of the transformational faulting mechanism
into a thermal runaway process. Yet, how this change actually takes
place remains an interesting topic for future research.However, there
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FIGURE 4
(A) Effective viscosity distribution. Dotted black curve represents the 700°C isotherm that delimits the brittle and ductile regimes inside the Cocos slab.
The white thin continuous curve at the base of oceanic lithosphere represents the 1,300°C isotherm. (B) Temperature distribution. In both figures, we
show the location of the 2017 Mw8.2 Tehuantepec earthquake hypocenter and the strike-averaged amount of slip of the mainshock (Zhang and
Brudzinski, 2019). White dashed curve represents the present-day Cocos slab geometry (Zhang and Brudzinski, 2019) along the profile A-A′ shown in
Figure 1A. Blue beach ball focal mechanisms represent historical seismicity from SSN (2017). Yellow diamonds represent aftershocks from
the study by Zhang and Brudzinski (2019).

are few lines of evidence that might help shed some light on this
topic.Thermal runaway occurswhen a small increase in temperature
triggers processes that further increase temperature, creating a self-
sustaining cycle. The common drivers for the subducted oceanic
lithosphere include dehydration reactions and shear heating. Most
hydrousminerals (e.g., serpentine and chlorite, Figure 5)would have
already broken down at lower temperatures (T < 800°C). Therefore,
the potential for thermal runaway driven by dehydration reactions
is reduced. Frictional heating along the slab–mantle interface, or
within the base of the slab, could still contribute to localized
temperature increases, but the efficiency of shear heating depends on
the strain rate and the rheology of the slab in that region. Ourmodel
predicts a temperature in the region of the thermal runaway process
exceeding 1,000°C. We suggest that if thermal energy is generated
faster enough than the lateral conductive transport, then mantle
rocks are eventually locally destabilized, allowing the rupture area
to propagate in high-temperature areas. At this high temperature
and confining pressure, the presence of pore fluid is unlikely, and
according to the experiments of John et al. (2009), the rocks could

fail by the mechanism where ductile deformation in shear zones
leads to heating, thermal softening, and weakening of rocks.

Information from seismological analysis of this large intraslab
event helps place some constraints and limitations on our numerical
results and interpretations. For example, Singh et al. (2014) reported
a decrease in stress by ∼37–60 MPa for several large intraslab
earthquakes beneath Mexico, and García et al. (2004) proposed
that a median value of 30 MPa for stress decrease is a general
characteristic for the intraslab Mexican earthquakes. However,
Ye et al. (2017) calculated stress decrease of only 18 MPa for the
M8.2 2017 Tehuantepec earthquake. This might suggest a reduced
fault strength due to warmer or more ductile conditions inside the
slab in the rupture zone. In addition, such relatively reduced amount
of stress decrease can indicate that the earthquake, or part of it,
may have occurred in a region of the slab where stress is more
diffuse, rather than being concentrated on a single fault. Small stress
decrease could indicate the presence of fluids from dehydration
reactions within the subducting slab, which can reduce further
effective stress along the rupture area. In terms of shear wave velocity
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FIGURE 5
(A) Calculated temperature isocurves. The square inset depicts the hydrous phase distribution inside the Cocos slab, according to the phase diagram of
hydrated lithospheric mantle (lower left inset) (Suenaga et al., 2021; Lee and Kim, 2021). The semitransparent area represents the oceanic crust. (B) A
magnified representation of the square inset shown in (A). (C) Effective viscosity distribution for the inset region shown in (A). The semitransparent area
is the predicted grain reduction area from Figure 1D. In all figures, we show the location of the 2017 Mw8.2 Tehuantepec earthquake hypocenter and
the strike-averaged amount of slip of the mainshock (Zhang and Brudzinski, 2019). White dashed curve represents the present-day Cocos slab
geometry (Zhang and Brudzinski, 2019) along profile A-A′ shown in Figure 1A.

for large intraslab earthquakes produced in different subduction
environments, this ranges from 4.5 to 5.0 km/s, depending on the
depth and composition of the subducting slab (Zhao et al., 1994;
Kirby et al., 1996; Hacker et al., 2003; Abers, 2005). These velocities
are higher than those in the surrounding mantle due to the slab’s
cooler and more rigid nature. For the M8.2 2017 Tehuantepec
earthquake, Ye et al. (2017) fitted the teleseismic data with a
maximum rupture expansion velocity of only 3–4 km/s (the average
source spectrum fits for a shear wave velocity of 3.75 km/s) and total
rupture lengths of 160 kmor longer. Such a low shearwave velocity is
anomalously slow for a cold and rigid oceanic lithosphere, indicating
some specific or additional physical conditions within the slab. In
other subduction zones, such as Japan, Cascadia, and SouthAmerica
(Kawakatsu and Watada, 2007; Nakajima et al., 2009; Bostock et al.,
2002; Audet et al., 2009; Sippl et al., 2022; Haberland et al., 2009),
the results of seismological data analyses have identified regions
within the slab with S-wave velocities lower than 4 km/s. These
anomalies are often linked to hydration and serpentinization, partial
melting, thermal anomalies, or areas of intense deformation. Our
model shows that the P-T condition of the upper part of the rupture
area (above the brittle–ductile limit, Figure 5A) allows for partial
serpentinization of the slab. For the deeper part, however, dry
slab conditions are expected, but partial melting of dry peridotite

unlikely occurs due to the low P-T conditions predicted from our
model along the rupture area.

In terms of a localized thermal anomaly, Calò (2021) identified
several Vp/Vs seismic wave velocity anomalies within the Cocos slab
in southern Mexico. However, these anomalies are located deeper
(i.e., at 100 km depth) within the slab than the rupture area of
the Mw8.2 2017 Tehuantepec earthquake. Our model predicts the
existence of an overthickened area of grain-size reduction below the
brittle–ductile region (Figure 5C). It is known that in subducting
slabs, grain-size reduction represents a key process that influences
themechanical properties of the slab, particularly its rigidity (Karato
and Wu, 1993). A reduction in rigidity due to grain-size reduction
can make the slab more ductile and less capable of transmitting
seismic waves efficiently. This might be an explanation for the
anomalously slow shear wave velocity associated with the rupture
area of the Mw8.2 2017 Tehuantepec intraslab earthquake.

Our numerical models adjust well several characteristics of the
subduction of the Cocos plate in the segmentwhere the Tehuantepec
earthquake nucleated. Although the formation of slab segments
delimited by damaged zones is observed for a wide range of
modeling parameters (S3–S22), only few models fit the present-day
slab shape (Figure 4). Additionally, our best-fit model satisfactorily
predicts the plate flexure fault spacing in front of theMiddleAmerica
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Trench segment before subduction in southern Mexico (Figure 3).
Although our models do not include a yielding criterion under
high P-T conditions specific for a ductile regime inside the slab,
based on the abovementioned lines of evidence, we hypothesize
that the 2017Mw8.2 Tehuantepec intraslab earthquake was probably
facilitated by slab dehydration and ruptured above the hypocenter
along a preexistent extensional faulting reactivated in the vicinity
of the trench axis. Below the hypocenter, faulting is challenging
to be explained. We propose a process by cascading two different
mechanisms. Just below the hypocenter, slip might be controlled
by transformational faulting that eventually transfers into thermal
runaway outside the grain-reduction zone, where temperature
exceeds 1,000°C.

Our model can be extended in the future to allow fracture
to propagate into the ductile part of the slab but requires a
thorough understanding of the failure criterion. As prior weakening
is required for thermal runaway, and grain-size reduction is part
of our models, the approach of Thielmann (2018) is probably
the best candidate. In this model, the viscous part of the
rheology is complex and composed of four components, namely,
diffusion creep, dislocation creep, low-temperature plasticity, and
dislocation-accommodated grain boundary sliding. A possible
localized viscosity reduction in the ductile part of the slab
depends on the strain rate and temperature and also produces
a stress decrease in the affected region. On the other hand,
transformational faulting is still not well understood at shallower
depths (50–100 km), as in our model where the 2017 Tehuantepec
occurred. A recent study by Sindhusuta et al. (2025) has shown that
phase transformation of olivine to spinel results in strong strain
localization (spinel is mechanically weaker than olivine), depending
of the P-T conditions. This model is more applicable for high-
pressure conditions specific for themantle transition zone.However,
the phase diagrams of olivine-to-spinel phase transformation (Ross
and Navrotsky, 1987; Sindhusuta et al., 2025) shows that this phase
transformation is possible even at lower pressure (0.5–1 GPa) and
high-temperature conditions (1,200–1,350 K), which are relatively
close to our estimates.
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