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Seismic data acquisition inevitably faces disruptions from various environmental
sources, such as factories, machinery, and highways. These disturbances
introduce anomalous amplitudes in seismic data, significantly compromising
the signal-to-noise ratio (SNR). At present, the primary approach for denoising
such noise involves direct attenuation when amplitudes surpass a predefined
threshold. However, determining this threshold relies on the window size of the
selected data. Small windows are unable to suppress continuous anomalous
noise traces, while using larger windows to calculate thresholds results in
inaccurate outcomes. Furthermore, the window-based threshold computation
can inadvertently damage non-noise strong amplitude signals, like near-offset
traces or surface waves. In this study, we take advantage of the distinctive
characteristics of seismic data acquired by nodal instruments. These instruments
not only record seismic data but also preserve pure environmental signals which
are recorded ahead of the shooting time. Combining the statistical distribution of
the amplitudes of pure environmental signals and deep learning techniques, we
identify data samples potentially contaminated by anomalous amplitude noise
in the seismic data. Based on noise identification, we propose a novel pointwise
adaptive threshold (PAT) method. This entails calculating an individual threshold
value for each noise sample and subsequently applying noise attenuation. The
proposed method offers several benefits, including more accurate threshold
computation, preservation of effective signals with strong amplitudes, reducing
the dependence on picking precise first-break, and simultaneously addressing
multi-trace and single-trace anomalous amplitudes. Moreover, this approach
has high robustness, as misidentification in local sample points does not
influence the outcomes of noise attenuation.

KEYWORDS

anomalous amplitude noises, attenuation, nodal land seismic data, denoising, deep
learning

1 Introduction

During the acquisition of seismic data, it is inevitable that geophones will also record
environmental vibrations, such as machinery, highways, railways, factories, pedestrians, etc.
These external factors can introduce noise with anomalous amplitude into the seismic data.
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This noise belongs to non-coherent noise and has the characteristics
of strong amplitude and wide frequency band. As anomalous
environmental noise has much larger energy than the seismic
signal, the signal-to-noise ratio (SNR) of these anomalous traces
is extremely low. The noise traces with poor SNR will corrupt
the seismograms and consequently affect the subsequent seismic
processing (Anderson and McMechan, 1989).

Compared with random or coherent noise, anomalous
environmental noise can greatly deteriorate the data and is often
difficult to remove. So far, the commonly used approach is first
to scan the data and locate the noise as signals with amplitudes
exceeding a predefined threshold (Anderson and McMechan,
1989). When the noise is identified, it is usually directly removed
or attenuated with a suppression coefficient because this type of
noise dominates in the data of low SNR. The threshold for noise is
typically determined by statistically averaging the trace amplitudes
along the sample points in a time window. Any amplitude in the
window greater than the threshold will be identified as noise and
then attenuated. Similarly, the identification and attenuation of
noise can also be processed in the frequency domain, where the
same attenuation procedures are applied in different frequency
bands (Guo and Lin, 2003). This approach is effective for noise
with dominant components at specific frequencies. These methods
are referred to as the window-based statistical (WST) methods.
Besides, median filtering, as a statistical method, can also be used
to detect and attenuate abnormal amplitudes (Liu et al., 2009;
Hu and Lu, 2014; Jun et al., 2016). However, median filtering
cannot denoise the continuous noise traces. Noise identification
first requires the calculation of a reference amplitude which can be
the absolute mean value, root mean square amplitude, maximum
absolute amplitude, or other measures. The threshold is usually a
multiple of reference amplitudes. Bekara et al. (2008), Bekara and
van der Baan (2010) proposed an automatic threshold detection
technique to speed up the identification of abnormal noise. This
method avoids the adjustment of the threshold at high frequencies
in different data regions. Wu et al. (2017) proposed an exponential
attenuation function based on wave propagation theory, which
exhibits better amplitude preservation performance compared to
the fractional function.

For attenuating anomalous amplitude noise, the algorithms
currently employed in various commercial software are similar.
Both identification and attenuation rely on thresholds which are
calculated by theWSTmethod.Therefore, the size of window largely
dictates the threshold value and the denoising outcome. Larger
windows are suitable for continuous anomalous amplitude traces
but can easily damage strong amplitude signals from non-noise
sources, such as surface waves or near-offset traces with strong
energy. Smaller windows provide more precise threshold values but
are only suitable for local anomalous amplitudes and cannot handle
continuous anomalous amplitude traces. In commercial software,
it is common to determine an appropriate window size through
trial and error.

The advancement of deep learning has led to the creation of
various methods in recent years aimed at mitigating seismic noise
(Yu et al., 2019;Dong et al., 2022; Yang et al., 2022; Liu andMa, 2023).
Tian and Lu (2021), Tian et al. (2022) used conventional anomalous
amplitude attenuation methods to create a training dataset and
employed deep learning to identify the noise distribution conditions

in the data.Then based on the identification, an appropriate window
size was determined, and conventional methods were used to
remove anomalous amplitude noise. However, due to the complexity
of anomalous noise characteristics, solely relying on deep learning
for noise identification can lead to unstable results. For example,
(Tian and Lu, 2021; Tian et al., 2022) treated certain anomalous
amplitude noise as valid signals due to poor identification, which
resulted in a disturbed denoising outcome. Li et al. (2024)
constructed a pure deep-learning method to suppress abnormal
environmental noise utilizing the characteristics of the data collected
by the nodal instrument. However, it is difficult to have high-quality
labels in the noise-dense case, resulting in a poor denoising effect.

The nodal land seismic acquisition system is convenient
for setting up the instruments and has replaced the traditional
method of cable-based reception (Dean et al., 2018). After the
nodal instrumentation is deployed, it records signals all the time.
Therefore, when the acquisition is completed and signals are fully
collected, workers need to download, cut, and recombine data to
form the conventional seismic data (Jin et al., 2021). This also
means that in the nodes, not only the seismic signals after shooting
are recorded, but also the environmental noise before shooting.
Given the unique characteristics of nodal instruments, we propose
a novel joint noise identification and attenuation method (the joint
method). The noise identification integrates deep learning and
environmental record analysis to identify seismic traces that may
contain anomalous amplitude noise. On top of the identification,
we devise a new method of threshold calculation. For each noise
sample, we calculate their respective reference amplitudes. We
refer to this method as the pointwise adaptive threshold (PAT).
This method can achieve more stable noise attenuation and is
unaffected by misidentification in local noise traces. The main
objective of this research is to provide a framework for identifying
and attenuating anomalous noise. Compared to the WST method,
the primary advantage of the joint method lies in its ability to
simultaneously handle multiple traces and local anomalous noise
without damaging strong energy signals from non-noise sources.
The paper is organized as follows: first, we briefly review the existing
method, i.e., theWSTmethod.Then, a joint method combined with
environmental noise analysis and deep learning is proposed to mark
the noise traces, and a PAT method is proposed to calculate the
threshold. Finally, application to field nodal land seismic data shows
that the joint method can effectively remove the anomalous noise
while preserving valid signals with strong amplitudes.

2 Methods

2.1 The conventional window-based
statistical method

In a set of seismic traces, when certain amplitudes within a
user-defined data window exceed an amplitude threshold, they are
considered anomalous amplitudes. In shot gathers, the amplitude
of the first-break is relatively strong, and there is a sudden change
of energy. To avoid damage the first-break, a cut-off curve is
often defined in the vicinity of the first-break. Data processing is
performedbelow the cut-off curvewhile preserving the data above it.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1535990
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Mao et al. 10.3389/feart.2025.1535990

Data will be processed by dividing it into small groups of data
based on a spatial window. Each group of data is defined as Seis(i, j)
which consists of nx traces and nt time samples (where i represents
the time sample i = 1 ∼ nt, and j represents the spatial trace j = 1 ∼
nx, where the parameter nx also means spatial window size. Next,
the following operations will be performed:

2.1.1 Define cut-off curve
A first-break curve or a cut-off curve needs to be defined. Noise

attenuation is applied only to the data below this curve.

2.1.2 Smooth data
Smooth the data for each trace in the time-axis direction using a

time window with a length of winslide (with 40 ms as default value).
First, we take the absolute value of the samples in each trace. Then,
we apply a smoothing filter (moving average) along the time-axis.
The resulting smoothed data is denoted as A(i, j).

2.1.3 The calculation of reference
amplitudes–WST method

Using the output from step (2), in the spatial-axis direction,
when the number of traces in a subdata (nx) is less than 3, the
reference amplitude value can be obtained by calculating the mean
value of each spatial sample.When the number of traces (nx) exceeds
3, the reference amplitude value is the mean value of three adjacent
points near the median point. Thus, a reference amplitude for each
time sample can be calculated to form a reference amplitude trace
B(i).

2.1.4 The calculation of attenuation coefficients
When the raw amplitude exceeds ma (threshold parameter)

times the reference amplitude B(i) (the noise threshold value),
the attenuation coefficients are calculated by multiplying the
reference amplitudes with the attenuation scale, then dividing by the
amplitude of the smoothed data. When the raw amplitude is below
the noise threshold, the attenuation coefficient is set to 1.

Coe f(i, j) =
{{
{{
{

B(i) ∗ α
A(i, j)
,Seis(i, j) > B(i) ×ma

1 ,Seis(i, j) ≤ B(i) ×ma

(1)

where α is the attenuation scale, Coe f(i, j) is the attenuation
coefficient.

2.1.5 Anomalous amplitude attenuation
The attenuation coefficient is both time- and spatial-dependent.

The denoised data denoise(i, j) can be obtained by multiplying each
sample point in the raw data with its corresponding attenuation
coefficient. The following equation can be used to describe this:

denoise(i, j) = Coe f(i, j) ∗ Seis(i, j). (2)

2.2 Joint noise identification and
attenuation method (joint method)

The existing method inherently has several drawbacks: (1)
the attenuation result depends on the spatial window size nx.

FIGURE 1
Environmental noise and seismic signals in seismic data recorded by
nodal instruments.

Continuous noise traces require a large spatial window nx, while
individual abnormal trace requires a small nx. It is difficult to
process all noise through a fixed window size. However, in practical
applications, the whole data is often processed using a single
window size.This method has the issue of incomplete attenuation of
anomalous noise or potential damage to valid signals. (2) In seismic
data, some non-noise signals, like surface waves or the traces near
the source, also show strong amplitudes. The removal of surface
waves requires more suitable methods and should not be directly
attenuated.

With the advancement of seismic data acquisition, we
propose a new method for identifying and attenuating anomalous
environmental noise. The new method can effectively address the
aforementioned shortcomings of the existing methods. The joint
method consists of two steps: first identifying the location of the
noise and then, attenuating the identified noise.

2.2.1 Noise identification
The noise identification fully utilizes the characteristics of the

nodal instrument. Unlike traditional cable instruments, the data
recording begins after the source excitation. Nodal instruments
are wireless and start working once they are placed in the field.
Regardless of whether there is source excitation or not, the
nodal instruments will continuously record the signal. When the
acquisition is completed, the field staff will download the data from
the nodal instrument. This is followed by cutting the data based on
the time of source excitation and the observation system to obtain
common seismic profiles. In this acquisition approach, it means
that the nodal instruments not only record seismic signals after
the shooting time but also a considerable amount of environmental
noise signals before the shooting time. An example of such data
is shown in Figure 1, which can be simply obtained by keeping
the additional environmental records ahead of the shooting time
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FIGURE 2
The network structure of deep learning.

FIGURE 3
The illustration of the pointwise adaptive threshold (PAT) method.

when cutting the data. Based on the amplitude statistics in the pure
environmental records, we can more easily identify the exact noise
distribution in the seismic records.

The dotted line in Figure 1 represents the shooting time. The
signal above the line corresponds to the pure environmental records,
while the signal below represents the seismic records. Figure 1
also shows that most of the environmental noise exists in both
profiles before and after the shooting time. This feature indicates
that using data before the shooting time to identify the noise
traces is reasonable. However, the actual noise conditions in the
field are more complex: (1) A small portion of anomalous noise
may only appear before shooting time, potentially leading to the
misidentification of noise-free traces as noise traces. Additionally,
some traces with local anomalous noise may be incorrectly marked
as noise-free traces. (2) Some anomalous noise occurs periodically
or intermittently, meaning it does not exist in all time samples.
Marking the entire trace in this situation can lead to over-correction
of valid signals.

Due to the complexity of the field noise characteristics, two
main technical issues exist at the stage of noise identification:

(1) some clean traces can be marked as noise traces (Clean-
to-Noise, CtoN), and (2) some noise traces can be marked
as clean traces (Noise-to-Clean, NtoC). For the CtoN case, we
propose the PAT method to address this issue. In the subsequent
description of the noise attenuation method, we will explain the
characteristics of the PAT method in detail. For the NtoC case,
misidentification is usually due to anomalous amplitudes appearing
only in seismic records. Therefore, we combine deep learning
techniques to further identify the local anomalous noise which only
appears after shooting. The specific flows for noise identification
are as follows.

2.2.1.1 Amplitude statistics of environmental recordings
For the pure environmental recordings, we calculate the absolute

mean value of each trace Mj and all traces Mall, respectively, where
the corner marker j is the trace number.

2.2.1.2 Mark noise traces based on the amplitude
statistics

A threshold parameter ms of noise traces is given. A trace is
marked as a noise trace if its absolute mean valueMj is greater than
msMall (Mj >msMall), or a normal trace if its absolute mean is less
than or equal to msMall (Mj ≤msMall). The parameter ms typically
ranges between 0.1 and 2. Reasonable values for ms can be found
through specific experiments.

2.2.1.3 Creating a deep learning dataset
We create training datasets based on the results from Step (2).

After the operations in Step (2), most of the noise can be identified,
nevertheless a few local noise might remain undetected. These local
misclassifications constitute a minor fraction within the extensive
dataset, thus having minimal impact on the network training.

We use pure environmental recordings to obtain the datasets
of anomalous noise. All marked noise traces in the environmental
recordings are reshaped to form one-dimensional datasets with h
time samples (with a default number of 64). For each segment,
we evaluate and choose the portions whose absolute mean value
is greater than the threshold md ×Mall, where md serves as the
threshold parameter for filtering noise segments.The selected data is
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FIGURE 4
Linear normal moveout results. (a) is the raw data, (b) is the data after LNMO.

TABLE 1 The parameters for the joint method and conventional method.

Methods Parameters Value

Conventional method (WST)

nx 150

winslide 40 ms

ma 2

α 0.7

Joint method

Amplitude identification ms 0.5

Deep learning identification

md 1.5

h 64

lr 0.001

batchsize 1,024

PAT Noise attenuation

np 8

ma 2

winslide 40 ms

α 0.7

used as the final noise datasets.The parametermd is set to be greater
thanms.

We obtain the normal seismic traces from the seismic
recordings (see Figure 1) based on the environmental noise analysis,
i.e., the results from Step (2). Subsequently, each normal seismic
trace is also divided into segments with a length of h samples to
form the normal seismic datasets. We create the label using one-hot
encoding and binary classification.The normal seismic segments are
labeled as (1, 0), while the data obtained by adding noise segments
to the normal seismic segments are labeled as (0, 1).

FIGURE 5
The training accuracy as a function of epoch.

2.2.1.4 Network and training
The task is a binary classification for one-dimensional

segments, so the algorithm is relatively simple. As shown in
Figure 2, the network architecture utilizes the fully connected
neural network (FCNN) structure. Given the possible presence
of a few mis-labeled signals in the training dataset, we add a
dropout layer (Srivastava et al., 2014) to prevent overfitting.
The activation function is Relu. The cross-entropy loss function
and Adam optimizer (Kingma and Ba, 2015) are used to train
the network.

2.2.1.5 Deep learning prediction
The raw seismic data is divided into segments using the same

method as creating training datasets and then fed into the network
to determine whether the data contains noise.

2.2.1.6 Joint identification
The results of amplitude-based analysis and deep learning are

integrated to identify the anomalous noise samples. The data with
identified noise tracesmark(i, j) has the same dimensions as seismic
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FIGURE 6
The noise labeling. (a) Represents the result of amplitude identification, (b) shows the outcome of deep learning, and (c) presents the combined results
by both methods.

data, in which the noise samples are labeled as 0, and normal
samples are labeled as 1. The form of the marked data is shown
in Figure 3.

2.2.2 PAT method
We integrated the amplitude statistics from environmental

recordings and deep learning to mark the potential locations of
noise in data. However, the joint application of both methods
can lead to an increase in CtoN. To address this issue, we
abandoned the traditionalWSTmethod for calculating the reference
or threshold amplitude. For each noise sample, we calculate their
respective reference amplitudes. We refer to this method as the
pointwise adaptive threshold (PAT). The details are described
as follows.

With the marked locations where noise may occur, we calculate
its reference amplitude using the PATmethod for each sample point
labeled as noise.This is illustrated in Figure 3. For each noise sample,
we search for np noise-free samples on both sides along the spatial
axis direction within a single shot gather. If there are fewer than
np points on one side of the data, we acquire the remaining data
points from the other side of the data. After obtaining 2np absolute
amplitudes, we arrange them in ascending order and calculate the
absolute mean of the three adjacent middle points to obtain the
reference amplitude B(i, j).

2.2.3 Noise attenuation
After obtaining the reference amplitudeB(i, j), Equation 3 is used

to calculate the attenuation coefficient,

Coe f(i, j) =
{{
{{
{

B(i, j) ∗ α
A(i, j)

,Seis(i, j) > B(i, j) ×ma and mark(i, j) = 0

1 ,Seis(i, j) ≤ B(i, j) ×ma or mark(i, j) = 1
(3)

Apart from the calculation of reference amplitude and the
piecewise function condition, the meanings of other parameters are
consistent with those in Equation 1. After obtaining the attenuation
coefficient Coe f(i, j), Equation 2 can be used to attenuate anomalous
amplitude noise.

3 The application of field seismic data

We applied the joint method to the nodal land seismic data
acquired in a mountainous area. As shown in Figure 4a, this data
contains not only a substantial amount of anomalous noise but
also many empty traces, which pose a significant challenge for
noise attenuation. Due to the discontinuity of amplitude at the first-
break, we only attenuate the anomalous noise below the first-break.
The joint method requires less accurate picking of the first break.
Therefore, we use the direct wave velocity to automatically calculate
an approximate theoretical first break, which serves as a guide for
subsequent anomalous noise attenuation.

t =
√(sx− gx)2 + (sy− gy)2

v
(4)

where, sx, sy, gx, and gy are the x- and y-coordinates of the
source and receiver points, respectively. t is the theoretical first-
break, v denoting velocity, is assigned a constant value. Before
using Equation 4 elevation static correction shall be applied to the
data. In practical operations, linear normal moveout (LNMO) is
performed based on the theoretical first-break. After processing,
the attenuated data is obtained through reverse LNMO. The
dotted line in Figure 4a represents the calculated theoretical first-
break. The noise attenuation process was performed on the data
after LNMO (Figure 4b).

Weused the jointmethod to identify and attenuate seismic noise.
The conventional WST method is also applied for comparison. The
parameter used in the processing is given in Table 1. In the joint
method, we set a relatively small threshold ms = 0.5 for amplitude-
based identification. On the other hand, we set a noise threshold
md = 1.5 when creating the training dataset for deep learning.
The purpose of setting a small threshold ms is to mark as many
noise traces as possible, but this value should not be too small.
Otherwise, it may lead to continuous misidentification, resulting in
the destruction of valid seismic signals. Using a larger threshold
md is meant to enhance the difference between noise and normal
traces. The segment-based deep learning is employed to focus on
identifying local anomalous noise.

Figure 5 shows the training accuracy of the network. As the
number of epochs increases, the accuracy gradually stabilizes around
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FIGURE 7
Attenuation of anomalous amplitude noise. (a,b) Show the valid seismic data and the removed noise using the joint method, respectively. (c,d) Show
the results using the conventional method (WST).

FIGURE 8
Noise attenuation in CtoN scenarios: (a) The identified noises, (b) the raw seismic data, and (c) the denoised seismic data.
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FIGURE 9
The results of shots 1, 3, and 5 using the conventional method. (a–c) are the denoised data. (d–f) are the removed noise.

94%. Figure 6 shows the marked noise traces. Identification of the
majority of noise traces rely on the amplitude discrimination. As
observed in Figure 6a, a large number of traces that potentially
contain anomalous noise are marked. The results from deep learning
(Figure 6b) show fewer markings, mainly because the noise threshold
used in creating the training dataset is higher than that used in the
amplitude identification (md > ms). Figure 6c shows the final noise
identification results, in which the main noise was identified through
amplitude statistical of pure environment recordings, and local noise
was identified through deep learning. The combination of the two
outcomes can achieve the optimal noise identification.

Figure 7 shows the results of noise attenuation. We compare
the performance between the joint method and conventional
WST method. In Figure 7d, the damage to the first-break due to
noise processing can be observed (the red line trajectory). This is
because the WST method requires the precise first-break during
the attenuation of anomalous amplitudes. In contrast, as shown
in Figure 7b, the joint method exhibits better preservation of the
first-break. This indicates that our method is less dependent on the
precise first-break picks and therefore, is more flexible in practical
applications. In Figure 7d (the red circled part), some loss of valid
signals such as surface waves can also be observed. Although

surface waves are also noise and should be removed in seismic
data processing, they are not considered as anomalous amplitude
noise (Zheng et al., 2010; Yuan et al., 2020; Yang et al., 2023).
There are better methods for suppressing surface waves rather than
direct attenuation. Additionally, strong amplitudes near the shot
points may also be attenuated. The joint method shows better
adaptability in this aspect. Overall, the proposed joint identification
and attenuationmethod exhibits a better noise attenuation result and
shows less damage to valid signals.

4 Discussion

4.1 The impact of incorrect noise
identification

In practical processing, picking the first-break is a very
cumbersome procedure, despite the availability of various algorithms
(Guo et al., 2021; Huynh et al., 2023). If we could attenuate these
anomalous noises before picking the first-break, the picking algorithm
would work better owing to the absence of noise. The joint method
is less dependent on the precise first-breaks. In the above examples,
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FIGURE 10
The results of shots 1, 3, and 5 using deep learning (Li et al., 2024). (a–c) are the denoised data. (d–f) are the removed noise.

satisfactory results were achieved using the assumption of theoretical
first-break which can be calculated automatically. Therefore, with the
joint method, we can first remove noise using theoretical first-breaks,
and then apply certain an automatic algorithm (Huynh et al., 2023)
for picking accurate first-breaks.

For the data below the first-break, the individual or local CtoN
will not influence the denoising results. Figure 8 shows an example
of the CtoN. The black bars marked the seismic signals which are
incorrectly identified as noises. Note that the amplitude analysis
marks the entire traces, while the deep learning marks the local
samples. As shown in the raw seismic data (Figure 8b), thesemarked
signals do not belong to anomalous noises. After processing with
the joint method, the denoised seismic data in Figure 8c is the same
as the raw data in Figure 8b. This shows that these CtoN traces will
not be attenuated. This is primarily attributed to the utilization of
the PAT method, which ensures a minimal difference between the
reference and effective amplitude.

The advantage of the PAT method for computing the reference
amplitude lies in its ability to achieve higher robustness. If we use
theWSTmethod to calculate the reference amplitude, such reference
amplitudemay not be accurate, so the amplitude of the CtoN sample
may exceed the inaccurate threshold, resulting in the attenuation
of valid seismic signals. In contrast, the reference amplitude

determined by the PATmethodwill bemore accurate.The amplitude
of the CtoN sample does not exceed the accurate threshold;
therefore, such a samplewill not be attenuated. In addition, we added
the judgment conditions based on the noise identification results
when calculating the attenuation coefficient. This makes the overall
noise attenuationmethodmore stable. In the presence of continuous
CtoN traces, the accuracy of the threshold will decrease. Fortunately,
the case is rare when continuous anomalous noise only occurs in
pure environment recordings and is absent in the seismic recordings.

4.2 The comparison with pure deep
learning

Li et al. (2024) constructed a pure deep learning method to
suppress abnormal environmental noise utilizing the characteristics
of the data collected by the nodal instrument. Li et al. (2024)
quantitatively analyzed the effects of deep learning denoising using
field land seismic data with added noise, the Poland 2D Vibroseis
Line 001, provided by Geofizyka Torun S.A. from the SEG wiki
website. We use the same data to compare the joint method and
pure deep learning method proposed by Li et al. (2024). Appendix
A in Li et al. (2024) gives a detailed flow of making data with added
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FIGURE 11
The results of shots 1, 3, and 5 using the joint method. (a–c) are the denoised data. (d–f) are the removed noise.

noise. Figures 9–11 show the denoising effect of the conventional
method, pure deep learning (Li et al., 2024), and the proposed joint
method, respectively. Overall, the denoising effects of pure deep
learning (Li et al., 2024) and the joint method are comparable.
Examining the red circle area in Figures 9–11, it is situated near the
source point and exhibits strong energy. The three methods show
diverse denoising effects in this region. The conventional method
identifies this area as noise, resulting in the attenuation of its energy.
Deep learning removes some effective signals. Conversely, the joint
method causes minimal damage to effective signals. By testing field
data with adding noise, the jointmethod has a better andmore stable
noise attenuation effect when the noise content is higher.

4.3 Processing methods for wired data
collection

Pure background noise is consistently present between the
shooting time and the first-breaks. Therefore, the joint method can
also be applied to cable acquisition data to a certain extent. However,
in near offset traces, noise identification can become less accurate
due to insufficient pure noise records. In this case, a common

receiver gather can be utilized for noise identification. The spatial
positions of the receivers and certain sources of anomalous noise,
such as factories, highways, etc., remain unchanged. Therefore,
employing environmental records contained in the far offset traces
in a common receiver gather to aid in identifying the presence
of noise is reasonable. Consequently, the joint method remains
applicable to conventional cable acquisition data.However, it ismore
suitable for data acquired by nodal instruments.

5 Conclusion

Leveraging the continuous data acquisition feature of the node
instrument and the pure noise recordings captured prior to the
shooting time, we propose a method for joint identification and
attenuation of anomalous noise, which offers both high flexibility
and practicality. On the basis of identifying noise, we constructed the
PAT method to calculate the threshold. The joint method preserves
strong amplitudes associated with non-anomalous noise sources,
such as surface waves and near-offset traces. In addition, the joint
method shows high robustness and tolerance for errors in noise
identification. Inaccurate first-breaks and local misidentifications
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have little impact on the final noise attenuation outcome. Compared
to the conventional method and pure deep learning method, the
joint method exhibits significant advantages in preserving effective
seismic signals. Moreover, these pure environmental recordings are
often discarded during data acquisition. We utilize these discarded
data to implement a more stable and effective denoising method of
anomalous noise.
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