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Flood forecasting is crucial for disaster mitigation, particularly in regions prone
to flash floods. This study introduces a novel flood forecasting framework
by coupling the Geomorphological Instantaneous Unit Hydrograph (GIUH)
with the Xinanjiang model and optimizing parameters using the Cooperation
Search Algorithm (CSA). Applied across six diverse Chinese catchments, the
framework significantly improved computational efficiency and accuracy. Key
findings demonstrate that: 1) CSA achieved high Nash-Sutcliffe Efficiency (NSE
>0.9) with only 16 optimization trials on average, outperforming the SCE-
UA algorithms; 2) The model performed exceptionally in data-sparse regions,
achieving NSE values >0.9 even with minimal datasets; and 3) Enhanced runoff
routing via GIUH enabled accurate simulation of extreme rainfall events. These
results highlight the framework’s potential for operational flood forecasting and
disaster management globally. Future research will expand validation datasets
and explore applications across varied hydrological and climatic conditions.

KEYWORDS

flood forecasting, geomorphological instantaneous unit hydrograph (GIUH),
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1 Introduction

Flood forecasting plays a crucial role in water resource management and
disaster risk reduction, particularly in catchments prone to flash floods. These
catchments, characterized by steep terrain and rapid hydrological responses, are
highly sensitive to intense rainfall events, making them vulnerable to severe flooding
(Ragettli et al., 2017, Qiu et al., 2024). Accurate and efficient flood forecasting models
are essential for mitigating the impacts of such events. However, achieving reliable
simulations is challenging due to the variability in hydrological conditions and
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the scarcity of observational data in many regions
(Addor et al., 2017; Singh et al., 2014). Accurate and efficient flood
forecasting systems are critical for mitigating these impacts.

Flood forecasting frameworks now integrate hydrological
models, data analytics, and machine learning to provide accurate
predictions and timely warnings for flood mitigation. The literature
on this topic spans a range of methodologies, from traditional
hydrodynamic models to cutting-edge artificial intelligence and
geospatial data analysis (Wei et al., 2024). Rostami et al. (2024)
introduced a framework using data from VIIRS water fractions to
improve flood predictions, focusing on dynamic inundation models
for flood-prone regions. Zhou (2024) demonstrated the application
of big data and deep learning in hydrological modeling, leading to
improved accuracy in flood prediction systems. Chen et al. (2024)
explored Bayesian models for analyzing spatial extremes, which
are critical for understanding flood risks in varied geographical
settings. Belcore et al. (2024) applied geoinformatics within early
warning systems, enhancing flood resilience in regions like the Sahel.
Lo et al. (2024) investigated combining conformer models with
rainfall-runoff simulations to increase the reliability of hydrological
forecasts. Porter et al. (2024) emphasized the importance of future
population and socioeconomic scenarios in assessing flood exposure
under varying conditions. Duraisekaran et al. (2024) implemented
a framework that combines simulation and optimization for
effective flood management, particularly in conservation reservoirs.
Chang et al. (2025) proposed a multi-step correction framework to
refine runoff forecasts using ensemble methods. Feng et al. (2025)
showcased a framework that leverages digital twin technology
for real-time flood forecasting and resource management. Flood
forecasting frameworks are transitioning toward data-centric and
AI-driven approaches, integrating geospatial and probabilistic
models for enhanced accuracy. These frameworks are critical for
disaster preparedness and risk mitigation, particularly in the face of
climate change.

Traditional flood forecastingmodels (Zhu et al., 2024; Feng et al.,
2025), such as hydrodynamic and statistical methods, have been
widely applied. However, their effectiveness is often limited by high
computational demands, inadequate representation of hydrological
processes, and challenges in calibrating parameters under data-
scarce conditions (Singh et al., 2014). These limitations underscore
the necessity of developing innovative frameworks that integrate
physical realism, computational efficiency, and adaptability to
varying hydrological scenarios.

Recent advancements in hydrological modeling and
optimization techniques offer new opportunities to address these
challenges. Metaheuristic algorithms, such as the Cooperation
Search Algorithm (CSA), have emerged as powerful tools for
efficient parameter optimization. Unlike traditional methods such
as the Shuffled Complex Evolution University of Arizona (SCE-
UA) algorithm, CSA leverages collaborative behavior to explore
complex solution spaces and achieve faster convergence (Feng et al.,
2021). Meanwhile, integrating geomorphological insights through
the Geomorphological Instantaneous Unit Hydrograph (GIUH)
enhances the physical representation of runoff processes,
particularly in ungauged or data-scarce catchments (Moussa, 2008).

This study bridges these advancements by coupling GIUH with
the Xinanjiang model (Zhao and Wang, 1988), a widely used
hydrological model that accounts for soil moisture dynamics, and

optimizing its parameters using CSA. The proposed framework is
applied to six representative catchments acrossChina, encompassing
diverse climatic and hydrological conditions. The objectives of
this research are: 1) to evaluate the efficiency and accuracy of
CSA compared to SCE-UA for parameter optimization; 2) to
assess the performance of the GIUH-enhanced Xinanjiang model
in data-scarce and data-rich catchments; and 3) to contribute
to the development of a robust and scalable flood forecasting
framework that addresses the challenges of varying data availability.
By addressing these objectives, this study advances the field of flood
forecasting by offering a computationally efficient and adaptable
framework with significant potential for disaster preparedness and
water resource management.

2 Material and data

2.1 Study area

Six representative catchments are in Six different Chinese
provinces (Figure 1): Anhui, Fujian, Hainan, Henan, Hunan and
Jiangxi, and each catchment has different weather, soil types and
vegetation. All study catchments have in common that winters
are dry and flash floods occur after intensive summer rainstorms.
Catchment areas range between 105.3 and 722.0 km2 (Table 1), and
the average area of catchments is 272.3 km2. Meteorological data are
available from 37 rain gauges located within or in the close vicinity
of the 6 catchments provided by the China Meteorological Data
Service Center (http://data.cma.cn.). Data from rain gauges and
hydrological stations are available only for the summer storm events,
which includes hourly rainfall and hourly observed discharge data
(provided by China Institute of Water Resources and Hydropower
Research). The county weather stations provide the information
about daily rainfall amounts outside of the storm events and daily
air temperature data.

2.2 Catchment properties

The attributes have been selected for their potential
to affect catchment hydrology (e.g., Addor et al., 2017;
Berghuijs et al., 2014; Singh et al., 2014) and are available for whole
China. The attributes are extracted from the following data sets.

2.2.1 Elevation
Topographical attributes such as altitude, aspect or slope are

extracted from digital elevation model (DEM) data, and the
resolution of theDEM is 30 m,whichwas provided by theGeospatial
DataCloud site, theComputerNetwork InformationCenter, and the
Chinese Academy of Sciences (http://www.gscloud.cn).

2.2.2 Soil texture
Information about soil is provided by the Soil and

Terrain database (SOTER) for China, version 1.0, at scale
1:1 million, compiled by the Institute of Soil Science,
Chinese Academy of Science (ISSAS) and ISRIC-World Soil
Information (Dijkshoorn et al., 2008). The soil texture was
resampled to 30 m with the same resolution as DEM in this study.
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FIGURE 1
Map of study area showing the position of six catchments.

TABLE 1 Summary of study catchments.

Name Province Area (km2) River
length (km)

No. of flood
events

Annual
precipitation
(mm)

Annual air
temperatures
(°C)

Number of
rainfall
station

Qingyang Anhui 122.5 24.8 19 1,368.2 16.4 4

Siqian Fujian 134.7 31.1 58 1,871.8 18.5 4

Chengpohe Hainan 722.0 177.1 1 2,395.3 22.9 13

Houhui Henan 394.3 100.8 4 849.7 15.2 14

Jingtoujiang Hunan 155.0 30.3 50 1,324.2 18.3 1

Shangliu Jiangxi 105.3 35.9 1 1,820.7 17.7 1

2.2.3 Landuse and vegetation
Landuse and vegetation information is provided by the 2009

Global Land Cover Map (GlobCover) (Bontemps et al., 2011). The
land cover map has a resolution of 300 m. For this study, it was
resampled to 30 m with the same resolution as DEM.

3 Methodology

3.1 Flood forecasting framework

This study adopts a systematic approach to develop and validate
a novel flood forecasting framework by integrating hydrological
modeling with advanced optimization techniques. The flood

forecasting framework comprising two main components (Figure 2):
1) Hydrological Model Development: The Xinanjiang model is
enhancedwiththeGeomorphologicalInstantaneousUnitHydrograph
(GIUH) to improve runoff routing accuracy. This integration aims
to account for geomorphological characteristics derived from Digital
Elevation Models (DEMs), providing a robust representation of
the hydrological processes in diverse catchments. 2) Parameter
Optimization: The Cooperation Search Algorithm (CSA) is applied
for efficient parameter optimization. CSA’s collaborative and
population-based mechanism ensures fast convergence to optimal
solutions, addressing challenges like data scarcity and model
complexity. We compared the performance of CSA with the Shuffled
Complex Evolution University of Arizona (SCE-UA) algorithm to
highlight its advantages.
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FIGURE 2
Flowchart of the cooperative search algorithm-based Flood Forecasting Framework.

3.1.1 Hydrological model
The Xinanjiang model was developed to forecast flows to

the Xinanjiang reservoir by Zhao and Wang (1988). The main
hypothesis used in the model development is the concept of
runoff formation on repletion of storage. The original Xinanjiang
model includes a runoff generating component and a runoff

routing component. It has 6 parameters that include seven runoff
generating component parameters (Um, Lm, Dm, B, Im, K, C) and
8 runoff routing parameters (Sm, Ex, Kg, Ki, Cg, Ci, Ke, Xe). The
15 parameters are abstract conceptual representations of non-
measurable watershed characteristics that have to be calibrated
by an optimization method. This is mainly because the manual
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calibration can be a rather tedious and time-consuming task. The
physical descriptions of these parameters are listed in Table 1.
The value of each parameter is usually within a certain range
according to physical and mathematical constraints, information
about watershed characteristics, and from modeling experiences.

The geomorphological instantaneous unit hydrograph (GIUH,
Bamufleh et al., 2020; Lei et al., 2023) is used for the routing of runoff
from the overland flow plane to the river channel. GIUH based on
Nash model, the equation for GIUH, which is a function of Horton
ratios, is given by gamma distribution as (Nash, 1960). The formula
for calculating this parameter is given in Equation 1:

u(t) = ( t
k
)
a−1 e−

t
k

kΓ(a)
(1)

Where u(t) is the ordinates of the GIUH, t is the time in hours,
and Γ(a) is the gamma function for argument a. a and k are called the
shape and scale parameters respectively can be calculated fromDEM
(Lei et al., 2023). And the Muskingum method (McCarthy, 1938) is
used for the channel flow routing process.

3.1.2 Parameter calibration method
This paper applies two parameter optimization algorithms,

shuffled complex evolution of the University of Arizona (Duan et al.,
1994) and Cooperation Search Algorithm (CSA, Feng et al.,
2021), for the hydrological model parameter optimization, and
compares the efficiency of the two optimization algorithms. SCE-
UA algorithm, as a global search algorithm, was compared against
the multi-start simplex (MSX) method and the adaptive random
search (ARS) method on watershed model calibration problems
(Duan et al., 1994). The results showed that SCE-UA was a
much superior method than MSX and ARS method. The SCE-
UA has been widely used in various watershed model calibrations
(Sorooshian et al., 1993; Duan et al., 1994; Luce and Cundy, 1994;
Gan and Biftu, 1996; Yapo et al., 1996; Cooper et al., 1997; Kuczera,
1997; Franchini et al., 1998; Abdulla et al., 1999; Thyer et al., 1999;
Eckhardt and Arnold, 2001). Recently, the SCE-UA has also been
applied with success to Soil andWater Assessment Tool (SWAT) for
hydrologic parameters (Eckhardt and Arnold, 2001) and hydrologic
and water quality parameters (van Griensven and Bauwens, 2003).
Cooper et al. (2007) applied the global optimization SCE-UA
method with the established hydrologic process-based constraints
to calibrate the Tank Model. It is found that performances of the
SCE and GA are better than simulated annealing. More recently, the
SCE, simple genetic algorithm (SGA) and micro-genetic algorithm
(μGA), are applied in the parameter calibration of a grid-based
distributed rainfall-runoff model (GBDM) and their performances
are compared (Wang et al., 2010). Goswami and O’Connor (2007)
applied SCE-UA to calibrate SMARmodel parameters.These studies
demonstrate that the SCE-UA method is a robust, effective and
efficient search algorithm.

The Cooperation Search Algorithm (CSA) is a novel
metaheuristic optimization algorithm proposed by Feng et al.
(2021). This algorithm is inspired by the collaborative behavior of
modern corporate teams and is characterized by strong optimization
ability and fast convergence. The objective function Nash-Sutcliffe
efficiency (NSE) was used for parameter calibration. The CSA
primarily consists of four stages: Team building phase, Team
communication operator, Reflective learning operator, and Internal
competition operator.

3.1.2.1 Team building phase
In this stage, all the staff members in the team are randomly

assigned according to Equation 2. After evaluating the performance
of all the solutions, M ∈ [1, I] leader solutions will be selected from
the initial swarm to form the external elite set.

xki,j = ∅(xj,xj), i ∈ [1, I], j ∈ [1, J],k = 1 (2)

where I is the number of solutions at the current swarm. xki,j is the j
th value of the i th solution at the k th cycle. ϕ(L,U) is the function
to generate a random number uniformly distributed in the range of
[L,U], xj and xj are the lower and upper limits of the j th variable. J
is the number of decision variables.

3.1.2.2 Team communication operator
Each staff member can gain new information by exchanging

knowledge with the chairman, as well as with the board of directors
and supervisors. As shown in Equation 3, the team communication
process involves three components: the chairman’s knowledge A,
the collective knowledge B from the board of directors, and the
collective knowledgeC from the board of supervisors.The chairman
is randomly selected from the board of directors to simulate a
rotatingmechanism, while all members of the board of directors and
supervisors are treated equally when calculating B and C.

uk+1i,j = x
k
i,j +A

k
i,j +B

k
i,j +C

k
i,j, i ∈ [1, I], j ∈ [1, J],k ∈ [1,K] (3)

Ak
i,j = log(1/∅(0,1)) · (gBest

k
ind,j − x

k
i,j)

Bk
i,j = α · ∅(0,1) · [

1
M

M

∑
m=1

gBestkm,j − x
k
i,j]

Ck
i,j = β · ∅(0,1) · [

1
I

I

∑
i=1

pBestki,j − x
k
i,j]

where uk+1i,j is the j th value of the i th group solution at the k+ 1
th cycle. pBestki,j is the j th value of the i th personal best-known
solution at the k th cycle. pBestkind,j is the j th value of the ind th global
best-known solution from the beginning to the kth cycle. ind is the
index randomly selected from the set of {1,2, . . .,M}. Ak

i,j denotes the
knowledge gained from the chairman randomly chosen from the
external elite set. Bk

i,j andC
k
i,j are themean knowledge gained fromM

global best-known solutions found by far and I personal best-known
solutions, respectively. α and β are the learning coefficients to adjust
the influence degrees of Bk

i,j and Ck
i,j.

3.1.2.3 Reflective learning operator
Aside from learning from the leader’s solutions, the staff can also

gain new knowledge by reflecting on their own experiences in the
opposite direction, which can be expressed as follows:

vk+1i,j =
{
{
{

rk+1i,j i f(uk+1i,j ≥ cj)

pk+1i,j i f(uk+1i,j < cj)
, i ∈ [1, I], j ∈ [1, J],k ∈ [1,K]

rk+1i,j =
{{
{{
{

∅(xj + xj − u
k+1
i,j ,cj) i f(|u

k+1
i,j − cj| < ∅(0,1) · |xj − xj|)

∅(xj,xj + xj − u
k+1
i,j )otherwise

pk+1i,j =
{
{
{

∅(cj,xj + xj − u
k+1
i,j ) i f(|u

k+1
i,j − cj| < ∅(0,1) · |xj − xj|)

∅(xj + xj − u
k+1
i,j ,xj)otherwise
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FIGURE 3
Sketch map of the CSA method.

TABLE 2 List of statistical metricsa.

Statistical
metrics

Unit Equation Perfect
value

Nash-Sutcliffe
efficiency (NSE)

NA NSE = 1− ∑
T
t=1(Q

t
o−Q

t
m)

2

∑Tt=1(Q
t
o−Qo)

2 1

Absolute peak
flood error (EQP)

% EQP = |(QoP −QsP)/QoP| 0

aNotation: T is total number of time step, Qt
o is observed discharge at time t, Qt

m is
simulated discharge at time t, Qo is average discharge of a flood event, QoP is the observed
peak flow; QsP is the simulated peak flow.

cj = (xj + xj) · 0.5

where vk+1i,j is the j th value of the i th reflective solution at the k+
1 th cycle.

3.1.2.4 Internal competition operator
The team gradually enhances its market competitiveness by

ensuring that all staff members with better performance are
consistently retained, which can be expressed as follows:

xk+1i,j =
{
{
{

uk+1i,j i f(F(uk+1i,j ) ≤ F(v
k+1
i,j ))

vk+1i,j i f(F(uk+1i,j ) > F(v
k+1
i,j ))
, i ∈ [1, I], j ∈ [1, J],k ∈ [1,K]

where F(x) is the fitness value of the solution x. To effectively
multiple physical constraints, all the variables in x are firstly
modified to the feasible zone by Equation 4, and then the penalty
functions method in Equation 5 is used to obtain the fitness value
F(x) by merging the constraint violation value into the objective
value f(x). Then, for feasible solutions, all the constraints are well
met so that the fitness value is equal to the original objective
value; for infeasible solutions, the constraint violation value becomes

positive so that the fitness value is larger than the objective value.
In this way, the swarm can be guided to feasible search area as far
as possible.

xj =max {min{xj,xj},xj} (4)

F(x) = f(x) +
E

∑
e=1

c1e ·max{ge(x),0} +
F

∑
f=1

c2f · |h f(x)| (5)

where xj is the j th value in the solution x to be evaluated. c1e is the
penalty coefficient for the eth inequality constraint. c2f is the penalty
coefficient for the f th inequality constraint.

The pseudo-code of the CSA method is given as below:
Via the above carefully-designed operators, the CSA

method in Figure 3 can effectively improve the quality of all the
obtained solutions to approximate the global optima. Next, the
traits of the CSA method are summarized as below.

1) Compared with individual-based methods, the population-
based evolutionarymechanismused inCSA generatesmultiple
solutions within the search space, which helps identify
promising regions and escape from local optima.

2) The swarm achieves a balance between global
exploitation and local exploration through the team
communication and reflective learning operators, which
increases the likelihood of approximating the global
optimal solution.

3) With the internal competition operator, the best solutions
discovered so far are stored and dynamically updated during
the evolutionary process, which effectively ensures the global
convergence of the population.

4) The optimization problem is treated as a black box, where
the output depends only on specific inputs. As a result, the
CSA method can theoretically be applied to any optimization
problem. This allows the operator to focus on the modeling
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TABLE 3 Parameters to be calibrated.

Parameter Physical description Unit Initial range

Runoff generating parameter

1 K Ratio of potential evapotranspiration to pan evaporation [-] 0.1–0.2

2 Um Averaged soil moisture storage capacity of the upper layer [mm] 10–30

3 Lm Averaged soil moisture storage capacity of the lower layer [mm] 10–60

4 Dm Averaged soil moisture storage capacity of the deep layer [mm] 10–80

5 C Coefficient of the deep layer that depends on the proportion of the catchment area covered by vegetation with
deep roots

[-] 0.1–0.3

6 B Exponential parameter with a single parabolic curve, which represents the non-uniformity of the spatial
distribution of the soil moisture storage capacity over the catchment

[-] 0.1–0.9

7 Im Percentage of impervious and saturated areas in the catchment [%] 0.0–0.2

Runoff routing parameter

8 Sm Areal mean free water capacity of the surface soil layer, which represents the maximum possible deficit of free
water storage

[mm] 5–50

9 Ex Exponent of the free water capacity curve influencing the development of the saturated area [-] 1.1–1.5

10 Kg Outflow coefficients of the free water storage to groundwater relationships [-] 0.1–0.8

11 Ki Outflow coefficients of the free water storage to interflow relationships [-] 0.1–0.5

12 Ci Recession constants of the lower interflow storage [-] 0.1–0.99

13 Cg Recession constants of the groundwater storage [-] 0.7–0.99

14 Ke Parameter of the Muskingum method [-] 1–3

15 Xe Parameter of the Muskingum method [-] 0.1–0.5

FIGURE 4
The parameter optimization trial number and objective function (NSE) graph of the CSA and SCE-UA algorithms.
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FIGURE 5
The parameter optimization trial number and objective function (NSE)
the CSA algorithms.

process rather than the development of the optimization
algorithm, thereby improving work efficiency.

5) In CSA, the original large swarm can be naturally divided
into several small but independent subpopulations, which
can be processed on multiple different computing units. In
other words, developing a parallel version of CSA to improve
execution time and solution quality in high-performance
computing environments is straightforward.

3.2 Model evaluation

The evaluation of the model’s performance focuses on two
key aspects.

3.2.1 Overall streamflow fit
The model’s ability to reproduce streamflow dynamics at the

event scale is assessed using the Nash-Sutcliffe Efficiency (NSE;
Nash and Sutcliffe, 1970; Table 2) metric.This statistic evaluates how
well the simulated streamflow matches observed data, providing an
overall measure of model accuracy.

3.2.2 Streamflow extremes
The model’s capability to accurately simulate critical flood

characteristics, such as peak flow and peak timing, is evaluated using
the Absolute Peak Flood Error (EQP, Table 2). These metrics are
essential for effective flood warning and disaster management.

The evaluation of the model performance aimed to (1) assess
the capacity of the model to reproduce an overall streamflow fit
at the event scale and (2) evaluate its ability to accurately identify
streamflow extremes, i.e., the peak flow and the peak time, which
are important for flood warning.TheNash-Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970) metric is used to assess the overall
streamflow fit, and the absolute peak flood error (EQP) is used to
evaluate the performance of peak flow (Table 2).

4 Results

4.1 Comparison of optimization algorithms

Using the same initial parameter values and parameter
optimization range (Table 3), the CSA and SCE-UA algorithms
were applied separately to calibrate the parameters for the
six catchments. Due to a little flood event in the Chengpohe,
Houhui, and Shangliu catchments, only parameter calibration
was performed for these three catchments. The calibration
periods for the Qingyang, Siqian, and Jingtoujiang catchments
are 1995–1997, 1971–1976, and 1994–1998, respectively. The
validation periods are 1997–2013, 1971–1992, and 1998–2004,
respectively. The resulting number of optimization trials and the
optimal NSE values are shown in Figure 4. The results show that
CSA required an average of 16 trials, compared to 2056 for SCE-
UA, making it over 100 times more efficient while achieving higher
NSE values.

Figure 5 shows the convergence process of the CSA during
parameter optimization of the Xinanjiang model for various river
catchments. The vertical axis represents the objective function
(Nash-Sutcliffe Efficiency, or NSE), which is a measure of model
performance. Higher NSE values indicate better model accuracy
in simulating the observed data. The horizontal axis represents
the trial number, which corresponds to the iteration count in the
optimization process.

Each line in the plot represents a different river catchment
(Qingyang, Siqian, Chengpohe, Houhui, Jingtoujiang, and
Shangliu), and the progress of each line shows how the NSE
value improves with each iteration. The results showed that:
chengpohe Catchment (orange line): the CSA algorithm achieves
rapid convergence for Chengpohe, reaching a high NSE value of
0.98 in the first few iterations and maintaining this performance,
indicating effective optimization. Shangliu Catchment (green
line): the optimization process for Shangliu also shows fast
convergence, reaching an NSE of 0.93 after about 10 iterations.
Houhui Catchment (gray line): Houhui reaches an NSE of 0.92 after
around 10 iterations, with a stable performance afterward. Siqian
Catchment (blue line): Siqian’s optimization curve shows slower
convergence compared to the catchments above but achieves anNSE
of 0.82 within 5 iterations. Qingyang Catchment (dark blue line):
Qingyang reaches an NSE of 0.87 after around 5 iterations, showing
gradual improvement. Jingtoujiang Catchment (yellow line): This
catchment shows the slowest convergence, gradually increasing to
an NSE of 0.81 over 20 iterations. In summary, the CSA algorithm
effectively converges to high NSE values for most catchments
within a reasonable number of iterations, particularly for the
Chengpohe, Shangliu, andHouhui catchments, which achievedNSE
values above 0.9.

The rapid convergence of CSA is evident from the optimization
curves shown in Figure 4, where most catchments reached
high NSE values within a few iterations. For instance, the
Chengpohe catchment attained an NSE of 0.98 within 37 trials,
whereas SCE-UA required 2,413 trials to achieve a slightly
lower NSE of 0.95. This efficiency highlights the advantages of
CSA’s population-based evolutionary mechanism, which balances
global exploration and local exploitation to approximate optimal
solutions effectively.
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TABLE 4 Calibrated parameters of Xinanjiang model with CSA.

Parameters Qingyang Siqian Chengpohe Houhui Jingtoujiang Shangliu

K 0.12 0.12 0.15 0.11 0.10 0.11

Um 18.37 25.94 12.89 29.84 10.17 24.29

Lm 27.12 11.80 25.55 29.28 13.15 18.55

Dm 18.96 70.15 40.10 24.32 57.82 15.00

C 0.13 0.10 0.20 0.15 0.10 0.16

B 0.37 0.40 0.40 0.31 0.40 0.27

Im 0.17 0.20 0.13 0.20 0.11 0.14

Sm 25.00 22.56 15.75 24.78 5.21 6.43

Ex 1.21 1.02 1.50 1.31 1.34 1.10

Kg 0.20 0.44 0.46 0.53 0.38 0.75

Ki 0.41 0.46 0.44 0.38 0.29 0.11

Ci 0.84 0.70 0.70 0.73 0.79 0.75

Cg 0.98 0.98 0.95 0.93 0.96 0.94

Ke 2.62 1.63 1.21 2.67 3.64 1.00

Xe 0.31 0.13 0.33 0.26 0.20 0.18

TABLE 5 Statistical metrics of six catchments.

NSE EQP (%)

Calibration Validation Calibration Validation

Qingyang 0.87 0.84 2.12 2.32

Siqian 0.82 0.83 3.25 5.21

Chengpohe 0.98 — 0.22 —

Houhui 0.92 — 5.25 —

Jingtoujiang 0.81 0.84 5.54 4.54

Shangliu 0.93 — 3.63 —

Table 4 shows the calibrated parameters of the Xinanjiang
model, optimized using the CSA for the various catchments.
Each row represents a different parameter of the model, and
the columns show the values of these parameters for different
catchments. The values in Table 4 show that each parameter
varies across catchments, which indicates that each catchment
has unique hydrological characteristics that were captured during
the optimization process by CSA. K values vary between 0.1 and

0.15, showing similar ratio of potential evapotranspiration to pan
evaporation across catchments. Um, Lm, Dm and Sm values vary
significantly, indicating differences in soil moisture capacities and
storages among catchments. Parameter Ke and Xe of Muskingum
method vary significantly, indicating differences in topography,
channel structure, soil characteristics, and storage capacity among
the catchments, which affect how each catchment responds to
rainfall and contributes to runoff.
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FIGURE 6
Flow hydrographs simulated by the flood forecasting framework for the three data-scare catchments (Obs flow: observed discharge; Total flow:
simulated discharge; Rainfall: observed rainfall). (A) Chengpohe. (B) Houhui. (C) Shangliu.

4.2 Performance in data-scarce
catchments

TheChengpohe,Houhui,andShangliucatchmentswerecalibrated
usingtheCSAoptimizationmethod;however, theirfloodeventrecords
were insufficient to conduct a robust validation analysis. Despite
this limitation, the model’s calibration results in these catchments
demonstrated exceptional performance, as reflected by the Nash-
Sutcliffe Efficiency (NSE) values (Table 5). For Chengpohe, the NSE
reached0.98, indicating that theCSAachievednear-perfect alignment
between the observed and simulated streamflows. Similarly, the
Houhui and Shangliu catchments exhibited NSE values of 0.92 and
0.93, respectively, underscoring the algorithm’s ability to optimize the
Xinanjiang model parameters effectively.

The flow hydrographs (Figure 6) illustrate the CSA’s capability
to closely capture the temporal dynamics of streamflow during

calibration. The simulated discharge in these catchments aligns
well with the observed data, particularly in reproducing the
peak flows and timing, which are critical for flood forecasting.
The Chengpohe catchment, in particular, showcased the model’s
efficiency in simulating high-intensity flood events with a limited
dataset. However, the lack of validation data in these catchments
poses challenges for assessing themodel’s generalizability. It remains
uncertain whether the parameters optimized using CSA would
perform consistently under different climatic or hydrological
conditions. This underscores the need for additional flood event
records to validate the robustness and reliability of the CSA-
optimized parameters. Future efforts should focus on expanding
the dataset for these catchments to validate the model’s robustness.
Incorporating regional hydrological characteristics through
parameter transfer techniques may also enhance model reliability in
data-scarce regions.
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FIGURE 7
Flow hydrographs calibrated and validated by the flood forecasting framework for the three data-rich catchments (Obs flow: observed discharge; Total
flow: simulated discharge; Rainfall: observed rainfall). (A) Qingyang. (B) Siqian. (C) Jingtoujiang.

4.3 Performance in data-rich catchments

In contrast, the Qingyang, Siqian, and Jingtoujiang catchments
provided extensive datasets, allowing for both calibration and
validation. The CSA-optimized parameters performed well, with
NSE values of 0.87, 0.82, and 0.81 during calibration, and 0.84, 0.83,
and 0.84 during validation (Table 5). Figure 7 demonstrates that
the Xinanjiang model, calibrated using the CSA, simulates the flow
hydrographs with a high degree of accuracy in these catchments.
The model’s ability to replicate the observed discharge, particularly
during critical high-flow events, is evident, showcasing the CSA’s
effectiveness in parameter optimization.

The peak flow comparison in Figure 8 for the calibration period
reveals that the model’s predictions are in close agreement with the
observed peak flows, indicating a strong capability to capture the
extreme hydrological events. This is further supported by the flow
process comparison in the calibration period, where the model’s
simulated hydrograph closely follows the observed hydrograph,

suggesting a reliable representation of the catchment’s response
to rainfall.

The Qingyang catchment exhibited consistent performance
across calibration and validation, with low Absolute Peak Flood
Error (EQP) values of 2.12% and 2.32%, respectively (Table 5).
This indicates reliable predictions of both magnitude and timing of
peak flows. In the Siqian catchment, while the model performed
well during calibration, it slightly underestimated extreme peak
flows during validation, as shown in Figure 8. This discrepancy may
reflect the catchment’s complex hydrological response to extreme
rainfall events.

The validation of themodel’s performance in these catchments is
further reinforced by the statistical metrics provided in Table 2. The
Nash-Sutcliffe Efficiency (NSE) values, as mentioned in this paper,
are relatively high for these catchments, indicating a good overall
streamflow fit. The Absolute Peak Flood Error (EQP) values are
also within acceptable limits, demonstrating the model’s accuracy in
predicting peak flows, which is essential for flood warning systems.
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FIGURE 8
Comparison chart of observed and simulated peak flow. (A) Qingyang. (B) Siqian. (C) Jingtoujiang.

5 Discussion

5.1 General discussion on model
performance and CSA’s role in parameter
calibration

The CSA-optimized flood forecasting framework demonstrated
strong performance across all six catchments, achieving high
NSE values and accurately capturing peak flows and timings.
Notably, the framework excelled in data-scarce catchments, where

traditional models often struggle due to limited historical data. For
example, in the Chengpohe catchment, CSA achieved an NSE of
0.98 with only 37 optimization trials, significantly outperforming
the SCE-UA algorithm, which required 2,413 trials to reach
an NSE of 0.95.

This efficiency can be attributed to CSA’s population-
based evolutionary mechanism, which effectively balances
global exploration and local exploitation. By retaining
elite solutions through its internal competition operator,
CSA converges quickly while avoiding local optima. These
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FIGURE 9
Comparison chart of observed and simulated flow process. (A) Chengpohe. (B) Houhui. (C) Shangliu.

characteristics make CSA particularly suitable for resource-
constrained settings or time-sensitive applications like real-time
flood forecasting.

However, the absence of validation datasets in data-
scarce catchments such as Chengpohe, Houhui, and Shangliu
limits the assessment of model generalizability. While the
calibration results are promising, the lack of independent
validation data poses challenges for assessing the robustness
of the CSA-optimized parameters under different hydrological
conditions.

5.2 General observations and implications
for flood forecasting

Overall, the application of CSA to the flood forecasting
framework significantly improved parameter optimization
efficiency and simulation accuracy, particularly in the catchments
with adequate calibration data. The CSA’s rapid convergence to
optimal parameter values (average trial number of 16 compared
to 2056 for SCE-UA, Figure 4) is a key advantage, especially
for catchments with complex hydrological characteristics like
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Chengpohe. The high NSE values achieved during calibration
demonstrate the algorithm’s effectiveness in fine-tuning model
parameters to match observed stream flows.

However, the validation results underscore the importance of
a comprehensive dataset for model calibration and testing. The
limited flood events in Chengpohe, Houhui, and Shangliu restrict
the ability to fully evaluate the model’s predictive capabilities
(Figure 9). Figure 9B) showed that the correlation coefficient (R2)
between observed and simulated flow in the Houhui watershed
is 0.54. Although the peak flow fits well, the overall flood
process simulation is less accurate. While the validation results
in Qingyang, Siqian, and Jingtoujiang suggest some sensitivity
to varying hydrological conditions. This highlights the necessity
of robust validation datasets and potentially the inclusion of
regionalization techniques to enhance model performance in data-
scarce catchments.

The CSA-optimized flood forecasting framework holds
significant promise for improving flood forecasting capabilities
in diverse catchments. Its ability to capture peak flows and
timing is particularly valuable for flash flood warning systems.
Future research should focus on extending the dataset for
validation, integrating additional hydrological insights into the
CSA framework, and exploring the model’s applicability to other
catchment types under varying climatic conditions.

Moreover, the ability to accurately predict peak flows and
timing, as demonstrated in this study, makes the model well-suited
for flash flood forecasting, where rapid responses are required.
The framework’s applicability to diverse climatic and hydrological
conditions further enhances its potential as a global tool for flood
management and early warning systems.

However, while the CSA-optimizedmodel has shown promising
results, its performance under real-time conditions should be
further tested. Implementing the model in real-world flood
forecasting systems would require continuous data assimilation and
real-time calibration to ensure that the model adapts to rapidly
changing conditions. Future research should focus on integrating
themodel with real-time data sources, such as satellite-based rainfall
estimates and streamflow observations, to evaluate its performance
in dynamic, operational settings.

5.3 Limitations and future directions

While the results demonstrate the robustness and efficiency
of the CSA-optimized framework, several limitations must be
addressed.

5.3.1 Dependence on high-quality DEMs
The accuracy of GIUH relies heavily on the resolution and

quality of DEM data. In regions with low-resolution DEMs, the
model’s ability to simulate geomorphological processes may be
compromised. Future research should explore the integration of
satellite-based topographical data or machine learning techniques
to enhance DEM quality and applicability.

5.3.2 Limited validation datasets
The absence of extensive flood event records in data-scarce

catchments restricts the ability to fully validate the model’s

performance under diverse conditions. Expanding validation
datasets through collaborative efforts or by employing parameter
regionalization techniques can help address this limitation.

5.3.3 Real-time application challenges
Although the framework demonstrates strong performance,

its real-time application requires integration with dynamic data
sources such as satellite rainfall estimates or streamflow sensors.
This would allow for continuous data assimilation and adaptive
calibration, ensuring accurate predictions during rapidly changing
flood conditions.

5.3.4 Generalizability across diverse climates
Testing the model across catchments with varied climatic

and hydrological conditions will provide deeper insights into its
scalability and robustness. For example, applying the framework to
arid or snow-dominated regions may uncover additional parameter
adjustments or methodological improvements. This will help assess
the robustness and generalizability of the model, ensuring its
applicability in diverse real-world flood forecasting scenarios. The
integration of more advanced techniques, such as hybrid modeling
or machine learning, could further enhance the model’s predictive
capabilities and adaptability.

6 Conclusion

This study successfully integrates the Geomorphological
Instantaneous Unit Hydrograph (GIUH) with the Xinanjiang
model, optimized by the Cooperation Search Algorithm (CSA),
to develop an efficient and robust flood forecasting framework. Key
findings include.

6.1 Efficient parameter optimization

The CSA significantly outperforms the Shuffled Complex
Evolution University of Arizona (SCE-UA) algorithm, achieving
higher Nash-Sutcliffe Efficiency (NSE) values with far fewer
optimizationtrials(anaverageof16trials forCSAcomparedto2056for
SCE-UA). This substantial improvement in computational efficiency
makes CSA an ideal choice for resource-constrained regions.

6.2 Performance in data-scarce
catchments

In catchments with limited flood event data, such as Chengpohe,
Houhui, and Shangliu, the CSA-optimized model demonstrated
exceptional performance, with NSE values exceeding 0.9. This
highlights CSA’s robustness in data-scarce settings and its potential
to provide accurate flood forecasting even in regions with sparse
hydrological data.

6.3 Validation in data-rich catchments

The model also showed strong performance in data-rich
catchments (e.g., Qingyang, Siqian, and Jingtoujiang), accurately
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simulating both streamflow dynamics and peak flows during
calibration and validation.The lowAbsolute Peak FloodError (EQP)
values confirmed the model’s ability to predict flood peaks and
timings reliably.

6.4 Enhanced runoff routing

Integrating GIUH improved the model’s ability to capture
streamflow dynamics during extreme rainfall, showcasing the value
of combining conceptual and geomorphological approaches.

6.5 Flood management and practical
applications

The CSA-optimized model offers a computationally efficient
and scalable tool for operational flood forecasting, with particular
relevance to flash flood prediction. Its ability to simulate critical
flood characteristics, such as peak flow and peak timing, makes it
highly applicable for early warning systems in flood-prone regions.
Moreover, the model’s adaptability to different hydrological and
climatic conditions suggests its potential for global use in flood risk
management and disaster preparedness.

6.6 Future directions

Expanding datasets, refining optimization constraints, and
testing across diverse climates and hydrological models are
recommended to further enhance its robustness.

This study demonstrates the CSA-optimized framework’s
effectiveness, but further research is needed to validate its robustness
by expanding flood event datasets, integrating real-time data, and
testing it in diverse climatic conditions. In summary, the CSA-
optimized Xinanjiang model, enhanced with GIUH, provides a
powerful, efficient, and reliable approach for flood forecasting. This
study contributes to advancing hydrological modeling techniques
and offers practical tools for flood risk mitigation, with significant
potential for improving disaster management and resilience in
flood-prone regions worldwide.
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