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University of Technology, Chengdu, China, 2State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Chengdu, Sichuan, China, 3College of Geophysics, Chengdu University of
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Accurate estimation of brittleness index, characterizing the brittleness level of
rocks, and reservoir fluid identification are crucial for the characterization and
development of shale gas reservoirs. However, conventional seismic methods
for the sweet spot parameters failed to realize the simultaneous inversion of
fluid indicator and brittleness index, challenging exploration of the favorable
fracturing areas for shale gas production. For this issue, we concentrate on
the simultaneous seismic inversion method of fluid indicator and brittleness
index. First, we have derived a novel PP-wave reflection coefficient equation
incorporating the above sweet spot parameters, allowing the direct estimation of
reservoir brittleness and fluid properties. Two groups of classical layeredmedium
models are introduced to justify the high accuracy of the novel equation within
the incidence angle of 40°. Then, to effectively decouple these parameters from
the pre-stack seismic data, anisotropic total variation based on LP norm sparse
constraint (ATpV) seismic inversion method is introduced to obtain accurate
inversion results, extracting sparser priori information through the strong sparsity
of the LP norm. Numerical model examples demonstrate the high stability and
robustness of the proposed simultaneous inversion method. Ultimately, we
applied it to field seismic data from a gas-bearing shale reservoir in the Sichuan
Basin, China. A comprehensive analysis of the three-dimensional (3D) inversion
results with logging, geological structure, and micro-seismic events detected
from horizontal fracturing wells has validated the rationality of the method.

KEYWORDS

shale gas, fluid indicator, brittleness, sparse constraint, simultaneous seismic inversion

1 Introduction

Shale rock, bearing enormous resource potential for shale gas, is widely distributed in the
world. However, most shale gas reservoirs process low permeability and porosity, resulting
in the requirement for fracturing to facilitate reservoir volumetricmodification and increase
natural gas production capacity (Buyanov, 2011; Jia et al., 2012; Wen et al., 2024).Therefore,
evaluating the gas content of shale gas reservoirs and the brittleness characteristics of
reservoir rocks with high precision and then searching for favorable “sweet spot” zones can
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significantly reduce the exploration cost of shale gas, promote
production, and obtain higher economic benefits.

Fluid identification, which began in the 1970s, refers to
using seismic data to identify and characterize fluid-bearing
reservoirs, facilitating the direct detection of hydrocarbons. Smith
and Gidlow (1987) were the first to propose the concept of
fluid factors. They introduced a weighted superposition method
based on AVO (Amplitude Variation with Offset) analysis. This
method can leverage the relative changes in P-wave and S-wave
velocities to distinguish hydrocarbon anomalies within a reservoir.
Goodway et al. (1997) proposed a fluid identification method
based on LMR (λ-μ-ρ) technology, which analyzes the pore fluid
characteristics based on the tensile properties of the rock itself.
Hedlin (2000) proposed a pore space modulus sensitive to lithology
based on studies such as Murphy et al. (1993). Based on the Biot-
Gassmann equation, Russell et al. (2003) derived a fluid property
(ρf ) that is more sensitive to reservoir fluids and more applicable
for fluid identification than LMR techniques. Quakenbush et al.
(2006) combined Poisson’s ratio and density to develop the concept
of Poisson’s impedance (product of Poisson’s ratio and density),
which can distinguish reservoir fluids more effectively than a
single parameter. Ning et al. (2006) summarized and classified the
fluid identification indicators and proposed constructing higher-
order fluid indicators to satisfy different reservoir prediction
tasks according to the needs and conditions. Researchers typically
represent fluid indicators as a combination of wave impedance and
density parameters. Pre-stack three-parameter seismic inversion
allows the extraction of various elastic attribute parameters. By
integrating these parameters with fluid identification techniques,
reservoir fluid identification can be carried out more effectively.

Accurately estimating the brittleness characteristics of reservoir
rockscanprovideabasis forassessingreservoirmodificationpotential.
It also supports selecting sweet spot areas for development and
enhances oil and gas recovery efficiency (Li, 2023). The brittleness
index is crucial for characterizing a rock’s fracturing potential. Rocks
with a high brittleness index are more accessible to fracture, making
shale reservoirs more conducive to natural gas development and
production (Mullen, 2010; Jin et al., 2015; Li, 2022). Rickman et al.
(2008) statistically analyzed the Barnet Shale and concluded that the
brittleness index of the rock is positively correlated with Young’s
modulus. Young’s modulus cannot be obtained directly from actual
seismic data, and the density term needs to be solved beforehand.
However, extracting density is challenging due to its insensitivity to
reflection amplitude changes. Therefore, Sharma and Chopra (2015)
proposed a new expression for the brittleness index, Eρ (the product
of Young’s modulus and density), better highlighting anomalous
characteristics in shale reservoirs. Luan et al. (2014) derived an
expression for the brittleness index of the ratio of Young’s modulus to
Poisson’s ratio based on petrophysics, which can lead to a significant
valueofbrittleness indexbecause thebrittleness indexhasamagnitude
scale. The two parameters differ significantly in order of magnitude,
which does not make it easy to observe and compare. Later, for
comparison, Liu and Sun (2015) normalized the two parameters to
evaluate the brittleness of reservoir rocks better.Then, analysis results
basedonshalepetrophysicalmodeling,Chenetal. (2014)proposedthe
E/λ (ratio of Young’smodulus to the first Lamé constant) attribute as a
new brittleness index, which has better sensitivity to the brittleness of
shale and can better indicate favorable reservoirs in gas-bearing shale.

In recent years, seismic inversion using actual pre-stack seismic
data to obtain fluid indicators for evaluating the fluid-bearing
characteristics of target reservoirs and brittleness indices for
quantifying the brittleness characteristics of reservoir rocks have
been rapidly developed. Based on Gray’s approximation equation,
Chi and Han (2006) proposed a method for direct inversion
of Lame parameters using pre-stack seismic AVO inversion.
Russell et al. (2011) derived the AVO approximation equation,
including fluid term, shear modulus, and density, based on the
theory of poroelasticity, realizing a direct inversion of the Gassmann
fluid term. Zong et al. (2012c) derived a new approximate equation,
which can directly invert the performances of E, σ, and ρ, reducing
the error of the brittleness index. Zhang et al. (2014) used the PP-
and P-SV waves stacking front joint inversion method to directly
invert the brittleness index Eρ for shale gas reservoir evaluation.
Yin et al. (2015) added model constraints to the inversion objective
function to improve the accuracy of the brittleness index inversion
results and solved it using a basis pursuit algorithm. Zhang F. Q. et al.
(2017) inverted the brittleness index using a basis pursuit algorithm
to obtain more accurate inversion results by deriving the brittleness
index into the exact Zoeppritz equation. In order to improve the
inversion results by getting over the unreliability of extensive offset
seismic data, Sun et al. (2021) proposed a method to invert the
predicted brittleness characteristics of shale reservoirs using the
extended elastic impedance equation. Ge et al. (2022) derived a new
approximate equation for the reflection coefficient by combining
scattering theory and Born’s equation, and they used a Bayesian
framework to realize the pre-stack seismic AVO inversion, which
can well portray the brittleness of the reservoir.

We can find that most current studies only assess the reservoir
fluid properties or rock fragility individually, and they are usually
indirect inversion methods: first, invert the elasticity parameters
and then calculate the required fluid indicator and brittleness
index through the petrophysical equations. However, due to the
inherent uncertainty of the seismic inverse problem, such as the
“pathological solution” and the inevitable cumulative error caused
by the indirect method, these will make the inversion results
highly multi-solutional, which makes it challenging to meet the
needs of fluid identification and rock brittleness characterization
in actual shale reservoirs. Therefore, this paper derived a new
approximation equation based on the Aki-Richards equation to
simultaneously and directly acquire highly reliable and stable
fluid identification indicators and brittleness index. Meanwhile,
we introduced a sparse inversion algorithm to solve the inversion
objective function containing the new approximate equation. The
inversion method based on this new equation enables the stable and
accurate extraction of fluid indicators and brittleness indices directly
from pre-stack seismic data, offering a reliable geophysical method
for identifying the “sweet spot” of shale gas reservoirs.

2 Theory and method

2.1 Approximation equation in terms of
fluid indicator, brittleness index and density

Due to the highly nonlinear nature of the exact Zoeppritz
equation, it is challenging to apply it to practical seismic inversion,
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and scholars have developed various forms of approximate equations
for the reflection coefficients (Shuey, 1985; Fatti and Smith,
1994; Zong et al., 2012a; Zong et al., 2012b; Zong et al., 2012c;
Zhang S. et al., 2017; Li et al., 2022). One of themost commonly used
approximate equations is the Zoeppritz approximation equation
proposed by Aki and Richards (2001):

RAki
PP (θ) =

1
2
sec2 θ
ΔVP

VP

− 4γ sin2 θ
ΔVS

VS

+ 1
2
(1− 4γ sin2 θ)

Δρ
ρ

(1)

where θ is the angle of incidence; ΔVP, ΔVS and Δρ denote the
differences of the P-wave velocityVP, S-wave velocity,VS and density
ρ values across the boundary, and:

γ = (
VS

VP

)
2

(2)

where VP and VS represent the average velocity of the P-wave and
S-wave, respectively.

Constructing rational forms of fluid indicators plays a crucial
role in reservoir fluid prediction, the most common forms being
the Lamé parameters and their combinations with other elastic
parameters. Goodway et al. (1997) established a fluid indicator
(expressed as the product of the first Lamé constant and the
density), which can sensitively characterize the rock feature and is a
commonly used elastic parameter for fluid prediction.Therefore, the
fluid indicator of the gas-bearing shale reservoir can be expressed as:

F = λρ (3)

Young’s modulus E, among other commonly used brittleness
indices, is a standard parameter for characterizing the brittleness
of shale reservoir rocks. Ongoing research has shown that while
Young’s modulus can reflect the influence of brittle minerals like
quartz in shale, it has been observed that the presence of organic
matter, fluids, and porosity in gas-bearing shale reservoirs can
significantly weaken the sensitivity to brittle shales. Consequently,
the effectiveness of Young’s modulus as an indicator of shale
reservoir brittleness is limited (Kumar et al., 2012; Pan et al., 2020;
Ma et al., 2023). To address this, Chen et al. (2014) proposed a
new brittleness index, BI = E/λ. Through rock physics modeling,
this index has been shown to effectively capture the content of
minerals, including quartz, and the combined effects of organic
content, fluids, and porosity in shale reservoirs, making it more
effective in characterizing gas-bearing brittle rocks. To facilitate the
derivation of the approximate equation that follows, we express BI
in terms of Poisson’s ratio alone:

BI = E
λ
=
(1+ σ)(1− 2σ)

σ
(4)

First, the VP and VS are related to the P-wave modulus M and
S-wave modulus μ in an isotropic elastic medium as follows:

VP = √
M
ρ
,VS = √

μ
ρ

(5)

According to the chain rule of multivariable calculus, we can
obtain the following equations about ΔVP and ΔVS:

ΔVP = ΔM
∂VP

∂M
+Δρ

∂VP

∂ρ
= 1
2
ΔM√1

ρ
M−

1
2 − 1

2
Δρ√Mρ−

3
2 (6)

ΔVS = ΔM
∂VS

∂μ
+Δρ

∂VS

∂ρ
= 1
2
Δμ√1

ρ
μ−

1
2 − 1

2
Δρ√μρ−

3
2 (7)

Dividing both sides of Equations 6, 7 byVP andVS, respectively.
We obtain the following equations:

ΔVP

VP
= 1
2
(ΔM

M
−
Δρ
ρ
) (8)

ΔVS

VS
= 1
2
(
Δμ
μ
−
Δρ
ρ
) (9)

In isotropic media, theM and μ have the following relationship:

M = E 1− σ
(1+ σ)(1− 2σ)

(10)

μ = E
2(1+ σ)
. (11)

Then, we rewrite the fluid indicator F as follows:

F =
Eσρ

(1+ σ)(1− 2σ)
(12)

Introduce intermediate variables ΗA, ΗB and ΗC such
that they are:

ΗA =
1− 2σ
σ
,ΗB = 1+ σ,ΗC =

1− σ
1− 2σ

(13)

Substituting Equation 13 into Equations 4, 10–12, we get the
following equations

F =
Eρ

ΗAΗB
,BI =ΗAΗB,M =

EΗC

ΗB
,μ = E

ΗB
(14)

Similarly, same as Equations 8, 9, we get the following equations:

ΔF
F
= ΔE

E
−
ΔΗA

ΗA

−
ΔΗB

ΗB

+
Δρ
ρ
, ΔBI
BI
=
ΔΗA

ΗA

+
ΔΗB

ΗB

(15)

ΔM
M
= ΔE

E
+
ΔΗC

ΗC

−
ΔΗB

ΗB

,
Δμ
μ
= ΔE

E
−
ΔΗB

ΗB

(16)

The term about ΔΗA

ΗA
has the following definition:

ΔΗA

ΗA

=
2(σ1 − σ2)

σ1 + σ2 − 4σ1σ2
(17)

where σ1 and σ2 denote the Poisson’s ratios of the upper layer and
lower layer, respectively, with the following expressions:

σ1 = σ−
Δσ
2
,σ2 = σ+

Δσ
2

(18)

Substituting Equation 18 into Equation 17, assuming relatively
weak variations in elastic parameters when crossing the elastic
interface, the higher order terms about (Δσ)2 can be approximated
as zero neglected, we can obtain as:

ΔΗA

ΗA

= 2σ
4σ2 − 2σ+ (Δσ)2

Δσ
σ
= 1
2σ− 1
Δσ
σ

(19)

Similarly, we can get results for the terms about ΔΗB

ΗB
and ΔΗC

ΗC
:

ΔΗB

ΗB

= σ
σ+ 1
Δσ
σ

(20)
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TABLE 1 The three-layer gas-bearing sandstone and
shale model (Goodway et al., 1997).

Lithology VP (km/s) VS (km/s) ρ (g/cc) σ

Shale 2.898 1.290 2.425 0.38

Gas-bearing
sandstone

2.857 1.666 2.275 0.24

Shale 2.898 1.290 2.425 0.38

ΔΗC

ΗC

= σ
(2σ− 1)(σ− 1)

Δσ
σ

(21)

Next, substituting Equations 19–21 into Equations 15, 16 yields:

ΔF
F
+ ΔBI

BI
= ΔE

E
+
Δρ
ρ
, ΔBI
BI
= 3σ
(2σ− 1)(σ+ 1)

Δσ
σ

(22)

ΔM
M
= ΔE

E
+ −2σ3 + 4σ2

(2σ− 1)(σ− 1)(σ+ 1)
Δσ
σ
,
Δμ
μ
= ΔE

E
− σ
σ+ 1
Δσ
σ

(23)

Meanwhile, a Poisson’s ratio relationship subscript exists as:

σ =
1− 2γ
2(1− γ)

(24)

By observing the above equations, we first substitute
Equations 8, 9, 23 into Equation 1, and then through Equation 22,
we replace the E term and σ term in it with the F term and
the BI term, and replace σ in it with Equation 24. Finally, a new
approximate equation that allows to obtain both the fluid indicator
and the brittleness index has been established:

RFBD
PP (θ) = ΚF(θ)

ΔF
F
+ΚBI(θ)

ΔBI
BI
+Κρ(θ)
Δρ
ρ

(25)

with

{{{{{{{
{{{{{{{
{

ΚF(θ) =
1
4
sec2 θ− 2γ sin2 θ

ΚBI(θ) =
4γ2 − 7γ+ 3
6γ2 − 8γ+ 3

(1
2
γ sec2 θ− 2γ sin2 θ)

Κρ(θ) =
1
2
(1− sec2 θ+ 4γ sin2 θ)

(26)

2.2 Approximate equation accuracy
analysis

To verify the accuracy of the newly proposed approximate
equation in Equation 25, we tested and analyzed it using the three-
layer gas-bearing sandstone and shalemodel given byGoodway et al.
(1997) based on the measured data, and the relevant elastic
parameters are shown in Table 1.

Based on the model mentioned above, we calculated the
reflection coefficients and the residuals between the approximate
and exact equations for different interfaces at incidence angles
from 0° to 40° using the exact Zoeppritz equation, the Aki-Richard
equation, and our proposed equation, respectively.

Figures 1A, 2A show the response curves in the PP-wave
reflection coefficients of the three equations at the reflection
interfaces of overlying sandstone and underlying shale and the
reflection interfaces of overlying shale and underlying gas-bearing
sandstone, respectively. Figures 1B, 2B show the variation in the
difference between the reflection coefficients calculated using the
Aki-Richards equation and our proposed equation, compared to
those calculated using the exact Zoeppritz equation, for a range of
incidence angles from 0° to 40°. From Figures 1, 2, we can find that
the new approximate equation of reflection coefficient and the exact
Zoeppritz equation are the same within the range of 40° of incidence
angle, and their errors are within the acceptable range, which can be
used in the seismic inversion of AVO elastic parameters.

2.3 AVO seismic inversion with the sparse
constraints of the ATpV regularization

In geophysical problems, a noisy seismic signal can be
represented by the reflection coefficient Equation 25 convolution
with the seismic wavelet:

S = w∗RFBD
PP + Ñ (27)

Convert the above equation into amatrixmultiplication operation:

S =WR+ Ñ (28)

where S ∈ ℝm×n denotes seismic data and R ∈ ℝm×n denotes the
reflection coefficient, Ñ ∈ ℝm×n denotes random noise; m and n
are the number of sampling points and traces of seismic data,
respectively. W is the wavelet kernels matrix obtained by time-
shifting the seismic wavelet Q:

W =

[[[[[[[[[[[[[

[

Q (1) 0 ⋯ 0

⋮ Q(1) ⋱ ⋮

Q(i) ⋮ ⋱ 0

0 Q(i) ⋮ Q(1)

⋮ ⋱ ⋱ ⋮

0 ⋯ ⋱ Q(i)

]]]]]]]]]]]]]

]m×(m−1)

(29)

A linear relationship between R and the P-wave impedance
Z can be established (Yilmaz, 2001), as shown in the
following equation:

Ri,j =
Zi+1,j −Zi,j

Zi+1,j +Zi,j
≈ 1
2
(ln Zi+1,j − ln Zi,j) (30)

where the symbol “ln” denotes the logarithmic operator; the
subscripts “i and j” indicate the sampling point locations. Based on
Equation 30, note L = ln Z, and introduce the difference matrix D
to realize the subtraction operation in Equation 30 to obtain the
reflection coefficient expression as follows:

R = 1
2
ΔZ
Z
= 1
2
DL (31)
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FIGURE 1
(A) Is the response curve of the PP-wave reflection coefficient of the three equations at the reflection interface of the overlying sandstone and
underlying shale; (B) is the error of the new approximation equation and Aki Richard approximation equation compared to the exact Zoeppritz equation.

FIGURE 2
(A) Is the response curve of the PP-wave reflection coefficient of the three equations at the reflection interface of the overlying shale and the
underlying gas-bearing sandstone; (B) is the error of the new approximation equation and Aki Richard approximation equation compared to the exact
Zoeppritz equation.

where D represents the difference matrix:

D =

[[[[[[[

[

−1 1 0 ⋯ 0

0 −1 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

0 ⋯ ⋯ −1 1

]]]]]]]

](m−1)×m

(32)

The relevant conversion of the elastic parameters in
the reflection coefficient approximation Equation 25 can be
further denoted as:

ΔF
F
= DLF,
ΔBI
BI
= DLBI,

Δρ
ρ
= DLρ (33)

where LF = ln F, LBI = ln BI , Lρ = ln ρ.
In summary, an approximate equation for the seismic record S

can be obtained:

S(θ) = ΚFWDLF +ΚBIWDLBI +ΚρWDLρ (34)

If the number of angles is N, write Equation 34 in matrix form
for different incidence angles:

[[[[[[[

[

S(θ1)

S(θ2)

⋮

S(θN)

]]]]]]]

]

=

[[[[[[[

[

ΚF(θ1)WD ΚBI(θ1)WD Κρ(θ1)WD

ΚF(θ2)WD ΚBI(θ2)WD Κρ(θ2)WD

⋮ ⋮ ⋮

ΚF(θN)WD ΚBI(θN)WD Κρ(θN)WD

]]]]]]]

]

[[[[

[

LF
LBI
Lρ

]]]]

]

(35)

This is a forward model of seismic records d that can be
simplified as follows:

d = Gr (36)

in which

d = [S(θ1),S(θ2),⋯S(θN)]
T
N×(m×n) (37)
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G =

[[[[[[[

[

ΚF(θ1)WD ΚBI(θ1)WD Κρ(θ1)WD

ΚF(θ2)WD ΚBI(θ2)WD Κρ(θ2)WD

⋮ ⋮ ⋮

ΚF(θN)WD ΚBI(θN)WD Κρ(θN)WD

]]]]]]]

]N×(m×n)×3

(38)

r = [LF,LBI,Lρ]
T
3×(m×n)

(39)

where G denotes the forward operator; r is the target elasticity
parameter obtained from the inversion.

We can obtain the primary objective function J(r) of the
inversion from the above forward model:

J(r) =min
r
‖d −Gr‖22 (40)

where ‖‖2 denotes the L2 norm.
Then, to improve the stability of the inversion process and

to reduce the multiplicity of solutions in seismic inversion,
we added the initial model constraint terms and sparse
constraint term into Equation 40:

J(r) =min
r
{‖d −Gr‖22 + μ1‖LF − lF‖

2
2 + μ2‖LBI − lBI‖

2
2 +μ3‖Lρ − lρ‖

2
2
+ λ‖Dyr‖1}

(41)

where ‖‖1 denotes the L1 norm; lF, lBI, lρ are the results of
logarithmic operations of the initial models for the fluid indicator
F, brittleness index BI, and density ρ, μ1, μ2, μ3 are the initial
model constraint parameters for elasticity parameters, and λ is the
constraint parameter for the sparsity term, and Dy denotes the
vertical difference operator.

In Equation 41, it can be observed that the sparse constraint
term of the objective function only includes differential
information in the vertical direction. However, anisotropic
total variation (ATV) is a sparse constraint that extracts sparse
information from seismic data in both vertical and horizontal
directions, which has achieved satisfying seismic inversion results
(Wu et al., 2020; Zhao et al., 2023).

To fully exploit sparse information, we use the LP (0 < p < 1)
norm instead of the L1 norm for sparse constraints. As a result, we
can give the expression for anisotropic total variation constrained by
the LP norm (ATpV) as follows:

ApTV(r) = ‖rDx‖
p
p + ‖Dyr‖

p
p

(42)

where ‖‖pp denotes the LP norm, r = [LF,LBI,Lρ]
T ∈ ℝ3m×n is the

parameter to be inverted, Dx is the horizontal difference operator,
Dy0

is part of the vertical difference operator, Dy is the vertical
difference operator:

Dx =
[[[[[[

[

−1 0 ⋯ 0 1
1 −1 ⋱ ⋮ 0
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ −1 0
0 0 ⋯ 1 −1

]]]]]]

]n×(n−1)

,Dy0 =
[[[[[[

[

−1 1 0 ⋯ 0
0 −1 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ −1 1
0 0 ⋯ 0 −1

]]]]]]

](m−1)×m

,

Dy =
[[

[

Dy0 0 0
0 Dy0 0
0 0 Dy0

]]

]3(m−1)×m

(43)

Introducing the anisotropic total variation as a sparse
regularization constraint in Equation 41, the inversion objective
function can be given as follows:

J(r) =min
r
{‖d −Gr‖22 + μ1‖LF − lF‖

2
2 + μ2‖LBI − lBI‖

2
2 +μ3‖Lρ − lρ‖

2
2
+ λ(‖rDx‖

p
p + ‖Dyr‖

p
p
)}

(44)

Given that Equation 44 involves the L2 and LP norms,
conventional methods cannot solve it directly. Therefore, we
introduced the Alternating Direction Method of Multipliers
(ADMM), which can decompose the inversion objective function
into several easier-to-solve sub-objectives. The optimal solution
can efficiently be obtained for the original objective function by
alternating among subproblems (He et al., 2022; Zhao et al., 2024).

First, the objective function is transformed into a
constrained optimization problem by introducing the Lagrange
multiplier term in Equation 44, replacing rx and ry with rDx and
Dyr, respectively, to obtain:

J(r) =min
r
{
‖d −Gr‖22 + μ1‖LF − lF‖

2
2 + μ2‖LBI − lBI‖

2
2

+μ3‖Lρ − lρ‖
2
2
+ λ(‖rx‖

p
p + ‖r‖

p
p)

} s.t rx = rDx,ry = Dyr

(45)

Next, the above optimization problem is converted into an
unconstrained optimization problem by introducing dual terms Cx
and Cy in the objective function:

J(r) =min
r

{
{
{

‖d −Gr‖22 + μ1‖LF − lF‖
2
2 + μ2‖LBI − lBI‖

2
2 + μ3‖Lρ − lρ‖

2
2

+λ(‖rx‖
p
p + ‖ry‖

p
p
) + η‖rx − rDx −Cx‖

2
2 + η‖ry −Dyr −Cy‖

2
2

}
}
}
(46)

where η represents the weight coefficient of the dual term.
The objective function Equation 46 is decomposed into sub-

functions related to r, rx, ry, Cx, and Cy.
The sub-problem related for r is:

J1(r) =min{
‖d −Gr‖22 + μ1‖LF − lF‖

2
2 + μ2‖LBI − lBI‖

2
2

+μ3‖Lρ − lρ‖
2
2
+ η‖rx − rDx −Cx‖

2
2 + η‖ry −Dyr −Cy‖

2
2

}

(47)

Equation 47 is a convex optimization problem that can be solved
directly. Compute the gradient concerning r and simplify:

(GTG + μE + ηDT
yDy)r + r(ηDT

xDx) = GTd + μr0 + η[DT
y (riy −Ci

y) + (rix −Ci
x)DT

x ]
(48)

where E is the unit matrix, r0 =
[[[[

[

lF
lBI
lρ

]]]]

]

is the initial model for the

inversion parameters, μ =
[[[[

[

μ1 0 0

0 μ2 0

0 0 μ3

]]]]

]

.

Given that Equation 48 is difficult to solve for r directly, Gholami
(2015) found that it can be transformed into a particular form:
the 2D Sylvester equation then facilitates solving for r, the
equation as follows:

Ax+ xB = C (49)
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Then, Equation 48 can be organized into the formof Equation 49
to obtain the inversion parameter r:

{{{{
{{{{
{

A = GTG + μE + ηDT
yDy,

B = ηDT
xDx,

C = GTd + μr0 + η[D
T
y (r

i
y −C

i
y) + (r

i
x −C

i
x)D

T
x ]

(50)

The next sub-problems on rx and ry are:

J2(rx) =min
rx
{λ‖rx‖

p
p + η‖rx − rDx −Cx‖

2
2} (51)

J3(ry) =min
ry
{λ‖ry‖

p
p
+ η‖ry − rDy −Cy‖

2
2
} (52)

Equations 51, 52 contain LP norms and cannot be solved by
traditional convex optimization algorithms. So, Chartrand and Yin
(2016) used the LP-norm iterative shrinkage thresholding algorithm
(ISTA) to solve such problems:

ri+1x =max(|ri+1Dx +Ci
x| − (

η
λ
)
p−2
· |ri+1Dx +Ci

x|
p−1,0) · sign(ri+1Dx +Ci

x)
(53)

ri+1y =max(|Dyr
i+1 +Ci

y| − (
η
λ
)
p−2
· |Dyr

i+1 +Ci
y|
p−1,0) · sign(Dyr

i+1 +Ci
y)
(54)

in which

sign(x) =
{{{{
{{{{
{

1 x > 0

0 x = 0

−1 x < 0

(55)

The sub-problems for Cx and Cy can be expressed as:

J4(Ci+1
x ) =min

Cx
η‖rxi+1 − rDx −Cx

i‖22 (56)

J5(Ci+1
y ) =min

Cy
η‖ryi+1 −Dyr −Cy

i‖2
2

(57)

The solutions to Equations 56, 57 can be found by computing the
gradient and setting it to zero:

Ci+1
x = Ci

x + ri+1Dx − ri+1x (58)

Ci+1
y = Ci

y +Dyr
i+1 − ri+1y (59)

Eventually, the framework of the inversion technique
is summarized in Algorithm 1. Meanwhile, we show the
specific workflow of this paper to obtain the inversion target
parameters in Figure 3.

3 Numerical examples

3.1 Synthetic data test

To demonstrate the reliability and practicality of the
simultaneous inversion method for fluid indicator and brittleness
index presented in this paper, we conducted three sets of tests using
synthetic seismic data derived from actual logging data. First, we

obtained the multi-angle pre-stack seismic data by convolving the
theoretical Ricker wavelet with the reflection coefficients computed
from the actual log data based on the Zoeppritz equation, as shown
in Figure 4.Then, to assess the performance of the inversionmethod
under different noise conditions, we introduced various levels of
random noise into the data. Moreover, Figures 4B, C show noisy
datasets with SNR (Signal-to-Noise Ratio) of 5 and 2, respectively.

Figures 5–7 present the results obtained from the synthetic data,
the inverted data: fluid indicator F, brittleness index BI, and density
(red solid curves), the initial models (green dashed curves), and
the original well data (black solid curves), and the distribution of
error between them. From Figure 5, in the noise-free case, all elastic
parameter inversion results are well inverted and agree very well
with the original well curve tracks. Figures 6, 7 show the inversion
results when the SNR of the synthetic data is 5 and 2, respectively.
We found that when the low-frequency curve is smooth and the
model resolution is low, the gap between the obtained results and
the actual logging data ismoreminor.The resolution of the inversion
results can be guaranteed. Even at an SNR of 2, the inversion results
obtained in this paper can also bematchedwell with the original well
curves and have good noise resistance.

Then, to quantitatively evaluate our results, we use
Equations 60, 61 to calculate the inversion result errors ε and RMSE
(root-mean-square-errors).

ε = (
Xinv −Xwell

Xwell
)× 100% (60)

RMSE =
√

N

∑
i=1
(Xi

inv −Xi
well)

2

N
(61)

where X inv and Xwell represent the inversion result and original well
curve, respectively. N is the number of sampling points.

We find that the inversion error for the brittleness index is more
significant than that for the indicator index and density in the noise-
free case. Still, the inversion error for all results is less than 5%, giving
high accuracy. With the increase of noise, the inversion errors and
RMSE of the brittleness index significantly increase. However, the
errors and RMSE of fluid indicator and density vary within normal
limits. Overall, the synthetic data test results can demonstrate that
the methodology of this paper is theoretically feasible.

3.2 Field data application

The validity and practicability of the methodology proposed
in this paper are verified through a field shale gas reservoir work
area. This paper’s field study area (as shown in Figure 8) is located
in the Sichuan Basin, China, and the primary target formation is
the Silurian Longmaxi Formation. Well A in the work area drilled
a high-quality shale gas reservoir, but the reservoir thickness is
relatively small. The main target reservoir and lithology of well A
are shown in Figure 9. The upper part of T1 is a limy siltstone
with interbedded gray and sand. The section from T1 to T2
is a shale Section 1 with locally thinly interbedded argillaceous
siltstone. The reservoir section from T2 to T3 is characterized by
high porosity and substantial organic matter content, making it a
high-quality, gas-bearing shale reservoir (Section 2) with significant
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FIGURE 3
The workflow of the inversion method.

Algorithm: Multitrace pre-stack inversion of

elasticity parameters using ADMM and ISTA.

Input: seismic data d,initial model r0, seismic

wavelet w, difference matrix Dx, Dy , parameter

terms μ1, μ2, μ3, λ, η, P, error threshold εmax.

Initial values: k = 0,r(0) = r0,rx = ry = Cx = Cx = 0 .

1. Updated r(k+1) by Equations 49, 50.

2. Updated rx
(k+1) , ry

(k+1) by Equations 53, 54.

3. Updated Cx
(k+1) , Cy

(k+1) by Equations 58, 59.

4. If:
‖r(k+1)−r(k)‖

2

‖r(k+1)‖
2

≤ εmax, get the inversion results.

Otherwise, increment k by 1 and repeat steps

1 through 4.

Output results: [F BI ρ]T = er
(k+1)

.

Algorithm 1. Inversion Pseudocode based on ADMM of the ATpV method.

hydrocarbon production potential. The lower part of T3 is the
underlying limestone layer. In addition, based on actual logging
curve values, such as elasticity curves for velocity and density, we
can calculate the fluid indicator curve and brittleness index curve
using Equations 3, 4. We can find that the fluid indicator curve
and the brittleness index curve show apparent low-value and high-
value anomalies in the shale 2 section; it is a favorable location for
predicting shale reservoirs.

Figure 10 shows the stacked seismic data with center incidence
angles of 5° (0°–10°) in Figure 10A, 15° (10°–20°) in Figure 10B,
and 25° (20°–30°) in Figure 10C, respectively. The profile has 285
traces of seismic data, and the red vertical line represents the
path of well A, which is located on trace 112. In addition, the
low-frequency components often lacking in the actual seismic
data may lead to unstable inversion results. Therefore, a common

approach is introducing initial model constraints in the inversion
constraint term to make the results more reliable. Utilizing the
seismic stratigraphic information, the fluid indicator, brittleness
index, and density data from well A were extrapolated, interpolated,
and then low-pass filtered to generate the corresponding low-
frequency models, as illustrated in Figures 11A–C.

According to the inversion Algorithm 1 and combined with the
approximate equation proposed in Equation 25, we inverted the 2D
seismic data. Figures 12A–C shows the final 2D inversion results for
the target parameters.

In the fluid indicator inversion results, the red color indicates
that the fluid identification factor is low, which means that the
formation in the red part of the profile is likely to have fluids. In
the brittleness index inversion results, the red color indicates high
brittleness index values, which means that the formation in the
red part of the profile is prone to fracture. Figure 12 shows that
the brittleness inversion results have apparent high anomalies in
the target layer section (T2 to T3). The fluid indicator inversion
results have low anomalies in the target layer section (T2 to T3).
The combination of the two inversion results indicates that the
formation at this location is brittle and contains fluid, which is
in agreement with the recognition in Figure 9. The combination
of the inversion results is beneficial to characterize the gas-
bearing shale reservoir better and helps us identify the target shale
reservoir section.

To demonstrate the advantages and reliability of the direct
inversion method for fluid indicator F and brittleness index BI
proposed in this paper, we followed the inversion strategy outlined
in Figure 3. Initially, according to the method proposed in this
paper, we invert three elastic parameters VP, VS, and ρ, using the
Aki-Richards approximation equation. Subsequently, we indirectly
calculated the F and BI at the well location (trace 112) using
Equations 3, 4, as illustrated by the green curves in Figure 13.
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FIGURE 4
Synthesized seismic data, where (A) is noise-free, (B) SNR is 5, and (C) is 2.

FIGURE 5
Inversion results from the noise-free synthetic data, along with error statistics and RMSE between them and the well data, where (A) is the fluid
indicator, (B) is the brittleness index, and (C) is the density.

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2025.1538756
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1538756

FIGURE 6
Inversion results from the synthetic data with SNR = 5, along with error statistics and RMSE between them and the well data, where (A) is the fluid
indicator, (B) is the brittleness index, and (C) is the density.

Eventually, we extracted the inversion results of F and BI for
the location of well A from Figure 12 and represented them as
red curves in Figure 13.

From Figures 13A, B, we found that the indirect inversion
results accumulate errors in the calculation, which can lead to
inaccurate results at the reservoir location (black dotted box).
In addition, in several places in Figure 13 (black arrows), we
can also find that the indirect prediction results (green solid
curves) significantly exceed the actual well data (black solid
curves). In contrast, the simultaneous inversion results for the fluid
indicator and brittleness index (red solid curves) proposed in this
paper strongly align with the original well curves. Furthermore,
the residuals and RMSE analysis in Figure 14 indicate that the
simultaneous inversion method yields much smaller residuals and
lower RMSE than the indirect calculation method. Therefore, the

approximation equation proposed in this paper enables more
accurate and reliable simultaneous inversion of fluid indicator and
brittleness index.

The brittleness index BI, as an engineering sweet spot, is
employed to characterize the fracturing ability of rock, which
plays an instrumental guidance role in shale reservoir hydraulic
fracturing construction, and the shale gas fluid indicator F,
as a geological sweet spot has been revealed to be used to
characterize hydrocarbon-bearing enriched zones.The combination
of engineering and geological sweet spots is dedicated to the
well deployment, horizontal well trajectory design, and effective
shale gas production and extraction promotion. Based on the
simultaneous seismic inversion method of shale gas fluid factor
and brittleness index realized in this article, 3D pre-stacked
seismic inversion at the fracturing platform has been utilized to
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FIGURE 7
Inversion results from the synthetic data with SNR = 2, along with error statistics and RMSE between them and the well data, where (A) is the fluid
indicator, (B) is the brittleness index, and (C) is the density.

FIGURE 8
Specific information of the actual work area, where (A) is the location of the study area in the Sichuan Basin, (B) is a 3D display of the seismic data of
the study area, where the formation is the basement of the Longmaxi Formation shale, and A is a straight well with logging information (Lin et al., 2022).
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FIGURE 9
Original log curves, calculated fluid indicator and brittleness index curves, and lithologic distributions for well A. The red curves represent the
high-quality reservoir Section 2.

FIGURE 10
Stacked seismic data with different angle parts, where (A) is 0°–10°, (B) is 10°–20°, and (C) is 20°–30°.

FIGURE 11
The initial model of the parameters to be inverted, where (A) is the fluid indicator, (B) is the brittleness index, and (C) is the density.

perform the spatial distribution estimation with the above double-
sweet spot parameters. The 3D seismic data was acquired by
230 Inlines and 270 Xlines, where wells H1, H3, and H5 are
drilled as horizontal fractured wells in the shale reservoir, detecting
numerous micro-seismic events at different periods. The inversion
result slices of the fluid indicator and brittleness index along

the destination layer are displayed in Figures 15A, B, respectively.
The dashed circle closures pointed by white arrows reveal the
hydrocarbon-enriched favorable fracturing zones, where the low
fluid indicator spreading in Figure 15A represents enrichment of
shale gas resources, and the high brittleness index distribution
in Figure 15B represents satisfactory rock brittleness, which is
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FIGURE 12
2D simultaneous inversion results based on our proposed approximation equation, where (A) is the fluid indicator, (B) is the brittleness index, and (C) is
the density.

FIGURE 13
Inversion results of elasticity parameters based on the Aki-Richard equation in Equation 1 (green curve) and our proposed equation (red curve), where
(A) is the fluid indicator and (B) is the brittleness index.

beneficial to fracture fragmentation and facilitates hydraulic
fracturing construction. The black dashed line Ft1 represents
the projection of the seismic wave artificial fault interpretation
conclusion on the slice. It can be seen that the fluid indicator
exhibits uninteresting high values because the fault structure leads
to increased stratum permeability, which is unfavorable to shale
gas storage. The brittleness index presents low values, indicating
that the rock brittleness at the fault location may be inferior
because the fracture zone has been filled with more nonbrittle
minerals, such as clay. In addition, in Figure 15C, numerous micro-
seismic events in Figure 15D detected along three horizontal wells
H1, H3, and H5 demonstrate the satisfying positive correlation
with the high brittleness index in the fracturing favorable zone,
which indicates that the rock is brittle enough and can be easily
fractured to induce micro-seismic events. The practical application
demonstrates that this article’s simultaneous seismic inversion

method of fluid indicator and brittleness index can effectively
provide reliable guidance information for unconventional shale
gas production.

4 Discussion

In unconventional resource exploration, accurately identifying
fluid indicators and brittleness indices in shale gas reservoirs
is crucial for optimizing fracture zone selection and enhancing
production efficiency. Traditional seismic methods typically rely
on indirect calculation of sweet spot parameters, a process that
is susceptible to various errors, resulting in unstable inversion
outcomes and relatively low precision. In contrast, the synchronous
seismic inversion method proposed in this study addresses the
challenge of simultaneously inverting fluid indicators and brittleness
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FIGURE 14
Error statistics and RMSE for inversion results from Aki-Richards and proposed equations, where (A) and (C) are fluid indicator and brittleness index by
proposed equation in Equation 25, and (B) and (D) are by Aki in Equation 1.

FIGURE 15
Slices of 3D seismic inversion prediction results along the destination layer in the study area, where (A) is a slice of brittleness index inversion result
along the destination layer, (B) is a slice of fluid indicator inversion result along the destination layer, (C) is a slice of brittleness index inversion result
and a superimposed display of micro-seismic events, and (D) is the micro-seismic events detected from three horizontal wells.
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indices, thereby avoiding the cumulative errors associated with
indirect calculations.

To further improve the precision of the inversion results,
this study introduced the ATpV inversion method based on
LP norm sparse constraint. Compared to conventional single-
trace inversion methods, the proposed method demonstrates
significant improvements in both computational efficiency and
accuracy. Single-trace inversion methods typically involve the
successive inversion of individual parameters, making them
more vulnerable to noise. In contrast, the synchronous inversion
method allows for the simultaneous estimation of multiple
parameters, thereby reducing noise interference during the
inversion process and enhancing the robustness and stability of
the results. Validation using actual seismic data from the Sichuan
Basin reveals that the fluid indicator λρ exhibits high sensitivity in
fluid identification within shale gas reservoirs, while the brittleness
index E/λ proves to be more effective in identifying gas-rich shale
formations.

Overall, the proposed simultaneous inversion method and
its new approximation equation, combined with the advantages
of sparse regularization, not only overcome the limitations of
traditional methods in shale gas exploration but also demonstrate
strong stability and noise resistance in practical applications.
However, there is still room for improvement. For instance, although
the proposedmethod has shown good application results in shale gas
reservoirs in the Sichuan Basin, its applicability in other geological
conditions needs further validation. Future work will involve
expanding the method’s applicability and enhancing practical
data testing in different geological environments to improve its
universality and reliability.

5 Conclusion

In exploring and developing unconventional resources, it is
critical to accurately identify fluids in the reservoir and obtain a
brittleness index that characterizes the brittleness of the reservoir
rock. The fluid indicator λρ exhibits high sensitivity and robustness
in detecting fluids within shale gas reservoirs. The brittleness index
E/λ, is more effective than Young’s modulus in characterizing
gas-rich shales. Higher brittleness in rocks typically corresponds
to higher E/λ values. Consequently, the simultaneous inversion
of pre-stack seismic data to obtain both fluid indicators and
brittleness indices allows for more accurate prediction of “sweet
spots” in shale gas reservoirs and the identification of favorable
fracture zones.

In this paper, we derived a new approximate equation based
on the Aki-Richards approximation under plane P-wave incidence.
This equation consists of three components: fluid indicator λρ,
brittleness index E/λ, and density ρ. Model tests have shown
that the accuracy of this new approximation equation meets the
requirements for practical applications, thus laying a theoretical
foundation for the pre-stack inversion to obtain λρ and E/λ. Building
on this foundation, we propose an ATV sparse inversion method
based on LP norm constraint to obtain these two parameters stably.
This method avoids the cumulative errors introduced by indirectly
calculating the sweet spot parameters and can obtain more accurate
inversion results.

Finally, based on model tests and practical applications in
the gas-bearing shales of the Silurian Longmaxi Formation,
the proposed approximate equation combined with sparse
regularization for simultaneous inversion has demonstrated
excellent stability and noise resistance. The inversion results are
reasonable and reliable, which can be a valuable guide for locating
the sweet spot of shale gas reservoirs in practical situations.
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