
TYPE Methods
PUBLISHED 05 March 2025
DOI 10.3389/feart.2025.1540035

OPEN ACCESS

EDITED BY

Xin Sun,
Sinopec Matrix Co., LTD, China

REVIEWED BY

Meng Li,
Xi’an Shiyou University, China
Zhongguo Yang,
North China University of Technology, China

*CORRESPONDENCE

Cheng Feng,
fcvip0808@126.com

RECEIVED 05 December 2024
ACCEPTED 12 February 2025
PUBLISHED 05 March 2025

CITATION

Deng X, Li J, Chen J and Feng C (2025) Study
on lithology identification using a
multi-objective optimization strategy to
improve integrated learning models: a case
study of the Permian Lucaogou Formation in
the Jimusaer Depression.
Front. Earth Sci. 13:1540035.
doi: 10.3389/feart.2025.1540035

COPYRIGHT

© 2025 Deng, Li, Chen and Feng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Study on lithology identification
using a multi-objective
optimization strategy to improve
integrated learning models: a
case study of the Permian
Lucaogou Formation in the
Jimusaer Depression

Xili Deng1, Jiahong Li1, Junkai Chen2 and Cheng Feng2*
1Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China, 2Faculty of
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Lithology identification is a critical task in logging interpretation and
reservoir evaluation, with significant implications for recognizing oil and
gas reservoirs. The challenge in shale reservoirs lies in the similar logging
response characteristics of different lithologies and the imbalanced data scale,
leading to fuzzy lithology classification boundaries and increased difficulty in
identification. This study focuses on the shale reservoir of the Permian Lucaogou
Formation in the Jimusaer Depression for lithology identification. Initially,
a comprehensive sampling model—Smote-Tomek (ST) is used to introduce
new feature information into the dataset while removing redundant features,
effectively addressing the issue of data imbalance. Then, by combining the
multi-objective optimization strategy Artificial Rabbit Optimization (ARO) with
the Light Gradient Boosting Machine (LightGBM) model, a new intelligent
lithology identification model (ST-ARO-LightGBM) is proposed, aimed at solving
the problem of non-optimal hyperparameter settings in the model. Finally,
the proposed new intelligent lithology identification model is compared and
analyzed with six models: K-Nearest Neighbors (KNN), Decision Tree (DT),
Gradient Boosting Decision Tree (GBDT), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and LightGBM, all after comprehensive sampling. The
experimental results show that the ST-ARO-LightGBMmodel outperforms other
classification models in terms of classification evaluation metrics for different
lithologies, with an overall classification accuracy improvement of 9.13%. The
method proposed in this paper can solve the problem of non-equilibrium in rock
samples, and can further improve the classification performance of traditional
machine learning, and provide amethod reference for the lithology classification
of shale reservoirs.

KEYWORDS

shale reservoir, lithology identification, multi-objective optimization, artificial rabbit
optimization model, integrated learning model, comprehensive sampling
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1 Introduction

Lithology identification is a critical task in the field of petroleum
exploration and development, influencing reservoir evaluation and
geological modeling processes. Logs data, characterized by high
vertical resolution and continuity, is widely used for lithology
identification (Baisakhi and Rima, 2018). Currently, tight and
shale oil and gas have become significant alternative resources
(Feng et al., 2020; Feng et al., 2021; Feng et al., 2023; Zou et al., 2015;
Passey et al., 2010). However, due to the similar logging response
characteristics of different lithologies within shale reservoirs and
the ambiguity and subjectivity indicated by logs parameters,
traditional lithology identificationmethods fail to effectively classify
lithologies. Additionally, the limitations of coring data result in an
imbalanced lithology dataset, further leading to inaccurate lithology
prediction results. Machine learning methods can effectively
alleviate these issues (Al-Anazi and Gates, 2010; Saporetti et al.,
2019; Bestagini et al., 2017; Bressan et al., 2020a; Imamverdiyev and
Lyudmila, 2019).

Machine learning, with its strong nonlinearmapping capabilities
across multiple scales and dimensions, has been widely applied
to the fine identification of lithologies (Chioma et al., 2018).
Prabowo UN (Prabowo et al., 2023) used the KNN clustering
algorithm to accurately classify different lithofacies types in thefield
Z, Indonesia. And the influence of hyperparameter K in KNNmodel
on lithology identification results is analyzed and compared. Li,
Bressan, and others (Li et al., 2023; Bressan et al., 2020b) applied
support vector machine models to lithology identification. Mou
Dan (Mou et al., 2021) compared the accuracy and applicability
of K-Nearest Neighbors, support vector machines, and adaptive
boosting algorithms in identifying volcanic rock lithologies. As
exploration efforts continue to increase, the lithology in actual
reservoirs becomes more complex. The fitting effect of a single
model is insufficient to accurately classify the lithology types of
complex reservoirs. The emergence of integrated models, which
combine the classification results of multiple single models, further
improves the accuracy of lithology prediction. Thongsamea et al.
(2021) and Chen et al. (2024) used conventional logging curves
as inputs for the XGBoost model, accurately identifying the
lithologies of volcanic reservoirs. Huang et al. (2023) and
Wang et al. (2020) applied the Boosting algorithm integrated
with the random forest model, effectively enhancing the accuracy
of lithology identification. However, the accuracy of machine
learning models in predicting lithology depends on the scale of
the sample set (Han et al., 2024). Machine learning is insensitive
to the feature parameters of minority class samples, and different
combinations of hyperparameters can affect the model’s lithology
identification accuracy (Saporetti et al., 2021).

To address the above issues, this paper proposes a multi-
objective optimization strategy to modify an integrated learning
model (ST-ARO-LightGBM) for imbalanced sample datasets.
This model incorporates ST comprehensive sampling technology
to effectively solve the problem of sample imbalance. The
ARO technology adaptively adjusts the model’s hyperparameter
combinations to find the optimal hyperparameter set, achieving
efficient and accurate lithology identification of the shale reservoir
in the Permian Lucaogou Formation of the Jimusaer Depression. By
integrating advanced machine learning techniques and integrated

FIGURE 1
Flowchart of ST-ARO-LightGBM model establishment.

TABLE 1 Confusion matrix for binary classification tasks.

Actual category Predicted category

Positive
category

Negative
category

Positive category True Positive (TP) False Negative (FN)

Negative category False Positive (FP) True Negative (TN)

sampling methods, our study demonstrates a general approach to
enhanced lithology prediction that not only addresses the challenges
of data imbalance and complex lithology identification in shale
reservoirs, but also provides a robust solution that can be adapted to
other regions with similar geological conditions.

2 Methods and theory

2.1 Artificial Rabbit Optimization

ARO model is a novel intelligent multi-objective optimization
strategy inspired by the group behaviors observed in the survival
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FIGURE 2
Geological structure map of the Jimusaer Depression.

FIGURE 3
Pie chart of core lithology in the Permian Lucaogou Formation.

and evolution of rabbit populations (Wang et al., 2022). During
their survival, rabbits primarily engage in two strategies: detouring
foraging (exploration) and random digging (hiding). The transition
between these strategies is mainly influenced by the rabbit’s
energy factor (Formula 1). When the energy factor is high, rabbits
have more stamina and are more likely to adopt exploration
strategies. Conversely, when the energy factor is low, they are more
inclined to adopt hiding strategies to avoid predators.

A(t) = 4(1− t
T
) ln 1

r
(1)

In this context, A(t) represents the energy factor, which is
a function that oscillates and gradually decreases over time t. T
represents the total number of iterations of the algorithm, and r is
a random number between 0 and 1.

The ARO algorithm simulates the survival and evolution
process of a rabbit population to seek the optimal solution in
a multi-dimensional space. Assume there is a rabbit population
of N rabbits in a D-dimensional space, where the position of
the ith rabbit can be represented as: Ri = [Ri1,Ri2,Ri3, · · ·,RiD].
During the iteration process of the population, the positions of
the rabbits will continuously change. The mathematical model of
the exploration strategy can be represented by Formula 2, and
the mathematical model of the hiding strategy can be represented
by Formula 3.

vi(t+ 1) = xj(t) + (e− e
( t−1

T
)2) ⋅ sin (2πr2) ⋅ c ⋅ (xi(t) − xj(t))

+ round(0.5 ⋅ (0.5+ r1)) ⋅ n1 (2)

vi(t+ 1) = xi(t) + (e− e
( t−1

T
)2) ⋅ sin (2πr2) ⋅ c⋅

(r3 ⋅ xi(t) +
T− t+ 1

T
⋅ r4 ⋅ gr ⋅ xi(t) − xi(t)) (3)

where vi(t+ 1) represents the position of the ith rabbit at time
t+1, and xj(t) represents the position of the jth rabbit at time t;
c and gr represent sequences in the D-dimensional space where
the mth position is 1 and all other positions are 0. n1 follows a
standard normal distribution, and r1,r2,r3,r4 are random numbers
between 0 and 1.

2.2 Light Gradient Boosting Machine

LightGBM is a high-performance ensemble learning algorithm
based on gradient boosting trees (Ke et al., 2017). Its core idea is
to iteratively train multiple weak classifiers, where each iteration
generates a new decision tree to correct the prediction errors of all
previous trees, thereby gradually improving the overall predictive
performance of the model. The objective function of LightGBM is
as follows (Formula 4):

Obj(t) =
n

∑
i=1

L(yi, ft−1(xj)) +
T

∑
k=1

Ω( fk) (4)

where Obj(t) represents the loss function at the tth iteration,
∑ni=1L(yi, ft−1(xj)) represents the prediction error up to the
(t-1)-th iteration, and ∑Tk=1Ω( fk) represents the regularization
term.

To improve training speed, LightGBM also employs the
histogram-based optimization algorithm and the leaf-wise
growth strategy. The histogram-based optimization algorithm
reduces computational complexity by grouping continuous feature
values into discrete bins, thereby decreasing the amount of
computation required during the splitting of decision trees and
more effectively determining the optimal split points. The leaf-
wise growth strategy selects the leaf node with the maximum
gain for splitting at each iteration. Compared to the traditional
level-wise growth strategy, leaf-wise can quickly find good split
nodes, effectively reducing the depth of the tree and speeding
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TABLE 2 Statistics on the range of logging response parameters for different lithologies.

AC (us/ft) CNL (%) DEN (g/cm3) GR (gAPI) Log (RT) Log (RXO) Log (T2LM) POR

mudstone
58.13–98.01 11.38–36.64 2.30–2.75 37.05–153.50 −0.78–3.22 −0.94–3.30 −0.02–1.74 0.005–0.201

(73.46) (23.79) (2.46) (80.88) (1.48) (1.35) (0.84) (0.081)

cloud-bearing
sandstone

60.36–106.31 14.23–40.52 2.22–2.55 35.61–162.50 0.72–3.27 0.30–3.29 −0.04–1.76 0.021–0.210

(74.79) (24.97) (2.44) (76.21) (1.69) (1.50) (0.95) (0.102)

siltstone
62.65–101.41 13.60–41.98 2.23–2.58 48.33–132.94 0.06–3.00 −0.32–2.71 0.12–1.96 0.003–0.179

(72.30) (23.31) (2.44) (81.59) (1.42) (1.03) (1.18) (0.095)

detrital-bearing
dolomite

61.61–111.15 9.58–43.54 2.07–2.67 30.16–120.44 0.88–2.95 0.58–3.11 0.16–1.77 0.032–0.190

(76.51) (25.88) (2.44) (72.55) (1.76) (1.50) (0.79) (0.076)

Note: RT, RXO, and T2LM are all log-transformed, with the data format being min–max
(average)

up model training. Additionally, the leaf-wise strategy can
handle feature imbalance more flexibly, giving the model better
generalization ability.

2.3 Smote-Tomek

During exploration, there is a significant imbalance in the
number of lithological types in rock thin sections. Such severe
sample imbalance can cause machine learning models to overly
focus on the majority class samples and ignore the characteristics of
the minority class samples during the learning process (Deng et al.,
2023). To address this issue, sampling algorithms are needed to
balance the number of samples of different lithologies, thereby
enhancing the machine learning model’s ability to analyze minority
class samples. ST is a combined sampling algorithm that integrates
Smote oversampling with Tomek link undersampling techniques
(Pereira et al., 2020; Devi and Purkayastha, 2017). It has shown
good effectiveness in addressing the problem of sample imbalance
in datasets. Compared to single sampling methods, Smote-Tomek
compensates for the limitations of the Smote oversampling method,
which tends to focus only on the minority class samples, leading to
further overlap of different types of samples and low-quality data
synthesis. The specific implementation steps are as follows:

(1) For the minority class samples, calculate the distance between
the minority class samples and other class samples.

(2) Based on the distance between samples, generate a new sample
through linear interpolation, so that the new sample lies on the
line connecting two samples

(3) In the newly generated dataset, recalculate the distances
between different samples to find the nearest neighbor samples
of different classes that form Tomek links, where the two
samples in a Tomek link pair belong to different classes.

(4) Remove the majority class samples in the Tomek link pairs
to reduce the overlap at the decision boundary of the dataset,
decrease the number of majority class samples, and generate a
high-quality dataset.

2.4 ST-ARO-LightGBM model

The training effectiveness of amachine learningmodel primarily
depends on the quality of the dataset and the configuration of
model parameters (Probst et al., 2019). This paper first uses the
ST model to perform combined sampling on the lithological
dataset in the study area, generating a new dataset. Then, the
ARO multi-objective optimization strategy is used to adjust
the hyperparameters of the LightGBM model, enhancing its
lithological identification capability. The steps to establish the ST-
ARO-LightGBM model are as follows, with the flowchart shown
in Figure 1.

1. Use the ST method on the collected imbalanced lithological
dataset to generate a new dataset, making the number of
different lithological samples relatively balanced.

2. Based on the numberm of hyperparameters to be optimized in
the LightGBMmodel and the range of these hyperparameters,
initialize the positions of N artificial rabbit individuals in the
ARO population Xi = [xi,1,xi,2,xi,3, · · ·,xi,m], i = 1,2, · · ·,N, and
initialize the number of algorithm iterations T.

3. Split the combined sampled data into training and testing
sets. Use the values of each artificial rabbit individual Xi
as the input hyperparameters for the LightGBM model,
establish the LightGBM lithology prediction model, and
calculate the current model’s fitness value Fbest based on
the testing set. The position Xbest of the artificial rabbit
individual corresponding to the highest fitness value is
taken as the optimal hyperparameter combination for the
LightGBMmodel.

4. For each artificial rabbit individual Xi, calculate the
energy factor A. When A > 1, the artificial rabbit adopts
the exploration strategy shown in Formula 2. Similarly,
when A ≤ 1, the artificial rabbit adopts the hiding
strategy shown in Formula 3. This process updates the
positions of the artificial rabbit population.

5. For each individual in the updated rabbit population,
recalculate the fitness value of the corresponding LightGBM
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FIGURE 4
Box plots of logging parameters for different lithologies.

model. If the new highest fitness value Fnew is greater than
Fbest , update the highest fitness value Fbest and the optimal
hyperparameter combination Xbest ; otherwise, take no action.

6. Repeat steps (3) to (5) until the maximum number of

iterations of the algorithm is reached. Use the optimal
hyperparameter combination Xbest as the input for
the LightGBM model to obtain the optimal ST-ARO-
LightGBM lithology identification model.

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1540035
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Deng et al. 10.3389/feart.2025.1540035

FIGURE 5
Comparison of the number of samples before and after
combined sampling.

2.5 Model evaluation metrics

In classification tasks, the confusion matrix is commonly used
to reflect the relationship between true classes and predicted classes
(Sun Y. et al., 2020). For example, in binary classification tasks
as shown in Table 1, the number of samples where the true class
is predicted as the true class is defined as True Positive (TP).
Similarly, FalseNegative (FN), False Positive (FP), andTrueNegative
(TN) are defined accordingly. Based on this, four model evaluation
metrics can be defined, as shown in Formula 5: Accuracy, Recall,
Precision, and F1-score. Accuracy reflects the overall performance
of the model, while F1-score is the harmonic mean of Recall and
Precision. Higher values of these evaluation metrics indicate better
classification performance of the model.

{{{{{{{{{{
{{{{{{{{{{
{

Accuracy = TP+TN
TP+ FN+ FP+TN

Precision = TP
TP+ FP

Recall = TP
TP+ FN

F1− score = 2×Precision×Recall
Precision+Recall

(5)

3 Experimental dataset

3.1 Lithology types

The data of rock slices used in this paper are from Jimusaer
Depression, as shown in Figure 2. The Jimusaer Depression is
located in the eastern part of the Junggar Basin and overall presents
a west-low east-high, west-faulted east-overlapping graben feature
Lucaogou Formation in Jimusaer Depression is rich in tight oil and
shale oil resources, and its shale formations are developed in two oil-
bearing systems, the upper and the lower, which are characterized
by the integration of source and reservoir, thin layer superposition,
large thickness, whole oil-bearing and continuous distribution.
Influenced by multi-source mixing and frequent changes in water

bodies, the lithology of the Permian Lucaogou Formation in the
study area exhibits complex and diverse characteristics (Zha, 2022;
Xiong et al., 2023). As shown in Figure 3. Based on thin section and
core sample data, the lithology of the Permian Lucaogou Formation
is divided into four categories according to grain size and mineral
composition: mudstone, cloud-bearing sandstone, siltstone, and
detrital-bearing dolomite. These categories are the subjects of this
study, with sample proportions of 39.49%, 38.03%, 16.00%, and
6.49%, respectively.

The ratio of the majority class, mudstone, to the minority
class, detrital-bearing dolomite, is close to 7:1, indicating a serious
imbalance in the dataset. This imbalance can cause the model to
overlook the feature extraction of the detrital-bearing dolomite class
during training, thereby affecting the model’s performance. This
issue will be addressed in Section 4.1.

3.2 Lithological logging response
characteristics

The logging response characteristics of different rock types
exhibit certain differences. Conventional logging curves are a
comprehensive response to the mineral composition of rocks,
the nature of pore fluids, and physical properties, while nuclear
magnetic resonance (NMR) logging data can reflect physical
factors such as the specific surface area and shape of rock
pores (Singh and Maheswar, 2022; Mitchell, 2020). Therefore,
combining conventional logging curves with NMR logging data
after thin section correlation, eight curves were selected to establish
the lithological dataset: Acoustic travel time (AC), Compensated
Neutron Log (CNL), Density log (DEN), Natural Gamma Ray (GR),
Deep Resistivity (RT), Shallow Resistivity (RXO), T2 geometric
mean (T2LM), and Total Porosity from NMR (POR).

The study of the distribution of logging response parameters for
different lithologies is fundamental for lithological identification.
Therefore, it is necessary to statistically analyze the logging
parameters of different lithologies within the study area,
as shown in Table 2.

As shown in Figure 4, the box diagram can better describe the
distribution range of logging parameters for each lithology. The
lower boundary of the box represents the first quartile, i.e. 25% of
the data is less than or equal to this value, the upper boundary
represents the third quartile, and the black line in the middle of the
box represents the median. The box plots of logging parameters for
different lithologies indicate that mudstone exhibits characteristics
of medium-high DEN, medium-high GR, medium-low RT, and
medium-low POR. Cloud-bearing sandstone shows characteristics
ofmediumAC,medium-lowGR,medium-high RXO, andmedium-
high POR. Siltstone displays low AC, medium-high GR, medium-
low RXO, and medium-high T2LM. Detrital-bearing dolomite
exhibitsmedium-lowGR,medium-highRT,medium-lowT2LM, and
medium-low POR. Different logging parameters reflect different
physical information of the rocks (Sebtosheikh et al., 2015).
However, there is no distinct separation between different lithologies
based on single logging parameters alone. Therefore, it is necessary
to integrate multiple logging parameters and use multidimensional,
multi-scale machine learning methods for efficient data analysis to
classify lithologies.
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TABLE 3 Impact of ST composite sampling on classification performance of the LightGBMmodel.

LightGBM Rock type Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Before ST Sampling

mudstone 68.91 78.85 73.54

60.67
cloud-bearing sandstone 69.64 82.11 75.36

siltstone 91.18 70.45 79.49

detrital-bearing dolomite 75.00 11.54 0.20

After ST Sampling

mudstone 68.09 64.65 66.32

74.84
cloud-bearing sandstone 81.18 72.63 76.67

siltstone 85.58 87.25 86.41

detrital-bearing dolomite 77.23 88.64 82.54

TABLE 4 Main hyperparameters of the LightGBMmodel.

Hyperparameterization Default value Parameter meaning Search interval Global optimum

n_estimators 10 Number of base learners [10–300] 97

learning_rate 0.1 learning rate [0.001–1] 0.3

subsample 1.0 Proportion of training samples [0.1–1] 0.61

max_depth −1 Maximum depth of the tree [1–30] 17

min_child_weight 0.001 The minimum weight required for cotyledon
nodes

[0.001–1] 0.03

min_child_samples 20 The minimum number of samples required
for cotyledon nodes

[10–50] 10

num_leaves 31 The maximum number of leaf nodes for the
base learner

[3–100] 89

FIGURE 6
The change of F1 value of ST-ARO-LightGBM identification lithology
with the number of iterations.

4 Experiments

4.1 Comprehensive sampling effect

In this study, a total of 895 core thin section samples
were collected, including 353 mudstone samples, 341 cloud-
bearing sandstone samples, 143 siltstone samples, and 58
detrital-bearing dolomite samples. The imbalance in sample
numbers can cause the classifier to fail to adequately extract
features from minority class samples, thus affecting its ability
to classify minority class samples and reducing the model’s
generalizability and accuracy. To address this issue, the ST
algorithm was employed for comprehensive sampling of the
dataset. The sampling results are shown in Figure 5. The number
of samples for siltstone and detrital-bearing dolomite increased,
introducing new feature information to the dataset. The number
of samples for mudstone and cloud-bearing sandstone slightly
decreased, removing some redundant features of the majority
classes. The overall dataset has now reached a balanced state
after sampling.
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TABLE 5 Performance of the ST-ARO-LightGBMmodel for the identification of different lithologies.

Precision (%) Recall (%) F1 Score (%) Accuracy (%)

mudstone 74.16 66.67 70.21

81.25

cloud-bearing sandstone 82.02 76.84 79.35

siltstone 85.19 90.20 87.62

Detrital-bearing dolomite 82.65 92.05 87.10

average value 81.01 81.44 81.07

TABLE 6 Effect of ST integrated sampling on the performance of different models for lithology classification.

Model Before ST
sampling
accuracy

After ST
sampling
accuracy

Accuracy
improvement

rate

Before ST
sampling F1

score

After ST
sampling
F1 score

F1 score
improvement

rate

LightGBM 72.12% 78.13% 6.01% 62.10% 77.98% 15.88%

KNN (Guo et al.,
2003)

50.56% 65.62% 15.06% 36.01% 65.14% 29.13%

DT (Ren et al., 2023) 55.39% 60.68% 5.29% 46.16% 60.25% 14.09%

GBDT (Dev and
Eden, 2019)

59.33% 67.46% 8.13% 56.01% 67.19% 11.18%

XGBoost (Sun et al.,
2020b)

60.00% 73.91% 13.91% 58.31% 75.27% 16.96%

RF (Ahmed and Ali,
2024)

69.52% 77.60% 8.08% 57.73% 77.43% 19.70%

To verify the impact of ST combined sampling on the
performance of the LightGBM model, this study splits the datasets
before and after ST combined sampling into training and testing
sets in a 7:3 ratio and trains the model using five-fold cross
validation. Table 3 shows the comparison of various evaluation
metrics of the LightGBM model before and after ST combined
sampling. Compared to before ST sampling, the model accuracy
improved by 14.17%. The F1 scores for cloud-bearing sandstone,
siltstone, and detrital-bearing dolomite increased by 1.31%, 6.92%,
and 82.34%, respectively, while the F1 score for mudstone decreased
by 7.22%. This decrease is because, before ST sampling, the model
overly focused on mudstone samples, lacking sufficient learning of
the characteristics of detrital-bearing dolomite. Consequently, the
F1 score for mudstone slightly decreased, while the F1 score for
detrital-bearing dolomite significantly increased.

4.2 ST-ARO-LightGBM model performance

The training effectiveness of the LightGBM model depends on
the influence of multiple input hyperparameters. Therefore, the
ARO algorithm was employed to find the optimal hyperparameter
combination for the LightGBM model. The main hyperparameters
and their default values are listed in Table 4. This study

simultaneously optimized 7 hyperparameters of the model, where
the first three parameters affect the ensemble process of the
LightGBM model, and the remaining four parameters influence
the process of generating weak classifiers. The ARO algorithm
was set with a population size of 50, with each “artificial rabbit”
containing 7 hyperparameters.The F1 score of the LightGBMmodel
was used as the fitness value, and themaximumnumber of iterations
was set to 50.

Figure 6 shows the change in F1 score during the iteration
process with the blue line, while the yellow baseline represents the
F1 score trained with default parameters. After 21 iterations, the F1
score stabilized at 81.06%, which is a 3.08% improvement compared
to the baseline. After the iteration, the optimal hyperparameter
combination of themodel is found, and the global optimal solution is
shown in the last column of Table 4. At this point, the optimalmodel
contains 97 decision trees, the maximum depth of the trees is 17, the
minimum weight to control the splitting of leaf nodes is 0.03, the
minimum sample number is 10, and the maximum number of leaf
nodes in each decision tree is 89.The proportion of training samples
is 0.61, and the learning rate of the model is 0.3.

After dividing the dataset following ST sampling into training
and testing sets in a 7:3 ratio, the ST-ARO-LightGBM lithology
recognition model was established using AC, CNL, DEN, GR, RT,
RXO, T2LM, POR eight curves, and the optimal hyperparameter
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FIGURE 7
Comparison of confusion matrix for lithology identification by different models. (A) ST-ARO-LightGBM. (B) ST-LightGBM. (C) ST-KNN. (D) ST-DT. (E)
ST-GBDT. (F) ST-XGBoost. (G) ST-RF.

combination as inputs. Table 5 shows the classification performance
of the proposed model on different lithologies. The classification
accuracy on the test set is 81.25%, with F1 scores for the
four lithologies being 70.21%, 79.35%, 87.62%, and 87.10%
respectively, averaging 81.07%. Compared to the untuned ST-
LightGBMmodel (Table 3), precision, recall, F1 score, and accuracy
have improved by 2.99%, 3.15%, 3.09%, and 6.41%, respectively,
demonstrating that the ARO algorithm effectively enhances various
evaluation metrics of the LightGBMmodel.

5 Discussion

5.1 Model comparison

To verify the lithological classification capabilities of different
machine learning models for the Permian shale reservoirs in
Jimusar. KNN, DT, XGBoost, GBDT, and RF are several classical
machine learning models that have been applied in lithology

identification by predecessors (Guo et al., 2003; Ren et al., 2023;
Dev and Eden, 2019; Sun Z. et al., 2020; Ahmed and Ali, 2024),
but different algorithms have different application effects in different
research areas. Therefore, these five algorithms are selected in this
paper for comparison.

Table 6 presents a comparison of the classification accuracy and
F1 scores of different models before and after ST comprehensive
sampling. Before ST sampling, the models achieved an accuracy of
50.56%–72.12% and F1 scores of 36.01%–62.1%. This was because
the imbalanced dataset caused the models to overly rely on features
from the majority class samples, resulting in low recognition ability
for minority class samples and thus weakening the models’ ability to
identify lithology.

After ST comprehensive sampling, the dataset introduced new
feature information, leading to a more balanced distribution of
samples across various categories. The models could effectively
extract features from minority class samples, resulting in an
improvement in accuracy by 5.29%–15.06% and F1 scores by
11.18%–29.13%. The LightGBM model performed particularly well
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TABLE 7 Evaluation metrics table of lithology identification by model method after ST sampling.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

ST-ARO-LightGBM 81.25 81.01 81.44 81.07

ST-LightGBM 78.13 78.02 78.29 77.98

ST-KNN 65.62 65.22 65.88 65.14

ST-DT 60.68 59.95 60.83 60.25

ST-GBDT 67.45 67.13 67.52 67.19

ST-XGBoost 73.91 75.37 75.75 75.27

ST-RF 77.6 77.32 77.76 77.43

with an accuracy of 78.13% and an F1 score of 77.98%. ST
comprehensive sampling effectively addressed the issue of dataset
imbalance and significantly enhanced the lithological recognition
performance of various classifiers, thereby increasing the models’
robustness and applicability.

Due to the overall poor classification performance of the model
before ST composite sampling, the ST-ARO-LightGBM model was
compared with different models established after sampling. Figure 7
shows the confusion matrices calculated for different models on
the test set, visually reflecting the models’ ability to identify
various lithologies. The horizontal axis is the true lithology of the
sample, the vertical axis is the predicted lithology, and the integer
represents the number of samples classified, and the percentage
is the corresponding proportion. The darker the color on the
main diagonal of the confusion matrix, the better the classification
effect on lithology. The ST-ARO-LightGBM model demonstrated
the best lithology classification performance, with recognition rates
of over 90% for siltstone and detrital-bearing dolomite, and a
resolution of 76.84% for cloud-bearing sandstone. However, the
resolution for mudstone was relatively low at only 66.67%. This low
resolution is due to the interference of logging feature ambiguities,
which obscure the differences between mudstone and other
lithologies. Other models also exhibited similar characteristics,
with the lowest performance seen in the ST-DT model, which
had a classification accuracy of only 43.43% for mudstone.
This indicates that the proposed ST-ARO-LightGBM model can
effectively reduce the interference of weak differences in logging
features between different lithologies. To address the issue of low
recognition accuracy for mudstone, future research should include
more samples to explore the differences between mudstone and
other lithologies.

Table 7 presents the accuracy, precision, recall, and F1
score of the ST-ARO-LightGBM model and six other models.
Through comparative analysis, the ST-ARO-LightGBM model
proposed in this study outperforms the other six models in
all metrics, consistently achieving over 80%. Combined with
Table 7 and Figure 7, the ST-ARO-LightGBM model demonstrates
high accuracy and stability in predicting four different lithologies.
Compared to traditional machine learning algorithms, it exhibits
better robustness and application prospects.

The results show that the prediction result of integratedmachine
learning model (such as LightGBM) is better than that of single
machine learning model (such as DT and KNN). In addition, the
LightGBMmodel can achieve higher accuracy after being optimized
by ARO algorithm, and the performance of machine learningmodel
can be deeply explored, but the iteration time is increased. In the
actual modeling process, attention should be paid to the balance
between accuracy and computing power, and iteration can be ended
in advance within the acceptable accuracy range to achieve the
highest accuracy as possible.

5.2 Model application example

To verify the application of the ST-ARO-LightGBM model in
the study area, predictions were made for well sections containing
different lithologies, as shown in Figures 8, 9. In these figures,
the first panel displays depth, the second to fourth panels show
input parameters for the model, the fifth panel presents lithological
information from rock thin sections not used in model building,
the sixth panel shows the lithology predictions and errors of the ST-
ARO-LightGBM model, and the seventh to twelfth panels compare
the lithology predictions and errors of other models.

Figure 8 illustrates the prediction results for well section
A17X from 3,272 to 3,300 m, where mudstone and cloud-bearing
sandstone are predominantly developed, with lesser occurrences of
siltstone and detrital-bearing dolomite. Through comparison with
actual rock thin section lithologies, the ST-ARO-LightGBM model
significantly outperforms the six comparison models, accurately
reflecting the complex interactions between different lithologies
in the actual formations. Errors in the proposed model mainly
occur in thin mudstone layers, consistent with the results in
Table 5 and Figure 7.

Figure 9 displays the prediction results for well section
A32X from 3,724 to 3,736 m, where siltstone and mudstone
are primarily developed. The predictions of the ST-ARO-
LightGBM model closely match the actual rock thin section
lithologies, whereas the comparison models generally capture
the variation trends in lithology within the well section but with
higher errors.
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FIGURE 8
Comparison of lithology of real thin section of rock in well A17X with the lithology identification results of the model proposed in this paper.

6 Conclusion

Based on comprehensive experimental results on Permian shale
reservoir lithology identification in Jimusaer, the following main
conclusions are drawn:

(1) The Permian shale reservoir in Jimusaer primarily consists
of mudstone, siltstone, cloud-bearing sandstone, and
detrital-bearing dolomite. These lithologies coexist within
the actual formations with similar logging response
characteristics, posing challenges for traditional lithology
identification methods.

(2) The ST composite sampling method effectively enhances
the information of minority class samples while reducing

redundant information frommajority class samples, achieving
balanced sample data. This process significantly improves the
machine learning model’s performance in lithology prediction
tasks and enhances the model’s classification performance and
robustness.

(3) By integrating the multi-objective optimization strategy ARO
algorithm with the ST-LightGBM model to establish the ST-
ARO-LightGBM model, this study efficiently addresses the
complex parameter adjustment issues of the ST-LightGBM
model, optimizes the model structure, and enhances the
lithology prediction capability and applicability of the model.

Although the model proposed in this paper can distinguish
different lithologies of shale reservoirs to a certain extent, improve
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FIGURE 9
Comparison of lithology of real thin section of rock in well A32X with the lithology identification results of the model proposed in this paper.

the unbalanced sample set, improve the lithology identification
accuracy, and has certain universality, it will increase the calculation
time cost due to the need for multiple iterations in the process of
model establishment. In addition, the comprehensive analysis of
multi-source and multi-modal data has become a research hotspot
in the field of artificial intelligence. In future research, on the one
hand, we can focus on improving the performance of the machine
learningmodel itself, and on the other hand, we can combine various
types of logs data for comprehensive evaluation and analysis.
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