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Rainfall-induced geological disasters are widespread in the Jianghuai region of
China, endangering human lives and socioeconomic activities. Anhui Province,
a hotspot for these disasters, warrants a thorough analysis of the temporal
and spatial distribution of geological disasters and their correlation with rainfall
for effective forecasting and warning. This study divides Anhui Province into
the Dabie Mountains, southern Anhui Mountains, and other areas based on
different background conditions, and establishes effective rainfall threshold
warningmodels for each. We reconstructed the collection of geological disaster
precipitation records and rainfall data in Anhui from 2008 to 2023. Using
binary logistic regression, we analyzed the correlation between rainfall factors
and geological disasters, selected the optimal effective rainfall attenuation
parameters for the study area, and determined the critical effective rainfall for
different warning levels. Results show: (1) Landslides and collapses are the main
types, mostly occurring in high altitude areas like the Dabie and southern Anhui
Mountains, and are concentrated in the rainy season of June - July each year;
(2) Rainfall is the main inducer, with both single heavy rainfall processes and
sustained rainfall influencing geological disaster occurrence, mostly through
their combined effect; (3) Effective rainfall is significantly correlated with the
day of and previous 8 days rainfall. The optimal attenuation coefficients in the
Dabie Mountains, southern Anhui Mountains, and other regions are 0.60, 0.66,
and 0.61, respectively. The study shows that setting fine tuned critical rainfall
threshold models for different regions is better than a province wide threshold.
With a 79% forecast accuracy, it can provide a scientific basis for geological
disaster meteorological risk forecasting and warning in Anhui Province.

KEYWORDS

geological disasters, spatiotemporal distribution, effective rainfall, disaster-causing
rainfall, early warning guidance

1 Introduction

Geological disasters—such as landslides, rockfalls, and debris flows—refer to the
destruction, displacement, or instability of geological bodies within the Earth’s crust or
on its surface, caused by geological environmental changes due to natural conditions or
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human activities. These changes disrupt human life, production,
and the environment (Zhang et al., 2023). Geological disasters are
characterized by their sudden onset, difficulty in observation, and
rapid evolution, all of which increase the complexity of prediction
(Froude and Petley, 2018; Grahn and Jaldell, 2017; Guzzetti et al.,
2012). In recent years, global climate change has intensified extreme
and unpredictable weather events, further increasing the frequency,
scale, and severity of such disasters (Wang et al., 2023). According
to the 2022 Global Assessment Report (GAR 2022) published by
the United Nations Office for Disaster Risk Reduction, over 10,000
people die worldwide due to disasters each year, and the Asia-
Pacific region loses an average of 1.6% of its GDP annually because
of disasters. Therefore, establishing an effective multi-hazard early
warning system is urgently needed to reduce the potential casualties
and property losses caused by impending disasters.

Geological disasters are nonlinear, complex systems influenced
by diverse factors, including topography, hydrology, geology, soil
properties, vegetation, and human activities (Zhang et al., 2024;
Li et al., 2020). Research on geological disaster prediction can
be broadly categorized into three approaches: physical models,
statistical models, and machine learning models. Physical models
simulate geotechnical displacement to estimate key parameters
governing disaster initiation and progression (Li et al., 2020). For
instance, Saito (1965) developed a physical model to predict slope
displacement, identifying an inverse relationship between time-
to-failure and strain rate. Qin et al. (2006) introduced a cusp
catastrophe model, highlighting that slope stability depends on the
stiffness ratio and uniformity index of the medium, with periodic
rainfall exacerbating instability by increasing material uniformity or
brittleness and reducing stiffness. Rashid et al. (2020) employed the
Scoops 3Dmodel to assess landslide risk along Pakistan’s Karakoram
Highway, successfully estimating the volume of potential slope
failures. Bai et al. (2019) investigated the effects of temperature
and saturation on energy dissipation and soil-water characteristic
curves in geomaterials. By incorporating concepts such as particle
entropy and temperature, Bai et al. (2019) established a thermo-
hydro-mechanical constitutive model for geomaterials. Although
physical models provide high theoretical accuracy, their application
is often constrained by the need for detailed monitoring data and
specific experimental conditions.

In recent years, statistical and machine learning models have
emerged asmainstream approaches in geological disaster prediction
(Li et al., 2020). These methods typically perform mathematical and
statistical analyses on historical disaster records, precipitation data,
and remote sensing information across long time series to infer
future disaster development and assess regional disaster probability
(Lee et al., 2014; Rosi et al., 2016). Since the 1970s, Campbell (1974)
introduced the concept of critical cumulative rainfall for landslide
prediction, while Crozier (1985) proposed rainfall thresholds
for rainfall-induced landslides by analyzing daily and antecedent
rainfall data. The critical effective cumulative rainfall method
remains widely utilized (Peruccacci et al., 2017). Brunetti et al.
(2025) successfully used the power-law threshold model to define
the thresholds for cumulative precipitation and precipitation
duration for landslides in 26 regions of Italy. Marjanović et al. (2018)
used decision tree models to analyze short - and medium - term
critical cumulative rainfall thresholds for landslides in mountainous
areas of Serbia. In western China, researchers have developed

landslide early warning models based on rainfall duration, intensity,
and cumulative effective rainfall, proposing optimal thresholds for
specific regions (Tang et al., 2013; Liu et al., 2024). Experts in Hunan
Province have implemented a landslide risk forecasting systembased
on critical rainfall thresholds, achieving effective results in flood-
season meteorological services (Chen et al., 2014; Chen et al.,
2024).With the rapid development of artificial intelligence, machine
learning methods have been introduced into geological disaster
prediction research. Li et al. (2023) integrated fully connected
conditional random fields into U-Net for loess landslide research,
improving remote sensing segmentation quality and successfully
extracting landslide boundary and diameter information. Wei et al.
(2024) combined logistic regression, gradient boosted decision
trees, and other machine learning models with interferometric
synthetic aperture radar (InSAR) to propose an improved landslide
susceptibility assessmentmethod, with the logistic regressionmodel
performing best in regional and small scale landslide dynamic
susceptibility evaluation. Li et al. (2020) and Zhu et al. (2024)
used deep belief networks and multi temporal InSAR to identify
and analyze deformation of unstable slopes around reservoirs, and
explored the response of different deformation types to rainfall
and water level fluctuations. Overall, the combination of InSAR
technology and machine learning solutions has become a frontier
hotspot in geological disaster research.

Rainfall is among the most critical triggers of geological
disasters, contributing to over 90% of such events (Bai et al.,
2014). As rainfall increases, the risk of debris flows and landslides
in mountainous regions rises accordingly (Casagli et al., 2023).
Despite substantial progress, current research on geological disaster
prediction faces several unresolved challenges. First, during the
slope failure process, rainfall intensity and distribution vary
dynamically over time. The triggering effect of rainfall results
from the combined influence of both current and antecedent
precipitation. However, Zhu et al. (2024) used annual average
rainfall as a static parameter in their analysis, which may limit
accuracy due to the lack of high-resolution rainfall data. Second, the
spatial and temporal heterogeneity of rainfall and local topography
leads to strong regional specificity in empirical rainfall thresholds.
Although modeling techniques such as multiple linear regression
(Jibson, 2007), power regression (Huang et al., 2022), and logistic
regression (Coull and Agresti, 2000) offer valuable insights, the
applicability of their derived critical rainfall values in different
regions—particularly under the climatic conditions of China’s
Jianghuai region during the Meiyu season—remains uncertain.

To address the aforementioned issues, we developed a
comprehensive precipitation database for geological disasters and
applied logistic regression to reframe the prediction task as a binary
classification problem. In calculating cumulative effective rainfall,
we tested various attenuation coefficients and optimal impact
durations to enhance model accuracy and robustness. The primary
objectives and contributions of this study are as follows:

1. This study represents one of the few systematic analyses of
the spatiotemporal distribution of geological disasters and
corresponding critical rainfall thresholds in the Meiyu climate
zone of China’s Jianghuai region.

2. By accounting for varying rainfall patterns and geological
conditions, we applied logistic regression to identify the
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optimal attenuation coefficients and impact durations for
cumulative effective rainfall calculations.

3. We established critical rainfall thresholds corresponding to
different meteorological risk warning levels for geological
disasters and validated their effectiveness in extreme plum rain
years and typhoon events, thereby demonstrating the feasibility
of the proposed early warning framework.

The article is organized as follows: After describing the study
area, we introduce data sources, methods, and evaluation criteria
(Section 2). Next, we analyze the temporal and spatial distribution of
geological disasters under different rainfall conditions and explore
regional cumulative effective rainfall thresholds using logistic
regression (Section 3). This is followed by a discussion of the
obtained thresholds (Section 4), including their advantages and
limitations, and concluding remarks (Section 5).

2 Materials and methods

2.1 Overview of the study area

Anhui Province is located in the Yangtze River Delta region
of East China, defined by geographical coordinates ranging
from 116.5° to 119.5° E longitude and 29.5°–31.2° N latitude,
encompassing a total area of approximately 140,100 km2. The
region’s complex topography includes the Yangtze and Huai
Rivers, which divide Anhui into three distinct geographical
regions: Huaibei, the Yangtze-Huaihe River area, and the
Jiangnan area.

The Huaibei region is predominantly flat, while the central and
eastern parts of the Yangtze-Haine River area are characterized by
hilly terrain. The Dabie Mountain area lies to the west, and the
Southern Anhui Mountain Area contributes the majority of the
Jiangnan area (Figure 1a).TheDabie and Southern AnhuiMountain
regions exhibit elevations exceeding 800 m, with the highest peak in
this region being more than 1,750 m above sea level.

The geological framework of Anhui is significantly shaped by the
Tethys and the Pacific tectonic domains, resulting in prominent fault
structures such asmajor deep faults, large faults, ductile shear zones,
and thrust structures, which govern the distribution and evolution
of tectonic units at various levels. Notable examples include the Lu’an
deep fault and the Tanlu deep fault zone. The lithology of Anhui
primarily comprises metamorphic, carbonate, and magmatic rock
series dating back to the late Archean epoch, with a typical thickness
of 3–8 km and evidence of substantial weathering (He et al., 2019).

Anhui is situated within a climatic transition zone between
subtropical and warm temperate climates, and its northern and
southern regions experience pronounced climatic variability.
Precipitation exhibits distinct latitudinal zonal distribution
characteristics, with annual rainfall measuring between 700 and
900 mm in Huaibei, 1,000 to 1,300 mm in the central and eastern
segments between the Yangtze River and the Huai River, and
exceeding 1,300 mm in the elevated regions of the Dabie Mountains
and Jiangnan (Tang et al., 2024). The interplay of abundant
rainfall, unique geology, and increased human activities has led
to frequent geological disasters and challenges, such as ground
subsidence in the Huaibei Plain, karst collapse in regions such as

Tongling, and mining-related collapses in coal extraction zones
(Figure 1c) (Liu et al., 2023).

2.2 Data collection and processing

2.2.1 Geological disaster data
The geological disaster data used in this paper was collected

from 1 January 2008, to 31 December 2023, and was obtained from
materials reported monthly by local grassroots governments to the
Anhui Provincial Environmental Monitoring Center. This dataset
includes location names of disaster occurrences specified to villages,
exact disaster occurrence times precise to the hour, disaster types
such as landslides, rockfalls, debris flows, ground collapses, and
ground cracks, disaster levels (small, medium, large, and extra-
large), and casualty and economic loss assessments.

2.2.2 Precipitation data
The precipitation data used in this study consists of hourly

observations from all meteorological stations within the research
area, covering the same period as the geological disasters. This data
was obtained from Anhui Province’s meteorological department.
The stations are spread across the entire study region. We used the
data quality control codes from the dataset to remove outliers and
questionable data points, ensuring the reliability of the precipitation
data. After this rigorous quality control process, we compiled a
comprehensive precipitation catalog relevant to geological disasters.

2.2.3 Processing of research data
2.2.3.1 Enrichment of geological disaster dataset

The original geological disaster data set contains 5,205 records,
but the longitude and latitude information for disaster points was
missing from 2008 to 2015. To address this, the longitude and
latitude coordinates were supplemented using village-level location
names in the dataset, referencing the Tiandi map. The location
accuracy is within 0.01°. The query address is https://map.tianditu.
gov.cn/.

2.2.3.2 Expansion of the meteorological network
The meteorological observation network in Anhui Province

has gradually improved since 2008. In 2008, there were 467
meteorological observation stations of various types in the province.
By 2023, this number increased to 2,952 stations, providing
an average horizontal resolution of 6.89 km. Figure 1c illustrates
the distribution of meteorological observation stations across the
province. Hourly data from these stations were collected and
aggregated to generate daily precipitation data.

2.2.3.4 Data interpolation
Meteorological stations were selected based on geographical

proximity to the disaster site as the primary criterion. The nearest
meteorological station was required to be within 0.1° of the disaster
site. In cases where there were no nearby meteorological stations
or if data were missing, precipitation data were interpolated with
inverse distance weighting interpolation method using the China
Meteorological Administration Land Data Assimilation System.
This system integrates multiple data sources, including ground
observation data, satellite observation products, and numerical
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FIGURE 1
(a) Location and elevation of Anhui Province, (b) Distribution of all rainfall-type geological disasters from 2008 to 2023, (c) Locations of 2,952
meteorological stations in Anhui Province used in this paper, (d) Distribution of cumulative average precipitation in Anhui Province from 1991 to 2020
based on the last 30 years of climate data, (e) Distribution of cumulative maximum precipitation.
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forecast products, through data assimilation and fusion technology.
It has a temporal resolution of 1 h and a spatial resolution
of 0.0625° (Long et al., 2019).

2.2.3.5 Identification of rainfall-induced geological
disasters

In order to refine the dataset and exclude samples influenced by
anthropogenic activities, specific criteria have been established for
the identification of rainfall-induced geological disasters. A disaster
is categorized as rainfall-induced if any of the following conditions
are satisfied: (1) cumulative rainfall on the day of the disaster, as
well as the four preceding days; (2) cumulative rainfall recorded
5–10 days prior to the event; (3) rainfall occurring on at least
3 days, including the day of the disaster and the 4 days prior, with
at least 1 day registering measurable precipitation; (4) precipitation
documented on a minimum of 3 days within the five to 10 days
preceding the disaster, again with rainfall occurring on at least one
of those days. Through the application of these criteria, a total of
3,785 records of rainfall-induced geological disasters (approximately
76% of the dataset) were identified, alongside 1,167 records of non-
rainfall-induced geological disasters.

2.2.3.6 Dataset creation of geological disaster
The occurrence of geological disasters was framed as a binary

classification problem, where P = 1 indicates a disaster and P
= 0 indicates no disasters. The stimulating effect of precipitation
on geological disasters was analyzed for 3–4 days leading up to
each disaster (Zhou et al., 2022). This analysis generated P = 0
samples from these periods for rainfall threshold analysis.

2.3 Method for constructing cumulative
effective rainfall model based on logistic
regression

2.3.1 Binary logistic regression
To predict geological disasters, rainfall factors across various

time periods were used as independent variables, while the
occurrence of disaster served as the dependent variable. The non-
linear relationship between these variables necessitated using a
binary logistic regression model (El-Habil, 2012).

Binary logistic regression requires a Logit transformation
of the target probability, mapping the probability value
from the range of (0, 1) to the range of (−∞, +∞). This
transformation avoids the structural issues associated with the
linear probability model (Jiang et al., 2017), R ≥ 250 mm geological
disasters.

Assuming that a geological disaster event (Y) has an
independent variable (X), the probability of the event occurring
is P, and the probability of not occurring is 1-P,

The linear regression model is expressed as:

Y = β0 +
m

∑
i=1

βiXi X,Y ∈ (−∞,+∞), i ∈ (1,m) (1)

Logit transformation:

Y = ln ( P
1− P
) (2)

By combining Formula 1 and Formula 2, we can establish
the relationship between probability (P) and independent
variable (X).

ln( P
1− P
) = β0 +

m

∑
i=1

βiXi i ∈ (1,m) (3)

Based on Formula 3, we derive the binary classification (m)
logistic regression model formula for the independent variables:

P =
exp (β0 +

m

∑
i=1

βiXi)

1+ exp (β0 +
m

∑
i=1

βiXi)
 i ∈ (1,m) (4)

In Formula 4, β0 is the constant term, βi is the regression
coefficient of the independent variable Xi, which can be obtained
by the maximum likelihood method.

2.3.2 Calculation of effective rainfall and
screening of key parameters

To more accurately assess the cumulative impacts of
precipitation on geological disasters, the concept of effective
rainfall has been introduced. Effective rainfall (RA) considers the
contributions of rainfall on disaster days (R0) as well as previous
rainfall, adjusted by an attenuation factor. The formula for effective
rainfall is as follows (Liu et al., 2024):

RA =
n

∑
i=0

KiRi i ∈ (0,n) (5)

Where RA is the cumulative effective rainfall before the
geological disaster, Ri is the daily rainfall on the ith day before the
disaster occurred, K is the attenuation coefficient accounting for the
diminishing impact of rainfall over time, and n is the number of days
considered in the calculation.

Accurate determination of rainfall attenuation coefficient (K)
and rainfall process days (n) is crucial to calculating effective rainfall
(Conte and Troncone, 2012). Prior studies have suggested values for
K andndepending on regional geological, hydrological, and climatic
conditions. For example, Crozier (1985) used K = 0.84 with n = 10
in a landslide study in Southern California. Similarly, Tang et al.
(2013) determined K = 0.6 with n = 4 for geological disasters in
Chongqing, China.

In this study, a binary logistic regression analysis was conducted
to determine the optimal values of K and n for Anhui Province.
Using SPSS software, rainfall data from 14 days before the
disaster were analyzed to identify correlations with geological
disasters. Results indicated that rainfall on the day of the
disaster (R0) had the most significant impact, followed by the
rainfall on the two preceding days (R1 and R2). Rainfall from
8 days prior to the disaster up to the day of the disaster (n
= 8) was found to have a significant correlation with disaster
occurrence, while rainfall beyond this period showed no significant
correlation.

To further refine the model, Anhui Province was divided into
three regions: Dabie Mountain Area, Southern Anhui Mountain
Area, and other areas. The K was optimized for each region
through binary logistic regression under a 95% confidence level.
A fixed step size of 0.01 was used to determine the optimal

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1541242
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1541242

K, with values of 0.6, 0.66, and 0.61 selected for the Dabie
Mountain Area, Southern Anhui Mountain Area, and other areas,
respectively.

2.4 Performance evaluation metrics

The performance of the binary classification model was
assessed using confusion matrices (Zheng et al., 2024), which
included accuracy (ACC) (Formula 6), recall rate (TPR) (Formula
7), false positive rate (FPR) (Formula 8), and false negative
rate (FNR) (Formula 9). In the confusion matrix, samples
where geological disasters actually occurred were positive
samples, and samples where geological disasters did not occur
were negative samples. Positive samples predicted as positive
samples are labeled true positives (TP), while those predicted
as negative samples are false negatives (FN). Negative samples
that are predicted as positive samples are referred to as false
positives (FP) and those predicted as negative are termed true
negatives (TN). The metrics ACC, TPR, FPR, and FNR are
calculated as follows:

ACC = TP+TN
TP+TN+ FN+ FP

(6)

TPR = TP
TP+ FN

(7)

FPR = FP
TN+ FP

(8)

FNR = FN
TP+ FN

= 1−TPR (9)

3 Results

3.1 Rainfall climate background

Analysis of the 30-year (1991–2020) climate data for Anhui
Province reveals significant variation in annual average precipitation
and maximum annual precipitation across the region, with a
general increasing trend from north to south. The annual average
precipitation in the Dabie Mountain area and along the Yangtze
River in the south exceeds 1,300 mm (Figures 1d, e). The southern
Anhui mountainous areas receive between 1,500 and 1700 mm,
with some locations like Huangshan and Jiuhuashan recording even
higher amounts of 2,449 mmand 2,135 mm, respectively.Maximum
annual precipitation in the southern sections of the Yangtze River
and Huaihe River can exceed 2000 mm, with the southern Dabie
Mountain area receiving between 2,500 and 3,492 mm (Figure 1e).
The highest recorded precipitation was 3,492 mm in Huangshan in
2016, followed by 3,166 mm in Jiuhuashan in 1999. The maximum
annual precipitation in the southern Dabie Mountain area and the
southern Anhui mountainous areas is approximately twice that of
the northern areas of the Yangtze River, Huaihe River, and the
Huaibei region.

Significant yearly rainfall events occurred in 2016 and 2020
(Figure 2c). The extreme precipitation that occurred in 2016,

spanning July 1 to July 5, was characterized by prolonged,
intense rainfall in the southern region between the Yangtze
River and Huaihe River. The year 2020 experienced the longest
plum rain period, lasting up to 60 days from June 2 to July
31, marking the longest and most widespread in history. This
rain event resulted in the shift of the rain belt from north
to south.

Monthly precipitation in Anhui Province mainly occurs
during the flood season (May to August), particularly in June and
July, with totals exceeding 210 mm in these months (Figure 2d).
This period coincides with the plum rain season, characterized
by consecutive rainy days and the highest frequency
of heavy rainfall events. Rainfall levels decrease sharply
after October, entering a prolonged dry season until the
following year.

3.2 Temporal and spatial distribution
characteristics of rainfall-induced
geological hazards

Anhui Province experiences various geological disasters,
including collapses, landslides, mudslides, and ground collapses.
Collapses and landslides are predominant, occurring 2,472 and
2,480 times, respectively, and together account for over 95% of the
total incidents (Figure 2a).

The spatial distribution of rainfall-induced geological disasters
reveals significant patterns, with occurrences notably concentrated
in the Dabie Mountain region and the Jiangnan area along
the Yangtze River (Figure 1b). Conversely, a lower frequency of
incidents is observed in the northern regions nestled between the
Yangtze River and the Huai River, particularly in the Huaibei area.
This distribution is closely aligned with the spatial characteristics
of both annual average rainfall and maximum rainfall across
Anhui Province (Figures 1d, e), thus supporting the validity of
the screening criteria proposed in this study. In addition to the
Dabie Mountains and the southern Anhui mountainous zone,
there is also a marked density of geological disasters in the
hilly regions adjacent to the Yangtze River and the central and
eastern areas situated between the Yangtze and Huai Rivers.
Furthermore, areas surrounding major water systems, such as the
Huaihe River, Yangtze River, and Chaohu Lake, show a heightened
frequency of geological disasters. These distributional patterns
suggest a robust relationship between the occurrences of geological
disasters, topographical features, and the development of local
water systems.

Annually, an average of 325 rainfall-induced geological disasters
occur in Anhui Province, indicating substantial pressure on
meteorological risk warning services pertaining to geological
hazards. The examination of the annual distribution curve reveals
two pronounced peaks in instances for the years 2016 and
2020, with 917 and 494 occurrences, respectively (Figure 2c). This
trend correlates with the overall distribution of annual rainfall.
Notably, the precipitation patterns of 2016 and 2020 were distinct;
intense, concentrated heavy rain events characterized the former,
while the latter exhibited prolonged, continuous rainfall. Both
precipitation types—intensive and continuous—serve as critical
mechanisms that induce a heightened incidence of geological
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FIGURE 2
(a) Percentage of each type of geologic hazard; (b) average daily rainfall on the day of occurrence of geologic hazards and in the previous period; (c)
annual cumulative rainfall and the number of occurrences of geologic hazards; (d) average monthly rainfall and the number of occurrences of
geologic hazards.

disasters, with rainstorm stimulation identified as a significant
contributing factor.

An analysis of monthly distributions indicates that the
peak periods for geological disasters correspond closely with
the flood season in Anhui (May to August) (Figure 2d),
reinforcing the positive correlation between rainfall levels and
the frequency of geological disasters. July registers the highest
precipitation, followed closely by June, with both months
experiencing rainfall exceeding 210 mm. In these months,
geological disaster occurrences numbered 1,244 and 1,705,
respectively, constituting 7.8% of the total annual incidents,
which is significantly higher than the occurrence rates in
other months.

3.3 Analysis of disaster-inducing rainfall
levels and rainy-day characteristics

Rainfall data for the day of the disaster (R0) and the preceding
14 days (R1, R2, and so on) indicate an increase in daily rainfall

intensity as the disaster approaches. Four days before the event,
daily rainfall averaged approximately 80 mm, decreasing to 20 mm
on the disaster day itself (Figure 2b). Notably, rainfall during
this period showed irregular variations around 10 mm prior
to the spike, with no discernible patterns until the disaster
approached.

According to national standards for precipitation levels, rainfall
was categorized as extremely heavy (R ≥ 250 mm), very heavy
(100 ≤ R < 250 mm), rainstorm (50 ≤ R < 100 mm), heavy (25
≤ R < 50 mm), moderate (10 ≤ R < 25 mm), and light rain (0.1
≤ R < 10) (Table 1). The rainfall recorded on the day of the
geological disaster and the preceding day was significantly higher
than in other observed periods. During the disaster, 80.1% of
disaster sites experienced moderate or heavier rain. This percentage
increased to 92.2% when considering rainfall either on the day of
the disaster or the preceding day. Moreover, 71% of disaster sites
experienced heavy rain or above on the day of the disaster, with
86.9% achieving the same rainfall magnitude when considering
the day prior. Additionally, 58.6% of disaster sites were subjected
to torrential rain on the day of the event, which increased to
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TABLE 1 Statistics on the percentage of rainfall intensity on the day of the disaster and the 1st to 14th days before the disaster.

Rainfall factor No rain Light rain Moderate rain Heavy rain Rainstorm Very heavy
rain

Extremely
heavy rain

R14 50.6% 28.7% 9.0% 6.0% 4.0% 1.8% 0.0%

R13 43.3% 31.6% 10.4% 7.9% 4.8% 2.0% 0.0%

R12 43.3% 33.3% 11.1% 7.3% 3.9% 1.2% 0.0%

R11 42.5% 36.4% 8.9% 7.7% 3.8% 0.7% 0.0%

R10 40.8% 32.4% 13.7% 8.9% 3.5% 0.6% 0.0%

R9 34.3% 35.3% 15.3% 9.1% 4.7% 1.2% 0.0%

R8 35.9% 31.6% 12.4% 9.9% 7.8% 2.3% 0.0%

R7 39.7% 30.9% 12.1% 8.2% 6.6% 2.6% 0.0%

R6 42.6% 28.2% 13.2% 7.4% 6.3% 2.3% 0.1%

R5 36.7% 28.0% 12.7% 11.1% 8.2% 3.2% 0.1%

R4 29.5% 30.2% 13.4% 13.1% 9.2% 4.6% 0.1%

R3 29.8% 29.8% 13.3% 13.6% 8.5% 4.9% 0.1%

R2 25.2% 30.9% 11.7% 12.5% 12.4% 6.9% 0.4%

R1 10.8% 18.9% 13.3% 16.1% 25.7% 14.2% 1.0%

R0 6.8% 13.0% 9.1% 12.5% 26.9% 28.9% 2.7%

TABLE 2 Classification of rainfall-induced forms.

Type Heavy rain on the day or the day
before

In the past 15 days, rain occurs for
8 days or more

Quantity Proportion

Heavy rain type √ × 609 16.1%

Long rain type × √ 787 20.8%

Mixed type √ √ 2,195 58.0%

Other types × × 194 5.1%

74.1% when included the day before. Furthermore, 31.6% of sites
experienced heavy rainstorms and extremely heavy rainstorms on
the disaster day, while this figure rose to 42.9% when considering
the previous day.

Rain-day frequency also played a critical role. Analysis
revealed that 78.8% of geological disaster sites experienced
eight or more rainy days within the 14 days before the disaster.
Integrating both rainfall intensity and frequency, geological
disaster points in Anhui Province were categorized into four
distinct types:

(1) Heavy rain type: Disasters predominantly triggered by recent
heavy rainfall (on the disaster day and the previous day).

(2) Long rain type: Disasters significantly impacted by
prolonged periods of rainfall, with minimal association with
heavy rain.

(3) Mixed type: Disasters influenced by a combination of
continuous rainfall and recent heavy rain.

(4) Other type: Disasters showing no substantial relationship
with either recent heavy rainfall or ongoing rainfall. The
heavy rain type, long rain type, mixed, and other types
accounted for 16.1%, 20.8%, 58.0%, and 5.1% of total
disasters (Table 2). The mixed type dominated, accounting
for more than half of the occurrences, emphasizing
the combined role of intense and prolonged rainfall in
disaster causation.
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FIGURE 3
Binary logistic model predictors of effective rainfall under different attenuation coefficients for (a) the Dabie mountain area, (b) the Southern Anhui
Mountain area, and (c) other areas.

3.4 Analysis of disaster-causing rainfall
threshold

3.4.1 Effective rainfall parameters
The results in Table 3 show that the regression coefficient and

Wald test value were the highest for rainfall on the day of the
disaster (R0), confirming its significant effect on geological disaster
occurrence. The regression coefficients for rainfall on the first
two preceding days (R1 and R2) were also substantial, though
progressively lower than R0. Rainfall contributions decreased over
time, with rainfall from 9 to 14 days prior (R9 to R14) showing
no significant correlation at the 0.05 confidence level. Based on
these findings, rainfall from 8 days prior to the disaster up to
the day of the disaster (n = 8) was included in calculating
effective rainfall.

In order to obtain the optimal attenuation coefficient (K) for
different regions, the whole province of Anhui was divided into
three parts: Dabie Mountain Area (Figure 3a), Southern Anhui
Mountain Area (Figure 3b), and other areas (Figure 3c). Using the
binary logistic regression method, the effective rainfall within the
sliding calculation range was modeled with a fixed step size of
0.01 and 0 < K ≤ 1 at a confidence level of 95%. The prediction
accuracy, recall rate, and false alarm rate of themodel under different
attenuation coefficients were statistically analyzed. Considering the
stability comprehensively, the K selected for Dabie Mountain Area,
Southern Anhui Mountain Area, and other areas were 0.6, 0.66, and
0.61, respectively.

3.4.2 Rainfall threshold for geological disaster
risk warnings

Based on the effective rainfall and optimal effective rainfall
parameters (K, n), a geological disaster risk warning model was
constructed for Anhui province. The probability of geological
disasters was calculated by substituting these parameters into the
effective rainfall Formula 5.

Following the guidelines in the national standard “Geological
Hazard Meteorological Risk Warning Specification” and related

TABLE 4 Formula for the probability of occurrence of rainfall-type
geologic hazards.

Geographic division Probability formula

Dabie Mountain Area P =
exp (RA ∗0.022−1.802)

1+exp (RA ∗0.022−1.802)

Southern Anhui Mountain Area P =
exp (RA ∗0.026−1.925)

1+exp (RA ∗0.026−1.925)

Other Areas P =
exp (RA ∗0.017−1.634)

1+exp (RA ∗0.017−1.634)

research (Xing et al., 2021), the effective rainfall thresholds
corresponding to the probabilities of geological disaster occurrence
of 25%, 50%, 70%, and 90% was determined. These thresholds were
used to define four warning levels: blue (25%), yellow (50%), orange
(70%), and red (90%), to show geological disaster meteorological
risk in Anhui Province. The effective rainfall and geological disaster
probability curves drawn from the probability formula are given
in Table 4.

The rainfall thresholds that trigger disaster warnings varied
by region (Figure 4). In the Dabie Mountain area, these thresholds
were set at 32 mm, 83 mm, 122 mm, and 185 mm, corresponding
to the blue, yellow, orange, and red warning levels, respectively.
In the southern Anhui mountainous region, the thresholds were
32 mm, 75 mm, 108 mm, and 160 mm. Meanwhile, other areas have
thresholds of 32 mm, 96 mm, 146 mm, and 225 mm for the same
warning levels.

Thresholds are significantly lower in mountainous areas
than low-altitude areas, indicating weaker disaster resistance in
mountainous areas. For example, the southern Anhui mountainous
area has the smallest disaster-causing rainfall threshold due to
the higher cumulative average annual rainfall, making it the
region most prone to geological disasters in Anhui Province.
The Dabie mountain area has a slightly higher threshold
than Southern Anhui, indicating relatively stronger resistance
to disaster.
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FIGURE 4
Probability curves of occurrence of geologic hazards in different regions and the amount of disaster-causing rainfall at various warning levels, (a) Dabie
Mountains, (b) Southern Anhui Mountain Area, and (c) Other areas.

4 Discussion

4.1 Comparative analysis of regional
disaster-causing rainfall thresholds and a
single threshold

Separate regional effective rainfall threshold early warning
models (hereinafter referred to as regional models) were established
for Dabie Mountain area, southern Anhui Mountain area, and
other regions in Anhui Province, and compared with the provincial
effective rainfall threshold early warningmodel (hereinafter referred
to as the single model). The results (Figure 5) show that overall
for the province, the regional model achieved 78.6% prediction
accuracy, 81.4% recall rate for geological hazard samples, with
23.8% false alarm rate and 18.6% missed detection rate. Compared
with the single model, the regional model improved prediction
accuracy by 1.5%, increased recall rate by 1.3%, while reducing false
alarm rate and missed detection rate by 1.6% and 1.3% respectively.
At regional level, the regional models consistently outperformed
the single model, which we attribute to two main reasons: First,
regional differences in stratigraphic lithology and soil characteristics
directly affect rainfall infiltration rates and geotechnical stability. For
instance, Dabie Mountain area is dominated by skeletal soils (Wang,
2019), which contain abundant rock fragments or gravels, exhibiting
poor water retention, strong permeability, and susceptibility to
shallow sliding surfaces. In contrast, the red soils in southern
Anhui Mountains demonstrate higher water retention capacity
(Wei et al., 2019), requiring higher effective rainfall to trigger
instability. The regional model accordingly uses K = 0.66 for
southern Anhui (higher than other regions) to better reflect the
slow drainage characteristics of red soils, while K = 0.61 for Dabie
Mountains matches rapid infiltration features. A unified model
with fixed attenuation coefficients might misestimate local rainfall-
induced responses. Second, as described in Section 2.1, Anhui
Province exhibits significant north-south precipitation differences -

Dabie Mountain area receives over 1,300 mm annual precipitation
compared to merely 700 mm in Huaibei Plain (Figure 1d).
Using uniform thresholds (e.g., 122 mm orange alert) tends
to cause under-reporting in low-precipitation areas and over-
alerting in high-precipitation regions. Establishing geographically
differentiated disaster-triggering rainfall thresholds enables more
refined early warning capabilities for geological hazards, allowing
more precise quantification of the “memory effect” of historical
rainfall.

4.2 Verification of the effective rainfall
threshold warning model in different
climate years

To analyze the impact of interannual climate variability on
threshold models, this study calculated confusion matrices for the
regional model in 2016 (Figure 6b), 2020 (Figure 6c), and 2023
(Figure 6d). Both 2016 and 2020 were anomalously wet years but
with distinct rainfall patterns, while 2023 had cumulative rainfall
close to the multi-year average under normal climate conditions.
The results show: In 2016, the model achieved 75.2% prediction
accuracy, 72.9% recall rate for geological hazard samples, with
21.8% false alarm rate and 27.1% missed detection rate; In 2020,
the model attained 72.9% accuracy, 72.2% recall rate, 26.5% false
alarm rate, and 27.8% missed detection rate; In 2023, the model
demonstrated significantly better performance with 86.9% accuracy,
98.5% recall rate, 20.2% false alarm rate, and 1.5% missed detection
rate. The model exhibited markedly superior performance in 2023
with stable rainfall compared to the anomalous years 2016 and
2020, showing both higher accuracy and lower false alarm rates.
In 2016, Anhui Province experienced concentrated torrential rains
(e.g., 452 mm daily rainfall in Huangshan), with rainfall intensity
far exceeding historical averages. This caused rapid accumulation
of effective rainfall (RA) surpassing thresholds. Such short-duration
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FIGURE 5
Comparison between the regional effective rainfall threshold warning model and (a) single model Province, (b) Dabie Mountains, (c) Southern Anhui
Mountains, and (d) Other areas.

intense rainfall may trigger shallow landslides, but the model’s
rainfall attenuation rate (selected based on historical data) failed
to adequately respond to transient infiltration effects, resulting in
elevated false alarms (21.8%). In contrast, the 2020 plum rain
season lasted 60 days, with continuous rainfall maintaining long-
term saturation of geotechnical materials. However, the model
neglected the cumulative creep damage effect, leading to increased
missed detections (27.8%). Similar findings were reported in
studies of the Apennines in Italy. Melillo et al. (2016) found
that traditional attenuation coefficients failed to account for
rapid response mechanisms of storm-triggered shallow landslides,
resulting in 12% higher false alarm rates in heavy rainfall years (e.g.,
2014) compared to normal years. Rosi et al. (2016) demonstrated
in Slovenia that statistical models showed 22% increased false
alarms when extreme annual rainfall exceeded the 95th historical
percentile, as training datasets inadequately represented extreme
precipitation scenarios. Notably, the higher false alarm rate in
2016 compared to 2020 indicates greater misclassification of non-
hazard samples as hazards. This occurs because negative samples

in our study were defined as 4 days prior to hazard events, and
intermittent heavy rainfall within 3–4 days could still generate
high effective rainfall values in non-hazard samples, leading
to excessive false alarms. We conclude that intermittent heavy
rainfall episodes have greater impact than sustained stable rainfall
on the model’s precision in predicting hazard timing. Future
research should optimize the attenuation coefficient as a time-
dependent function, dynamically adjusted with soil moisture data,
to mitigate model errors caused by episodic storms and interannual
climate variability.

4.3 Retrospective risk warning of typhoon
heavy rainfall processes

Typhoon-induced heavy rainfall frequently triggers geological
hazards such as landslides, collapses, and debris flows (Chen and
Petley, 2005). From August 9 to 11, 2019, influenced by Typhoon
Lekima, Anhui Province experienced an extreme rainfall event.
The southern Anhui mountainous area recorded 48 geological
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FIGURE 6
Effective rainfall threshold model forecast confusion matrix for (a) 2008–2023 for all years, (b) 2016 with consecutive concentrated heavy rainfall
processes, (c) 2020 with the historically longest number of days of sustained rainfall, and (d) 2023 with smooth climatic characteristics and rainfall
close to the normative yearly average.

hazards on August 10 and 15 on August 11. Two representative
hazard sites (DX01, DX02) were selected to evaluate the prediction
capability of the threshold model throughout the rainfall time
series. DX01: Located in Jiuhua Village, Jingzhou Township, Jixi
County, Xuancheng City, Anhui Province, experienced a landslide
on August 10. DX02: Located in Qidu Wang Village, Meilin
Town, Ningguo City, Xuancheng, suffered a landslide on August
11. Using rainfall data corresponding to hazard timings, the
effective rainfall threshold model was applied to compute daily
landslide probabilities combined with warning levels (Figure 7).
During initial weak precipitation, model predictions remained
below the blue warning level. As rainfall intensified starting
August 9, the probability curve approached the blue warning
threshold. On August 10, torrential rainfall (>200 mm) elevated
the warning level directly to red, coinciding with the DX01
landslide. Despite weakening rainfall intensity on August 11 due to
inland surface friction effects, DX02 still received 91.1 mm rainfall
(Chen et al., 2025). The cumulative effective rainfall threshold

model maintained a red warning level by accounting for antecedent
precipitation, accurately predicting the subsequent landslide. This
case demonstrates that concentrated typhoon rainfall drove rapid
accumulation of effective rainfall, with warning levels escalating
abruptly with increasing precipitation. The model successfully
captured the critical threshold-crossing process preceding hazard
events, validating the effectiveness of the effective rainfall-based
threshold approach. The logistic regression-based cumulative
effective rainfall model performed exceptionally in Typhoon
Lekima, highlighting the synergy between its dynamic cumulative
mechanism and regionalized threshold adaptation.Our regionalized
attenuation coefficient approach (e.g., southern Anhui K = 0.66)
shares conceptual similarities with Li et al.’s strategy of dynamically
adjusting thresholds through multi-level similarity factors in SMAT
typhoon rainfall modeling (Li and Zhao, 2009). While the model
achieved satisfactory performance using daily rainfall data in this
case, it should be noted that typhoon precipitation efficiency
differs fundamentally from mei-yu front, localized convection,
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FIGURE 7
Actual forecast test of effective rainfall threshold model for
geologic hazard.

and squall line systems, with distinct spatiotemporal distribution
patterns. Future studies should employ higher spatiotemporal
resolution rainfall data to test model robustness across diverse heavy
precipitation systems.

4.4 Limitations and prospects

While the study provides significant insights, several limitations
must be addressed. For example, the sparse distribution of
meteorological stations in mountainous areas may introduce errors.
The vertical spatial variation in rainfall is not fully accounted
for. The criteria for identifying rainfall-induced geological
disasters involve some degree of subjectivity despite efforts
to adhere to scientific rigor. Moreover, fixed effective rainfall
thresholds may only partially capture the regional differences
in rainfall climate characteristics across Anhui Province. Future
research should focus on refining regional disaster-causing
rainfall thresholds by incorporating additional factors such as
altitude, land surface types, soil properties, and evapotranspiration
conditions. Regional studies on the Dabie Mountain and southern
Anhui mountainous areas will help enhance the precision of
forecasting models.

5 Conclusion

This study analyzed geological disaster and rainfall data
from Anhui Province over the past 15 years (2008–2023),
focusing on the temporal and spatial distribution of disasters
and their relationship with rainfall. The optimal parameters of
effective rainfall were identified Using binary logistic regression,
and disaster-causing rainfall thresholds were established for
meteorological risk warning levels. The key findings are
as follows:

(1) Landslides and collapses account for 95% of
geological disasters in Anhui Province, predominantly
occurring in the Dabie Mountain and southern Anhui
mountainous areas. June and July are the peak months,
contributing approximately 78% of the annual disaster
occurrences.

(2) Rainfall-induced disasters constitute 76% of all
geological disasters, triggered mainly by continuous
rainfall and rainstorm mixed events (58%), multi-
day continuous rainfall (21%), and single rainstorm
events (16%).

(3) Rainfall on disaster day exhibits the highest correlation with
geological disasters, but the correlation diminishes over time
and becomes negligible beyond 8 days.

(4) The effective rainfall attenuation coefficients for the Dabie
Mountains, southern Anhui mountainous area, and other
regions are 0.6, 0.66, and 0.61, respectively.

(5) The regional effective rainfall threshold model outperforms
a single threshold model, achieving a forecast accuracy
of 79%. This model is suitable for predicting and
warning of rainfall-induced geological disasters across
Anhui Province.
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