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Changes in historical and future
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As anthropogenic climate signals have intensified, precipitation patterns have
changed over the contiguous United States (CONUS) and may continue
to change in the future. Comparing historical climate model simulations
to ground-based observations can help us quantify uncertainties in climate
models when simulating precipitation and its changes. This work evaluates
precipitation simulated by the Community Earth System Model Version 2
large ensemble (CESM2-LE) against observations from the National Oceanic
and Atmospheric Administration Climate Prediction Center Unified CONUS
(CPC) during 1948–2022. Next, past precipitation patterns from CPC are
compared to future projections (2023–2100) of CESM2-LE for a medium-to-
high emission scenario (Shared Socioeconomic Pathways, SSP3-7.0) from a 70-
member ensemble. A pixel-by-pixel bias correction is then conducted to remove
systemic errors between the model and observations. Results indicate that
precipitation variability is drastically reduced in the ensemble mean and suggest
caution when using it to draw conclusions regarding precipitation changes.
CESM2-LE is shown to underestimate (overestimate) ground observations over
CONUS in summer (winter) during 1948–2022. Climate model simulations
struggle particularly to capture high-magnitude precipitation (i.e., annual
averages larger than 10 mm/day), especially in the Northwestern US. Historical
precipitation data show slightly upward patterns in annual, spring, fall, andwinter
averages, patterns that are projected to continue in the future. Future annual
precipitation will increase with respect to historical observations by as much as
11% and 15% in the Northeast and Southeast US (which are already wet regions),
respectively, whereas the arid Northern Great Plains region will experience a 15%
decrease. Overall results indicate drier summers and wetter winters in the future
with respect to the past. Furthermore, the 75th and 95th percentiles of seasonal
precipitation will become more extreme during winter by as much as 100% but
will decrease during summer by as much as 80%. This study places a strong
emphasis on understanding reliable future climate projections, which can be
useful when designing community-driven adaptation and mitigation plans for
climate change.
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1 Introduction

Precipitation is the major driving force of the hydrologic cycle
(Kidd and Huffman, 2011; Gajbhiye et al., 2015; Praveen et al.,
2020) and changes in its patterns can impact the hydrological,
meteorological, agricultural, environmental, and water resource
management sectors (Ebert et al., 2007; Kanniah et al., 2011;
Duan et al., 2016; Mallakpour et al., 2020; Sharif et al., 2020).
Therefore, a better understanding of the variations in precipitation
patterns is critical (Duan and Bastiaanssen, 2013; Chatterjee et al.,
2016; He et al., 2022; Dollan I. J. et al., 2022). Global rising
temperatures have the potential to increase climate variability (Held
and Soden, 2006; Trenberth, 2011; Wasko et al., 2015; Rodgers et al.,
2021). Such changes alter the hydrologic cycle and impacts
precipitation variability (Trenberth et al., 2003; Meehl et al., 2009;
Chen et al., 2013; Zhang et al., 2019; Sharif et al., 2022; Rahat et al.,
2022; Saki et al., 2023), which can result in an intensification of
extreme precipitation events (Easterling et al., 2000; Zhai et al.,
2005; Hallegatte et al., 2013; Nguyen et al., 2018; Willner et al.,
2018; Yang et al., 2020; Mathbout et al., 2021; Slater et al., 2021).
Carbon emissions from agriculture, industry, transportation, and
households drive climate change and trigger extreme weather events
(Abbas et al., 2022a; Abbas et al., 2022b; Huang et al., 2024;
Fan et al., 2024). According to the Intergovernmental Panel on
Climate Change (IPCC) Sixth Assessment Report (AR6), climate
extremes like heavy precipitation, flooding, cyclones, sea level rise,
droughts, and heat waves have already intensified (IPCC 2022). This
is evident over mid-latitudinal regions, including the Contiguous
United States, CONUS (Tebaldi et al., 2006; Kharin et al., 2013;
Fischer and Knutti, 2016; Prein et al., 2017). Moreover, studies
such as Kunkel et al. (2013), Easterling et al. (2017), and Prein
and Holland (2018) indicate that extreme precipitation events
are becoming more frequent and intense, particularly in the
Northeast and Midwest contiguous US. However, the extent to
which these trends are captured by climate models remains
uncertain.

Past studies suggested that temperatures across CONUS
might increase (Karmalkar and Bradley, 2017), which could
intensify precipitation events (Kunkel, 2003; Monier and Gao, 2015;
Neri et al., 2019) and worsen drought conditions (Strzepek et al.,
2010). Mallakpour et al. (2022) showed statistically significant
changes in annual precipitation maxima based on six daily gridded
precipitation data over CONUS from 1983 to 2017. Furthermore,
CONUS is characterized by different regional climates with high
annual and seasonal variation, resulting in complex climate change
patterns (Martin-vide 2004; Roy´e and Martin-Vide, 2017). For
example, since the 1950s, eastern CONUS has experienced higher
precipitation increase than the western side (Huang et al., 2021;
Li et al., 2022). Gensini and Harold (2018) further observed that
convective precipitation has been increasing, particularly in the
Central U.S., with great implications for flooding and severeweather.
Other studies have linked CONUS precipitation variability to large-
scale atmospheric patterns, showing interannual variations that
affect drought and flood risks (Seager et al., 2015; Swain et al., 2018).
Nevertheless, a comprehensive analysis of the spatial and temporal
variability of long-term precipitation changes across different
CONUS regions is still lacking. This study aims to investigate

historical and future precipitation patterns over CONUS using both
observed data and climate projections.

An efficient strategy for developing effective climate change
adaptation and mitigation strategies is to predict future climates
using high-resolution climate models (Forestieri et al., 2018;
Hosseinzadehtalaei et al., 2020; Ukkola et al., 2020; Alaminie et al.,
2021). Global Climate Models (GCMs) are the primary source
of information for assessing future climate changes (Navarro-
Racines et al., 2015; Randall et al., 2019; Agel and Barlow,
2020; Akinsanola et al., 2020; Oruc, 2022). However, GCM
simulations are affected by large uncertainties due to future
emission scenarios, model resolution, internal climate variability,
mathematical formulation, initial assumptions, and calibration
processes (Gutowski et al., 2003; Latif, 2010; Ramirez-villegas et al.,
2013; Su et al., 2013; Navarro-Racines et al., 2015; Xu et al.,
2021). It is generally assumed that newer models with higher
resolution and complexity outperform previous-generation models
and provide more reliable projections (O’ Neill et al., 2016). The
CMIP6 ensemble now includes the latest state-of-the-art climate
model experiments. In 1995, the World Climate Research Program’s
(WCRP)WorkingGroup onCoupledModelling (WGCM) launched
the Coupled Model Intercomparison Project (CMIP), which used
coupled simulations of the atmosphere, ocean, land surface, and
sea ice (Meehl et al., 1997; Edwards, 2011). It has since evolved
over five phases with scientific development and the progressively
improved comprehension of the mechanisms underlying climate
change (Meehl et al., 2000; 2007; Taylor et al., 2012), contributing
to cutting-edge research activity based on an ensemble of models
(Lalande et al., 2021) as well as to various IPCC assessment reports
(IPCC, 2007; IPCC 2013). CMIP6 differs from its predecessors in
links of forcing scenarios, carbon emissions, high spatial resolutions,
different start year of the future scenarios and newly proposed
SSPs, which describe different socioeconomic reference assumptions
(Moss et al., 2010; Vuuren et al., 2014; Gidden et al., 2019;
Almazroui et al., 2020). CMIP6 also has updated development of the
intercomparison model, focusing on biases, enhanced parameters
of the cloud microphysical process, and climate model feedback
(Kawai et al., 2019).

Large ensemble (LE) simulations conducted with the
Community Atmosphere Model version 6 (CAM6), namely,
CESM2-LE, offer a novel tool for studying potential changes
in climate and ecosystem statistics caused by human activities
over various time periods. The simulations consist of a 100-
member LE suite for the 1850–2100 period with SSP3-7.0 forcings.
SSP3-7.0 is a medium-to-high reference scenario resulting from
no additional climate policy under the SSP3 socioeconomic
development narrative; it is characterized by high non-CO2
emissions, including high aerosols emissions. The large ensemble
size aids in overcoming difficulties in the estimation of higher order
statistical moments (Milinski et al., 2020). The size of the ensemble
combined with a 1° spatial resolution is unprecedented, as it
enables robust forced changes in internal variability (Simpson et al.,
2020; Fasullo, 2020). Earlier versions of LE GCMs also exist
(Zelle et al., 2005; Drijfhout et al., 2008; Branstator and Selten,
2009) and were used to investigate the influence of global warming
on precipitation variability (Raisanen, 2002; Wetherald, 2009;
Pendergrass et al., 2017). Dollan IshratJahan et al. (2022) studied
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seasonal totals and long-term trends from 2015–2100 for SSP3-
7.0 across CONUS. However, a comprehensive comparison
between historical precipitation patterns and future projections
in a medium-to-high emission scenario with a large ensemble
remains a gap in the literature. This study aims to address
such gap.

Evaluating the performance of climate model simulations is
important to assess uncertainties in climate models and better
understand long-term trends, climatology, and possible climate
change impacts on hydrological variables (Rupp et al., 2015;
Ahmadalipour et al., 2017; Raghavan et al., 2018). Moreover,
evaluating individual climate models aids in gaining confidence
in future model projections (Flato et al., 2013; Moise et al.,
2015). The performance of climate models can only be evaluated
over historical time series and is commonly assessed against
observational data (Jiang et al., 2015). Jiang et al. (2012) reported
that while models could replicate the spatial distribution of
ground-based precipitation and trends of extreme distributions,
differences between the two estimates still existed. While previous
studies such as Fu et al. (2020), Gusain et al. (2020), and
Zamani et al. (2020) have assessed CMIP6 historical simulations
against ground observations and compared them with CMIP5,
these analyses do not extensively examine the variability in
seasonal distribution and regional precipitation patterns using large
ensemble simulations, which are crucial for understanding long-
term climate impacts. The multi-model ensemble method, which
involves averaging simulations from multiple models, has been
employed in previous studies to assess the model performance
(Thackeray et al., 2018; Akinsanola et al., 2021). Following an
evaluation of historical data, Chen et al. (2020) examined future
precipitation projections and observed how climate indicators
have changed in recent decades in comparison to historical
records. However, these studies have not focused on CONUS
specifically.

While previous studies have examined historical precipitation
changes and future climate projections using different climate
models, a comprehensive comparison of observed precipitation
data with CMIP6-based large ensemble simulations in a medium-
to-high emission scenario across CONUS remains limited. This
work evaluates historical precipitation data (1948–2022) from
the 70 ensemble members of CESM2-LE simulated precipitation
against ground-based observations from the National Oceanic
and Atmospheric Administration’s (NOAA) Climate Prediction
Center Unified CONUS (CPC) dataset. This is performed for
three randomly selected ensemble members and for the average
of all members (i.e., ensemble mean). As a second objective,
this work compares past precipitation patterns (1948–2022) from
observations to future projections (2023–2100) of CESM2-LE for
a medium-to-high emission scenario (SSP3-7.0). This work aims
to answer the following research questions: i) how does a LE
climate model compares to ground observations when detecting
changes in past precipitation? ii) how have precipitation patterns
changed in the past century across CONUS? and iii) how will
they change in the later decades of 21st century? By addressing
these questions, this study provides insights into the reliability
of large ensemble simulations for projecting future precipitation
patterns and contributes to the growing knowledge of climate-
induced precipitation variability over CONUS.

FIGURE 1
National Climate Assessment regions of CONUS (Source: https://
www.c2es.org/content/national-climate-assessment/).

2 Methodology

2.1 Study area

The study investigates precipitation patterns across CONUS,
which is divided into 7 NCA regions to ease the discussion
(Figure 1). The NCA reports assess climate change impact, risk, and
responses over CONUS (Melillo et al., 2014; Reidmiller et al., 2018).

NE is characterized by a humid continental climate with warm-
summers (Beck et al., 2023). The average annual precipitation
variation in the region is approximately 500 mm and is often
hit by extreme hydroclimatic events such as floods, droughts,
hurricanes, heat waves, and coastal floods caused by rising sea
levels and storm surges (Horton et al., 2012; Horton et al., 2014;
Dupigny-Giroux et al., 2018). Climate in SE is generally humid and
sub-tropical, influenced by seasons, latitude, topography, and the
proximity to the Atlantic Ocean and the Gulf of Mexico. There
are large areas of low-lying inland terrain and coastal plains in
the region that are highly vulnerable to sea level rise, extreme
heat events, decreased water availability, heavy precipitation, and
hurricanes (Carter et al., 2014; Carter et al., 2018). The MW region
experiences humid continental climate with warm summers and
its diverse landscape is dominated by agricultural land use. The
region has a moderate amount of precipitation throughout the
year, but winter and spring precipitation are important to flood
risk (Angel et al., 2018). Temperature, heavy precipitation events,
droughts, and floods are increasing in MW (Pryor et al., 2014). The
predominantly arid NGP region features a highly variable climate
with a strong east-to-west gradient of decreasing precipitation.Most
of the precipitation in the area falls during the spring. The region is
highly susceptible to a range of climate change effects, particularly
those arising from hydrological changes, including seasonality and
timing of precipitation events, and extreme flooding and droughts
(Conant et al., 2018). SGP exhibits a range of climates, spanning
from arid, high-elevation borders adjacent to the mountains in the
western region to humid areas in the eastern region. The average
annual precipitation varies between 255 mmand 1500 mm, from the
western to the southeastern corner (Kloesel et al., 2018). Both Great
Plains regions are characterized by frequent floods, droughts, severe
storms, tornadoes, hurricanes, and winter storms. High regional
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diversity in the NGP and SGP climate is a result of changes in
elevation (Shafer et al., 2014). The NW region exhibits an intricate
and diverse topography and several climate zones ranging from dry-
summer-sub-Arctic to dry-summer-Mediterranean with varying
patterns of precipitation (Mote et al., 2014). Extreme weather
occurrences like heat waves, droughts, and flooding, with associated
landslide risk, together with climate change, have had a detrimental
impact on the NW’s regional ecosystem (May et al., 2018). SW,
characterized by arid landscapes and desert-like conditions, is
considered the driest region in CONUS, with hot summers andmild
winters. The region is confronted with climate change challenges
such as severe droughts, intermittent large-scale flooding, and high-
water demand (Garfin et al., 2014; Gonzalez et al., 2018).

2.2 Datasets

The National Center for Atmospheric Research (NCAR)
developed CESM2-LE, the most recent version of a coupled
climate/Earth system model with 100-km grid spacing and a
100-member ensemble, in accordance with the CMIP6 protocols
(Danabasoglu et al., 2020). CMIP6 is based onGCMs, which include
high resolution ocean, atmosphere, land, sea-ice, land-ice, river,
and wave models, as well as SSP scenarios (Babaousmail et al.,
2021). SSPs integrate five distinct socioeconomic developments:
sustainable development (SSP1), middle-of-the-road development
(SSP2), regional rivalry (SSP3), inequality (SSP4), and fossil fuel-
driven development (SSP5) ranging from aggressive climate action
(SSP1-2.6) to the absence of climate change policy (SSP5-8.5) along
with radiative forcing levels (Riahi et al., 2017; Alaminie et al.,
2021; Supharatid et al., 2022). SSP3-7.0 with radiative forcing
7.0 W/m2 falls between the moderate SSP4-6.0 and worst-case
SSP5-8.5 scenarios. The CMIP6 projects have a simulation span
from 1850 to 2100, comprising historical experiments (1850–2014)
and future projections (2015–2100), with input from natural
forcing and anthropogenic influence as well as scenarios for future
climate change (Eyring et al., 2016). In this study, the simulated
precipitation dataset from 70 ensemble members of the CESM2-
LE of the CMIP6 for a medium-to-high emission scenario (SSP3-
7.0) at 100-km resolution is used from 1948 to 2100. The reduced
number of ensemble members (70 instead of 100) is based on data
availability at the time of the study. However, the authors believe
their results would not be largely impacted by the addition of 30
ensemble members.

The CPC dataset is available on a 0.25° regular grid
(corresponding to approximately 28 km) over CONUS and is
based on station measurements from the U.S. unified rain gauge
data (Higgins et al., 2000). Station records are extensively quality
controlled through comparison with available sources such as
historical records, nearby independent in situ measurements,
satellite estimates, and numerical model forecasts (Hou et al.,
2014). The optimal interpolation algorithm is used to interpolate
quality-controlled station data from NOAA/National Climatic Data
Center (NCDC) River Forecast Centers (RFCs) to create CPC daily
precipitation analyzed fields that account for orographic effects
(Xie et al., 2007; Cui et al., 2017). According to past studies, the bias
in the CPC dataset is less than 0.5% compared to the average amount
of precipitation observed by gauges over CONUS (Chen et al., 2008).

This study evaluates historical climate model simulations against
ground-based CPC daily observations across CONUS from 1948 to
2022. CPC has been chosen for this study because of its long record
and its consistent, high-quality gridded precipitation product. In
the second part of this study, the historical dataset CPC is used for
comparison with future projections simulated by CESM2-LE.

2.3 Methodological approach

This study presents an assessment of CESM2-LE Climate Model
precipitation simulations against CPC gauge data during 1948–2022
across CONUS. Specifically, the average of the 70 CESM2-LE
ensemble members and three randomly selected members are
compared to CPC ground-based observations. A seasonal analysis
is performed, and seasons are defined as follows: spring includes
March, April, May; summer includes June, July, August; fall includes
September, October, November; and winter includes the months of
December, January, and February. CPC observations at their native
spatial resolution of 28 km are aggregated to a regular 100-km grid
to match the spatial resolution of CESM2-LE using the nearest
neighbor interpolationmethod. Asmodels and ground observations
are inherently biased (as proven in Section 3.1), a pixel-by-pixel
bias correction is performed on future projections for the results
presented in Section 3.2. The bias correction method used in this
study follows a multiplicative bias ratio approach, which has been
widely applied in climate model bias correction (e.g., Teutschbein
and January 2012; Hempel et al., 2013). The bias ratio is computed
as the ratio of the mean CESM2-LE model simulations to the
mean CPC observations over the historical period (1948–2022).The
CESM2-LE model projections are then bias-corrected by dividing
the model data by this ratio. This approach ensures that the long-
term mean climatology of the model aligns with observations
while preserving interannual variability, making it suitable for
hydrological applications. Historical annual and seasonal mean of
CPC observations from 1948 to 2022 are also compared to future
precipitation projections of CESM2-LE from 2023 to 2100. The
selection of the historical period (1948–2022) and future projections
(2023–2100) is based on data availability of both observations and
future climate projections at the time of the study. The length
discrepancy between the historical and future timeframes is not
expected to impact our analysis of long-term climate trends.The two
datasets are also compared based on the 75th and 95th probability
distribution percentiles.

3 Results and discussions

3.1 Evaluation of historical climate model
simulations

Monthly mean precipitation from three randomly selected
CESM2-LE ensemble members and from the 70-member ensemble
mean is compared to CPC precipitation. The box plots in Figure 2
present monthly precipitation averaged across CONUS during
1948–2022. As expected, larger magnitudes of precipitation are
observed in winters compared to the summer months (especially
July and August). Precipitation variability (i.e., the interquartile
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FIGURE 2
Box plots of monthly mean precipitation during 1948–2022 averaged over CONUS for (A–C) three randomly selected CESM2-LE ensemble members;
(D) the mean of 70 ensemble members; and (E) CPC gauge observations. The central red mark indicates the median, and the bottom/top edges
indicate the 25th/75th percentiles, the whiskers show the most extreme points not considered outliers, whereas the red crosses represent outliers.

range) during the summer months is narrower compared to other
seasons. Although the three single ensemble members struggle
to capture high precipitation magnitudes in June, precipitation
variability as observed by CPC is well captured by the ensemble
members. However, the ensemble mean shows a largely reduced
variability in precipitation across all months due to the averaging
of all 70 ensemble members. The ensemble mean exhibits reduced
precipitation variability compared to individual ensemble members,
as averaging inherently smooths internal climate fluctuations.While
single ensemble members capture short-term variability more
effectively, the ensemblemean provides amore stable representation
of long-term climate signals, which is crucial for identifying trends
in future precipitation patterns (Frankcombe et al., 2018).

Time series of seasonal and annual precipitation averages in
Figure 3 corroborate what has been observed in the box plots,
i.e., the ensemble mean does not fully capture precipitation
variability as detected by the ground data and the single ensemble
members. During the summer season, the ensemble mean remains
consistently below 2 mm/day over the study period. The CESM2-
LE single ensemble members show good agreement with CPC in
spring and fall, but they present a strong negative bias in the
summer (i.e., the model consistently underestimate the ground
observations) and a strong positive bias in the winter (i.e., the
model consistently overestimate the reference). Despite progressive
improvements in the recent past, CMIP climate models are still
affected by uncertainties due to errors in boundary conditions,
inaccurate model parameterization as well as systematic summer
warm biases in air temperature especially in the U.S. Central

Great Plains (CGP) regions (Knutti and January 2012; Mueller and
Seneviratne, 2014; Wang et al., 2014; Merrifield and Xie, 2016). As
air temperature plays a central role in the interconnected feedback
loops between various components of the climate system, warm
biases can influence CMIP model simulations of different climate
variables (Cheruy et al., 2014).When analyzing annual precipitation
estimated by CESM2-LE, the three model ensemble members
present a better agreement with CPC than the ensemble mean
(Panel E in Figure 3). This is particularly evident when assessing
precipitation variability throughout the study period, which is
clearly dampened by the ensemble mean. This dampening effect
occurs because averaging multiple ensemble members smooths out
internal variability, reducing the influence of short-termfluctuations
and stochastic climate processes (Deser et al., 2012; Kay et al., 2015).

In terms of spatial analysis, both CESM2-LE single ensemble
members and the ensemblemean display similar patterns (Figure 4).
However, CESM2-LE struggles to capture the high intensity daily
precipitation in the NW (as high as 10 mm/day) measured by
CPC. Furthermore, large annual precipitation is concentrated in the
SE region (as high as 5 mm/day) in CPC, whereas CESM2-LEmodel
shows high amount of daily precipitation (as high as 4 mm/day) in
the NE and certain areas of MW. CESM2-LE tends to overestimate
precipitation in NE (by as much as ∼47%) as shown in relative
difference maps in Figure 4. CESM2-LE exhibits a dry bias in the
westernUS, particularly in theNW(as high as∼89%), southern SGP,
and SE (up to ∼63%). On the other hand, the model presents a wet
bias in certain NGP, SW (as high as ∼100%), and MW regions (with
values up to ∼62%).
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FIGURE 3
Time series of (A) spring; (B) summer; (C) fall; (D) winter; and (E) annual precipitation averages over CONUS in mm/day from 1948 to 2022 for CPC
gauge observation (blue solid line), CESM2-LE mean of 70 ensemble members (black solid line), and three CESM2-LE ensemble members (black
dashed line).

The missed precipitation patterns might be attributed to
inaccurate simulations of mesoscale convective systems due to
problematic convective parameterizations in models (Dai et al.,
1999; Liang et al., 2007; Lin et al., 2017; Al-Yaari et al., 2019;
Srivastava et al., 2020). Climate model simulations may not be
able to account for small-scale convective processes to initiate
short duration precipitation events (Maraun et al., 2010; Jones
and Randall, 2011; Kendon et al., 2017; Barbero et al., 2019;
Moustakis et al., 2021; Coelho et al., 2022; Emmanouil et al.,
2022). Though improvements might be made by using convection
permitting models, it can be computationally expensive and only
available for limited regions and short time periods (Cannon and
Innocenti, 2019; Ban et al., 2020).

3.2 Historical versus future precipitation
patterns

As the three randomly selected ensemble members show very
similar spatial patterns in our previous results, a single member
will be used in this section. Furthermore, CPC observations are
chosen here to study historical patterns and compare them to
future projections. Given the biases observed in the model in
the previous section, a pixel-by-pixel bias correction is performed
on the model future projections prior to the analyses presented
in this section. The annual cycles (1948–2022) of percentiles of

CPC average precipitation are compared to the corresponding
percentiles obtained from a CESM2-LE randomly selected
ensemble member and the mean of the 70 ensemble members
during 2023–2100 (Figure 5). The variability around the mean is
higher in the future model projections than the historical CPC data
when one single ensemblemember is chosen, showing a very similar
range of precipitation values. However, such variability is drastically
reduced when considering the ensemble mean, with values very
close to 2 mm/day across the year. Although historical data show
a peak between June and July, future projections indicate a decay
in summer precipitation with values lower than spring and fall
precipitation. This will be critical for water resources management,
e.g., irrigation of crops during the summer.

Historical and future time series of seasonal and annual
precipitation averages are presented in Figure 6. For historical
precipitation, CPC and bias-corrected model simulations are
compared to futuremodel projections. Future summer precipitation
presents a slightly decreasing pattern with respect to historical
CESM2, whereas it shows a large decrease (∼50%) compared to the
past observation of CPC, which can be attributed to the bias between
the two datasets during this season that the overall bias correction
was not able to fix. Nevertheless, this (even if slight) decreasing
pattern is concerning and can have serious consequences especially
for crops that require water in the root zone during the summer.
On the other hand, an upward pattern is observed in winter future
projectionswhen compared to historical data. It would be interesting
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FIGURE 4
Mean annual precipitation during 1948–2022 for (A) CPC; (B–D) three CESM2-LE ensemble members; (E) CESM2-LE ensemble mean; The relative
difference (%) between CPC and (F–H) each ensemble member and (I) the ensemble mean is presented in the second column panels. Red (blue) color
refers to an underestimation (overestimation) of the model with respect to the reference.

to investigate whether this trend is mainly due to an increase of
rainfall or snowfall, which can have very different effects on the
local and regional hydrology. Spring, fall, and annual precipitation
present a slight increase in the future compared to the historical
records as well. The variability is reduced in the ensemble mean

with respect to single ensemble member in the future, which aligns
with our findings in the previous chapter. The intrinsic stochastic
nature of individual ensemble members is clearly overlooked when
averaging all the ensemble members, resulting in such reduced
variability.
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FIGURE 5
Time series of daily precipitation averaged across CONUS for (A) CPC observations (1948–2022); (B) a bias-corrected CESM2-LE single ensemble
member (2023–2100); and (C) the bias-corrected ensemble mean (2023–2100). The 5th, 25th, 50th (median), 75th, and 95th percentiles of the
precipitation distribution are shown.
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FIGURE 6
Time series of (A) spring; (B) summer; (C) fall; (D) winter; and (E) annual precipitation averages across CONUS from 1948 to 2100.

TABLE 1 Results of a M-K statistical significance test of time-series showed in Figure 6. For statistically significant trends, the relative confidence level
(in %) is shown in parenthesis.

Time Is the trend statistically significant?

Historical CPC Future mean-ensemble Future single ensemble

Spring No Yes (93%) No

Summer No No No

Fall No Yes (94%) No

Winter No Yes (96%) No

Annual No Yes (96%) No

TheMann-Kendall (Mann, 1945; Kendall, 1948) test was applied
to the time series in Figure 6 to assess the statistical significance of
projected precipitation changes. M-K statistically assesses if there is
a monotonic (upward or downward) trend in a time series, but the
trendmay ormay not be linear.TheM-K test is commonly employed
to measure the significance of trends in hydrometeorological
time series (Silva et al., 2015; Cooley and Chang, 2021). While
historical trends were not found significant, the ensemble mean
of future projections showed statistically significant increasing
trends at a ∼90–95% confidence level for spring, fall, winter, and
annual precipitation (Table 1). Future trends from a single ensemble
member were found not significant. This highlights the ensemble
mean’s effectiveness in capturing long-term precipitation patterns
that individual ensemble members would not be able to.

Maps of average past and future precipitation are displayed in
Figure 7. Past precipitation shows large magnitudes in NW (higher
than ∼2,500 mm) and northern SW (as much as ∼2,400 mm).
The SE region also receives large amount of precipitation (up to
∼2,000 mm) alongwithNE (by asmuch as∼1,600 mm) andMW(up
to ∼1,300 mm). On one hand, SE, a historically wet region, shows an
increase in the future with annual averages ∼150 mm higher than
in the past along with NE (also a historically wet region), which
is projected to increase, with annual averages ∼90 mm higher than
in the past in some areas. On the other hand, the NGP, already an
arid region, will get even drier in the future. The relative difference
maps suggest that future precipitation could increase by as much as
∼11% in the MW and NE, which are already susceptible to intense
precipitation events, and up to ∼15% in the already wet SE region.
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FIGURE 7
Annual average precipitation (mm) for (A) CPC historical observations; (B) future simulations from a single CESM2-LE ensemble member; (C) the
ensemble mean of future CESM2-LE simulations. Panels in the third row show the difference in mm between (D) future projection from the single
ensemble member; (E) future projection from the ensemble mean and historic CPC. The corresponding relative differences (%) are shown in panels (F)
and (G).

Certain areas in the easternNGP show up to∼15% increase in future
precipitation, which could favor the arid landscapes of these regions,
but it may also worsen the already existing large-scale floods.
Western NGP precipitation will decrease up to ∼15%, which might

exacerbate its arid conditions. Increased precipitation in already-
wet regions and decreased precipitation in already-dry regions are
observed globally and appear to persist into the future (Oki and
Kanae, 2006; Feng and Zhang, 2015; Wu, 2015; Li et al., 2019). The
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FIGURE 8
Total precipitation averages (mm) across different seasons (rows) for (A–D) historical CPC observations (1948–2022) and (E–H) future projections
(2023–2100) from one CESM2-LE randomly selected ensemble member. Relative difference (%) between future projections and historic CPC are
presented in (I–L).

SW region precipitation will increase by up to ∼10% in the future,
which might be beneficial for the region’s arid conditions. Certain
regions of NW show some precipitation decrease up to ∼11% in
the future. Maps of future precipitation estimated by the single
member and by the ensemble mean show similar patterns. However,
the difference maps in Figure 7 highlight stronger decreases in
precipitation in a fewpixels inNWand SW,when one singlemember
is used in place of the ensemble mean. Similarly, increases of future
precipitation (compared to past precipitation) in the SE region are
more evident in the single member analysis.

Figure 8 presents past (CPC) and future (CESM2) total seasonal
precipitation. Historically, the western region of NW and northern
SW received the largest amount of precipitation (>∼1,000 mm)
during the winter months, with relatively high magnitudes in
spring and fall (up to ∼800 mm and ∼1,000 mm respectively), and
low magnitudes (below ∼260 mm) in the summer. In the eastern
CONUS, SE receives precipitation during all seasons (as much as
∼500 mm), with southern SE presenting higher magnitudes (as
high as ∼700 mm) during the summer. MW, NE, and eastern SGP

show precipitation as high as ∼400 mm during spring and summer.
NGP records the lowest precipitation amounts among all regions,
especially during fall (by as much as ∼300 mm).

Precipitation patterns in the western NW and SW areas will
not change much in the future, except for summer and spring
increases (up to ∼100%) in some sub-regions (e.g., southern SW).
The precipitation amount in the southern SE will decrease during
summer (∼50%) and increase in other seasons (∼100%). MW, NGP,
and northern SGP precipitation will increase during winter (by as
much as ∼100%) and decrease during summer (by asmuch as ∼75%,
∼80%, and 60% respectively). NGP precipitationwill also increase in
fall (∼100%) and decrease in spring (∼80%), which might negatively
affect the predominantly arid NGP region, where the majority of
precipitation occur during the spring season. Winter precipitation
in the already wet NE region will increase (∼80%). Overall results
indicate drier summers and wetter winters in the future with respect
to the past. Only future projections from a single ensemble member
of CESM2-LE model are shown here, as seasonal spatial patterns of
the ensemble mean and the single member are quite similar.
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FIGURE 9
75th percentile of total seasonal precipitation averaged over the years (mm) across different seasons (rows) for (A–D) historical CPC observations
(1948–2022) and (E–H) future projections (2023–2100) from one CESM2-LE randomly selected ensemble member. Relative difference (%) between
future projections and historic CPC are presented in (I–L).

The 75th percentiles of total seasonal precipitation are
displayed in Figure 9. In the CPC observations, NW exhibits the
largest values, especially in winter (>∼1,800 mm). Other regions
generally show less than ∼600 mm for the 75th percentile in all
four seasons, except for a few pixels in Florida during summer (as
high as ∼800 mm) and northern SW (up to ∼1,500 mm) during
winter, fall, and spring. Future precipitation projections present the
largest magnitudes in NW and northern SW (as high as ∼700 mm)
during winter, while southern SW shows the lowest magnitudes
(∼10 mm) during summer. Relative difference maps between
future and historical summer precipitation indicate a decrease
in the 75th percentile in MW (up to ∼70%), NGP (∼80%), and
eastern SW (∼75%). However, western SW shows an increase in
75th percentiles (∼95%) during summer and southern SW shows
increased percentiles (∼75%) during spring. In future winters, 75th

percentiles are projected to increase (up to ∼100%) inMW, northern
SGP, and NGP. NGP also shows an increase (∼100%) in fall and a
decrease (∼80%) in spring. Certain areas in NGP and SW show
lower values in spring (as low as ∼80%), whereas SW and SGP

show decreases in fall (up to ∼55%). Summer 75% percentiles are
not projected to change much in SE. NE region shows an increase
(∼70%) in the 75th percentile during winter. Overall, 75th percentiles
of precipitation show increases during winter and decreases during
summer in most of the NCA regions.

The high end of the precipitation probability distributions
is analyzed by looking at maps of the 95th percentiles for
each season (Figure 10). NW shows the largest amount of historical
extreme precipitation among all NCA regions during winter
with magnitudes greater than ∼2,000 mm, with future projections
showing even higher percentiles (up to∼100%higher). Several other
regions will also experience similar increases in extreme winter
precipitation, i.e., NE, NGP, MW, and northern SGP. Summers
will generally experience lower 95th percentiles with respect to the
past in many areas across CONUS including SW, NGP, MW, and
northern SGP.

Although SE presents high 95th percentiles in the historical time
series, especially during summer (up to ∼1,000 mm), changes are
minimal in the future.The SWextreme precipitationwill decrease in
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FIGURE 10
95th percentile of total seasonal precipitation averaged over the years (mm) across different seasons (rows) for (A–D) historical CPC observations
(1948–2022) and (E–H) future projections (2023–2100) from one CESM2-LE randomly selected ensemble member. Relative difference (%) between
future projections and historic CPC are presented in (I–L).

all seasons, especially during the summer (up to ∼75%). NGP shows
the lowest extreme precipitation across CONUS, especially during
fall (∼70–500 mm), but future projections indicate an increase by
∼100–1,100 mm. Spatial patterns of the 75th and 95th percentiles are
similar for all NCA regions, except for NW which shows increases
up to ∼100% in 95th percentile precipitation (but lower in the 75th

percentile) and some cases in which the 75th percentile shows larger
future changes. For instance, spring precipitation in SGP presents
changes by up to ∼100% in the 75th percentile, but ∼60% in the 95th.

Overall findings indicate that, in comparison to the past,
extreme precipitation magnitudes will decrease in the summer and
increase in the winter in most of the NCA regions across CONUS.
If extremes become more extreme in the future, it will worsen
existing climatic conditions for some NCA regions. Besides the
NE, SE, and NGP regions, MW and SW also face critical climate
challenges. Specifically, MW is already facing flood risk due to
heavy precipitation during spring and winter–results from this
study indicate that extreme precipitation will not change much in
the spring but will get more extreme in winter threatening the

existing conditions. Similarly, SW, characterized by arid conditions,
may see further reductions in summer precipitation, intensifying
drought risks and water scarcity concerns. These findings highlight
the complex regional disparities in future precipitation trends.
The projected increase in winter precipitation, particularly in
flood-prone regions like MW and NE, may exacerbate flooding
risks, threatening infrastructure, agriculture, and water resource
management. Conversely, declining summer precipitation in regions
likeNGPandMWcould intensify drought conditions, affecting crop
yields and increasing water scarcity. These findings underscore the
need for adaptive strategies in flood mitigation and water resource
management to address changing hydroclimatic risks and minimize
socio-economic impacts.

Although this study highlights broad seasonal trends, the
complexity of inter-seasonal variability should not be overlooked.
Transitional seasons (spring-to-summer and fall-to-winter) remain
an important factor influencing agriculture, water availability, and
ecosystem resilience. Fluctuations within seasons—such as shifts in
the timing of precipitation onset, intensity variations, and extreme
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precipitation events—can significantly impact growing seasons,
reservoir management, and biodiversity. Recent studies on South
Asian precipitation extremes and variability suggest that large-
scale climate drivers greatly influence these transitional periods,
contributing to hydroclimatic uncertainties (Abbas et al., 2022b;
Abbas et al., 2023; Wijeratne et al., 2023). Recognizing these
variations is essential for developing more adaptive strategies in
climate impact assessments.

4 Conclusion

This study assessed the performance of the CESM2-LE large
ensemble climate model against ground observations and examined
past and future precipitation patterns. Results indicate that
precipitation variability is reduced when the ensemble mean is
adopted in place of individual ensemble members. Nevertheless,
the spatial patterns of precipitation for a single random ensemble
member and for the average of the 70 ensemble members are
very similar.

Considering CPC as reference, CESM2-LE was shown to
underestimate summer precipitation and overestimate winter
precipitation across CONUS. CESM2-LE struggles to capture the
high daily precipitation in theNW(as high as 10 mm/day)measured
by CPC. The missed precipitation patterns might be attributed
to the problematic convective parameterizations in models. Bias
correction was performed in the comparison of historical and future
precipitation for model projections to remove any systematic error
between model simulations and ground observations.

Historical precipitation observations show slightly increasing
patterns in annual, spring, fall, and winter averages, which are
projected to continue in the future. Wet regions like NE and SE will
become wetter, on average, in the future by ∼11% and ∼15%,
respectively, whereas already dry regions (like some NGP areas)
will get drier by as much as ∼15%. Seasonal spatial patterns show
drier summers and wetter winters in the future with respect to the
past. A ∼100% increase is observed in most NCA regions (e.g.,
MW, NGP, and northern SGP) during winter, but precipitation will
decrease during summer by as much as ∼80%. Extreme (75th and
95th percentiles) precipitation will become more extreme during
winter by as much as ∼100% and less extreme during summer in the
future by as much as ∼80%. Spring and fall extreme precipitation
will also increase in the future in most of the NCA regions, except
for certain areas in NGP, SW, and SGP.

The findings place strong emphasis on reliable climate model
projections to better understand long term-precipitation patterns,
climatology, and possible climate change impacts. A fundamental
step to develop climate change adaptation and mitigation strategies
is to project future climates using high-resolution models and
compare future precipitation patterns to past observations.
Findings from this work point to future wetter winters and
dryer summers, which may raise concerns in agriculture and
water resources management. Investigating projected changes
also offers information on regional vulnerability and encourages
the development of region-specific policy implementation across
CONUS. Actionable strategies, such as climate-resilient agriculture,
sustainable infrastructure development, urban planning measures
including improved stormwater management, and drought

mitigation activities, can support community-driven adaptation
plans. This study focuses on leveraging the large ensemble size
of CESM2-LE to ensure consistent model physics and resolution,
avoiding inter-model discrepancies. However, a single-model
approach limits intercomparison, and results may not capture the
full range of uncertainty that arises from structural differences
in other models. While CESM2-LE offers valuable insights, its
limitations in capturing high-magnitude precipitation highlight the
need for inter-model comparisons. In addition, a single emission
scenario is employed in this study and, although SSP3-7.0 aids in
detecting strong climate signals for worst-case risk assessments,
relying on a single emission scenario approach might limit policy-
relevant insights across different future pathways. Future studies
are encouraged to expand our analysis to multiple future scenarios.
Further work should explore multi-model ensemble approaches
and multiple emission scenarios, which may better characterize the
uncertainty of future projections and provide more robust signals
of changing climatology. Other regions in the world should also be
investigated, given the global nature of climate models.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www2.cesm.ucar.edu/CESM2-LENS2/.

Author contributions

RS: Formal Analysis, Investigation, Methodology, Validation,
Writing – original draft, Writing – review and editing. VM:
Conceptualization, Project administration, Resources, Supervision,
Visualization, Writing – review and editing. ID: Conceptualization,
Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors acknowledge the CESM2 Large Ensemble
Community Project for providing data. The authors also would
like to thank Gustavo de A. Coelho, Assistant Professor of Water
Resources at Furman University who originally downloaded and
cropped the climate model data used in the analysis, while doing his
PhD in George Mason university.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial
board member of Frontiers, at the time of submission. This

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2025.1542536
https://www2.cesm.ucar.edu/CESM2-LENS2/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sharif et al. 10.3389/feart.2025.1542536

had no impact on the peer review process and the final
decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abbas, A., Bhatti, A. S., Ullah, S., Ullah, W., Waseem, M., Zhao, C., et al. (2023).
Projection of precipitation extremes over South asia from CMIP6 GCMs. J. Arid Land
15 (3), 274–296. doi:10.1007/s40333-023-0050-3

Abbas, A., Ullah, S., Ullah, W., Waseem, M., Dou, X., Zhao, C., et al. (2022a).
Evaluation and projection of precipitation in Pakistan using the coupled model
intercomparison project phase 6model simulations. Int. J. Climatol. 42 (13), 6665–6684.
doi:10.1002/joc.7602

Abbas, A., Zhao, C., Waseem, M., khan, K. A., and Ahmad, R. (2022b).
Analysis of energy input–output of farms and assessment of greenhouse gas
emissions: a case study of cotton growers. Front. Environ. Sci. 9 (February), 1–11.
doi:10.3389/fenvs.2021.826838

Agel, L., and Barlow, M. (2020). How well do CMIP6 historical runs match observed
Northeast U . S. Precipitation and extreme precipitation – related circulation. J. Clim.
33, 9835–9848. doi:10.1175/JCLI-D-19-1025.1

Ahmadalipour, A., Rana, A., Moradkhani, H., and Sharma, A. (2017). Multi-
criteria evaluation of CMIP5 GCMs for climate change impact analysis. Springer, 71–87.
doi:10.1007/s00704-015-1695-4

Akinsanola, A. A., Kooperman, G. J., Reed, K. A., Pendergrass, A. G., andHannah,W.
M. (2020). Projected changes in seasonal precipitation extremes over the United States
in CMIP6 simulations. Environ. Res. Lett. 15, 104078. doi:10.1088/1748-9326/abb397

Akinsanola, A. A., Ongoma, V., and Kooperman, G. J. (2021). Evaluation of CMIP6
models in simulating the statistics of extreme precipitation over eastern africa. Atmos.
Res. 254, 105509. doi:10.1016/j.atmosres.2021.105509

Alaminie, A. A., Tilahun, S. A., Legesse, S. A., Zimale, F. A., Tarkegn, G. B., and Jury,
M. R. (2021). Evaluation of past and future climate trends under CMIP6 scenarios for
the UBNB (abay), Ethiopia. Water 13, 2110. doi:10.3390/w13152110

Almazroui, M., Saeed, F., Saeed, S., Islam, M. N., Ismail, M., Klutse, N. A. B., et al.
(2020). Projected change in temperature and precipitation over africa from CMIP6.
Earth Syst. Environ. 4 (3), 455–475. doi:10.1007/s41748-020-00161-x

Al-Yaari, A., Ducharne, A., Cheruy, F., Crow,W. T., andWigneron, J. (2019). Satellite-
based soil moisture provides missing link between summertime precipitation and
surface temperature biases in CMIP5 simulations over conterminous United States. Sci.
Rep. 9, 1657–1712. doi:10.1038/s41598-018-38309-5

Angel, J., Swanston, C., Boustead, B. M., Conlon, K. C., Hall, K. R., Jorns, J. L., et al.
(2018). in Ch 21: midwest. Impacts, risks, and adaptation in the United States: fourth
national climate assessment, volume II. Editors D. R. Reidmiller, C. W. Avery, D. R.
Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, et al. (Washington, DC, USA:
U.S. Global Change Research Program), 872–940. doi:10.7930/NCA4.2018.CH21

Babaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R., et al. (2021).
Evaluation of the performance of CMIP6 models in reproducing rainfall patterns over
north africa. Atmosphere 12, 475–525. doi:10.3390/atmos12040475

Ban, N., Rajczak, J., Schmidli, J., and Schär, C. (2020). Analysis of alpine precipitation
extremes using generalized extreme value theory in convection - resolving climate
simulations. Springer, 61–75. doi:10.1007/s00382-018-4339-4

Barbero, R., Fowler, H. J., Blenkinsop, S., Westra, S., Vincent, M., Elizabeth, L., et al.
(2019). A synthesis of hourly and daily precipitation extremes in different climatic
regions. Weather Clim. Extrem. 26, 100219. doi:10.1016/j.wace.2019.100219

Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A.,
et al. (2023). High-resolution (1 Km) köppen-geiger maps for 1901–2099 based
on constrained CMIP6 projections. Sci. Data 10 (1), 1–17. doi:10.1038/s41597-023-
02549-6

Branstator, G., and Selten, F. (2009). Modes of variability and climate change. J. Clim.
22, 2639–2658. doi:10.1175/2008JCLI2517.1

Cannon, A. J., and Innocenti, S. (2019). Projected intensification of sub-daily and
daily rainfall extremes in convection-permitting climate model simulations over north
America: implications for future intensity – duration – frequency curves. Nat. Hazards
Earth Syst. Sci. 19, 421–440. doi:10.5194/nhess-19-421-2019

Carter, L., Terando, A., Dow, K., Hiers, K., Kunkel, K. E., Lascurain, A., et al. (2018).
“Ch 19: Southeast,”. Impacts, risks, and adaptation in the United States: fourth national

climate assessment. Editors D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel,
K. L. M. Lewis, T. K. Maycock, et al. Washington, DC, USA: U.S. Global Change
Research Program, II, 743–808. doi:10.7930/NCA4.2018.CH19

Carter, L. M., Jones, J. W., Berry, L., Burkett, V., Murley, J. F., Obeysekera, J., et al.
(2014). “Chapter 17: Southeast and the Caribbean,”. In Climate Change Impacts in
the United States: The Third National Climate Assessment. Editors J. M. Melillo, T. T.
C. Richmond, and G. W. Yohe (U.S. Global Change Research Program), 396–417.
doi:10.7930/J0NP22CB

Chatterjee, S., Khan, A., Akbari, H., andWang, Y. (2016).Monotonic trends in spatio-
temporal distribution and concentration of monsoon precipitation (1901–2002), West
Bengal, India. Atmos. Res. 182, 54–75. doi:10.1016/j.atmosres.2016.07.010

Chen, H., Sun, J., Lin, W., and Xu, H. (2020). Comparison of CMIP6 and
CMIP5 models in simulating climate extremes. Sci. Bull. 65 (17), 1415–1418.
doi:10.1016/j.scib.2020.05.015

Chen,M., Shi,W., Xie, P., Silva, V. B. S., Kousky, V. E.,WayneHiggins, R., et al. (2008).
Assessing objective techniques for gauge‐based analyses of global daily precipitation. J.
Geophys. Res. 113. doi:10.1029/2007JD009132

Chen, S., Gourley, J. J., Hong, Y., Kirstetter, P. E., Zhang, J., Howard, K., et al. (2013).
Evaluation and uncertainty estimation of NOAA/NSSL next-generation national
mosaic quantitative precipitation estimation product (Q2) over the continental United
States. J. Hydrometeorol. 14 (4), 1308–1322. doi:10.1175/JHM-D-12-0150.1

Cheruy, F., Dufresne, J. L., Hourdin, F., and Ducharne, A. (2014). Role of clouds
and land-atmosphere coupling in midlatitude continental summer warm biases and
climate change amplification in CMIP5 simulations. Geophys. Res. Lett. 41, 6493–6500.
doi:10.1002/2014GL061145

Coelho, G.De A., Ferreira, C. M., Johnston, J., Kinter, J. L., Dollan, I. J., and
Maggioni, V. (2022). Potential impacts of future extreme precipitation changes on
flood engineering design across the contiguous United States. Water Resour. Res. 58.
doi:10.1029/2021WR031432

Conant, R. T., Kluck, D., Anderson, M., Badger, A., Boustead, B. M., Derner, J., et al.
(2018). inCh22: northern great plains. Impacts, risks, and adaptation in theUnited States:
fourth national climate assessment, volume II. Editors D. R. Reidmiller, C. W. Avery, D.
R. Easterling, K. E. Kunkel, K. L.M. Lewis, T. K.Maycock, et al. (Washington, DC, USA:
U.S. Global Change Research Program), 941–986. doi:10.7930/NCA4.2018.CH22

Cooley, A. K., and Chang, H. (2021). Detecting change in precipitation indices using
observed (1977-2016) and modeled future climate data in portland, Oregon, USA. J.
Water Clim. Change 12, 1135–1153. doi:10.2166/wcc.2020.043

Cui, W., Dong, X., Xi, B., and Kennedy, A. (2017). Evaluation of reanalyzed
precipitation variability and trends using the gridded gauge-based analysis over the
CONUS. J. Hydrometeorol. 18, 2227–2248. doi:10.1175/JHM-D-17-0029.1

Dai, A., Giorg, F., andTrenbert, K. E. (1999). Observed andModel-SimulatedDiurnal
Cycles of Precipitation over the Contiguous United States. Journal of Geophysical
Research: Atmospheres 104, 6377–6402. doi:10.1029/98JD02720

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
Edwards, J., et al. (2020). The community Earth system model version 2 (CESM2). J.
Adv. Model. Earth Syst. 2, 1–35. doi:10.1029/2019MS001916

Deser, C., Adam, P., Vincent, B., and Teng, H. (2012). Uncertainty in climate
change projections: the role of internal variability. Clim. Dyn. 38 (3–4), 527–546.
doi:10.1007/s00382-010-0977-x

Dollan, I. J., Maggioni, V., and Johnston, J. (2022a). Investigating temporal and
spatial precipitation patterns in the southern mid-atlantic United States. Front. Clim.
3. doi:10.3389/fclim.2021.799055

Dollan, I. J., Maggioni, V., Johnston, J., Coelho, G.De A., and Kinter, J. L.,
Iii (2022b). Seasonal variability of future extreme precipitation and associated
trends across the Contiguous U.S. Front. Clim. 4. doi:10.3389/fclim.2022.
954892

Drijfhout, S., Hazeleger, W., Selten, F., and Haarsma, R. (2008). Future changes in
internal variability of the atlantic meridional overturning circulation. Clim. Dyn. 30,
407–419. doi:10.1007/s00382-007-0297-y

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1542536
https://doi.org/10.1007/s40333-023-0050-3
https://doi.org/10.1002/joc.7602
https://doi.org/10.3389/fenvs.2021.826838
https://doi.org/10.1175/JCLI-D-19-1025.1
https://doi.org/10.1007/s00704-015-1695-4
https://doi.org/10.1088/1748-9326/abb397
https://doi.org/10.1016/j.atmosres.2021.105509
https://doi.org/10.3390/w13152110
https://doi.org/10.1007/s41748-020-00161-x
https://doi.org/10.1038/s41598-018-38309-5
https://doi.org/10.7930/NCA4.2018.CH21
https://doi.org/10.3390/atmos12040475
https://doi.org/10.1007/s00382-018-4339-4
https://doi.org/10.1016/j.wace.2019.100219
https://doi.org/10.1038/s41597-023-02549-6
https://doi.org/10.1038/s41597-023-02549-6
https://doi.org/10.1175/2008JCLI2517.1
https://doi.org/10.5194/nhess-19-421-2019
https://doi.org/10.7930/NCA4.2018.CH19
https://doi.org/10.7930/J0NP22CB
https://doi.org/10.1016/j.atmosres.2016.07.010
https://doi.org/10.1016/j.scib.2020.05.015
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1175/JHM-D-12-0150.1
https://doi.org/10.1002/2014GL061145
https://doi.org/10.1029/2021WR031432
https://doi.org/10.7930/NCA4.2018.CH22
https://doi.org/10.2166/wcc.2020.043
https://doi.org/10.1175/JHM-D-17-0029.1
https://doi.org/10.1029/98JD02720
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.3389/fclim.2021.799055
https://doi.org/10.3389/fclim.2022.954892
https://doi.org/10.3389/fclim.2022.954892
https://doi.org/10.1007/s00382-007-0297-y
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sharif et al. 10.3389/feart.2025.1542536

Duan, Z., andBastiaanssen,W.G.M. (2013). First results fromversion 7TRMM3B43
precipitation product in combination with a new downscaling – calibration procedure.
Remote Sens. Environ. 131, 1–13. doi:10.1016/j.rse.2012.12.002

Duan, Z., Liu, J., Tuo, Y., Chiogna, G., and Disse, M. (2016). Evaluation
of eight high spatial resolution gridded precipitation products in adige basin
(Italy) at multiple temporal and spatial scales. Sci. Total Environ. 573, 1536–1553.
doi:10.1016/j.scitotenv.2016.08.213

Dupigny-Giroux, L.-A. L., Mecray, E. L., Lemcke-stampone, M. D., Hodgkins, G.
A., Lentz, E. E., Mills, K. E., et al. (2018). “Ch 18: Northeast,”. Impacts, risks, and
adaptation in the United States: fourth national climate assessment. Editors D. R.
Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock,
et al. (Washington, DC, USA: U.S. Global Change Research Program), 669–742.
doi:10.7930/NCA4.2018.CH18

Easterling, D. R., Evans, J. L., Groisman, P.Ya., Karl, T. R., Kunkel, K. E., andAmbenje,
P. (2000). Observed variability and trends in extreme climate events: a brief review. Bull.
Am. Meteorological Soc. 0477 (March). doi:10.1175/1520-0477(2000)081<0417

Easterling, D. R., Kunkel, K. E., Arnold, J. R., Knutson, T., LeGrande, A. N., Leung,
L. R., et al. (2017). Ch 7: precipitation change in the United States. Fourth Natl. Clim.
Assess. I. doi:10.7930/J0H993CC

Ebert, E., Janowiak, J. E., and Kidd, C. (2007). Comparison of near-real-time
precipitation estimates from satellite observations and numerical models. Am.
Meteorological Soc. 88, 47–64. doi:10.1175/BAMS-88-1-47

Edwards, P. N. (2011). History of climate modeling. Clim. Change 2, 128–139.
doi:10.1002/wcc.95

Emmanouil, S., Langousis, A., Nikolopoulos, E. I., and Anagnostou, E. N. (2022).
The spatiotemporal evolution of rainfall extremes in a changing climate: a CONUS-
wide assessment based on multifractal scaling arguments. Earth’s Future 10, 1–16.
doi:10.1029/2021EF002539

Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stou, R. J., et al.
(2016). “Overview of the coupled model intercomparison project phase 6 (CMIP6)
experimental design and organisation,” 10539–10583. doi:10.5194/gmdd-8-10539-2015

Fan, L., Dong, H., Xiao, C., Feng, Z., and Yan, J. (2024). Energy consumption,
structural transformation and related carbon dioxide emissions of rural households on
the Tibetan plateau. Energy 308 (August), 132789. doi:10.1016/j.energy.2024.132789

Fasullo, J. T. (2020). Evaluating simulated climate patterns from the CMIP archives
using satellite and reanalysis datasets using the climate model assessment tool
(CMATv1). Geosci. Model Dev. 13, 3627–3642. doi:10.5194/gmd-13-3627-2020

Feng, H., and Zhang, M. (2015). Global land moisture trends: drier in dry and wetter
in wet over land. Sci. Rep. 5, 18018. doi:10.1038/srep18018

Fischer, E. M., and Knutti, R. (2016). Observed heavy precipitation increase confirms
theory and early models.Nature Climate Change 6, 986–991. doi:10.1038/nclimate3110

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., et al. (2013).
“Evaluation of climate models,” in Climate change 2013: the physical science basis,
contribution of working Group I to the fifth assessment report of the intergovernmental
panel on climate change. Cambridge, United Kingdom and New York, USA: Cambridge
University Press.

Forestieri, A., Arnone, E., Blenkinsop, S., Candela, A., Fowler, H., and Noto, L. V.
(2018). The impact of climate change on extreme precipitation in sicily, Italy. Hydrol.
Process. 32, 332–348. doi:10.1002/hyp.11421

Frankcombe, L. M., England, M. H., Kajtar, J. B., Mann, M. E., and Steinman, B. A.
(2018). On the choice of ensemblemean for estimating the forced signal in the presence
of internal variability. J. Clim. 31 (14), 5681–5693. doi:10.1175/JCLI-D-17-0662.1

Fu, Y., Lin, Z., and Guo, D. (2020). Improvement of the simulation of the summer
east asian westerly jet fromCMIP5 to CMIP6.Atmos. Ocean. Sci. Lett. 00 (00), 550–558.
doi:10.1080/16742834.2020.1746175

Gajbhiye, S., Meshram, C., Singh, S. K., Srivastava, P. K., and Islam, T. (2015).
Precipitation trend analysis of sindh river basin, India, from 102-year record. Atmos.
Sci. Lett. 17, 71–77. doi:10.1002/asl.602

Garfin, G., Franco, G., Blanco, H., Comrie, A., Gonzalez, P., Piechota, T., et al.
(2014). “Chapter 20: Southwest”,. In Climate Change Impacts in the United States:
The Third National Climate Assessment. Editors J. M. Melillo, T. T. C. Richmond,
and G. W. Yohe (U.S. Global Change Research Program), 462–486. doi:10.7930/
J08G8HMN

Gensini, V. A., and Harold, E. B. (2018). Spatial trends in United States tornado
frequency. Npj Clim. Atmos. Sci. 1 (1), 38. doi:10.1038/s41612-018-0048-2

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler,
E., et al. (2019). Global emissions Pathways under different socioeconomic
scenarios for use in CMIP6: a dataset of harmonized emissions trajectories
through the end of the century. Geosci. Model Dev. 12, 1443–1475. doi:10.5194/
gmd-12-1443-2019

Gonzalez, P., Garfin, G.M., Breshears, D. D., Brooks, K.M., Brown, H. E., Elias, E. H.,
et al. (2018). “Ch 25: southwest,” in Impacts, risks, and adaptation in the United States:
fourth national climate assessment, volume II. Editors D. R. Reidmiller, C. W. Avery, D.
R. Easterling, K. E. Kunkel, K. L.M. Lewis, T. K.Maycock, et al. (Washington, DC, USA:
U.S. Global Change Research Program), 1101–1184. doi:10.7930/NCA4.2018.CH25

Gusain, A., Ghosh, S., and Karmakar, S. (2020). Added value of CMIP6 over CMIP5
models in simulating Indian summer monsoon rainfall. Atmos. Res. 232 (June 2019),
104680. doi:10.1016/j.atmosres.2019.104680

Gutowski, W. J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt, R. W., and Takle,
E. S. (2003). Temporal – spatial scales of observed and simulated precipitation in
central U . S. Climate. Am. Meteorological Soc. 16, 3841–3847. doi:10.1175/1520-
0442(2003)016<3841:TSOOAS>2.0.CO;2

Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-morlot, J. (2013).
Future flood losses in major coastal cities. Nat. Clim. Change 3 (9), 802–806.
doi:10.1038/nclimate1979

He, J., Feng, P., Wang, B., Zhuang, W., Zhang, Y., Liu, D. L., et al. (2022). Centennial
annual rainfall pattern changes show an increasing trend with higher variation over
northern Australia. Am. Meteorological Soc. 23, 1333–1349. doi:10.1175/JHM-D-21-
0116.1

Held, I. M., and Soden, B. J. (2006). Robust responses of the hydrological cycle to
global warming. Am. Meteorological Soc. 19, 5686–5699. doi:10.1175/JCLI3990.1

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F. (2013). A trend-
preserving bias correction – the ISI-mip approach. Earth Syst. Dyn. 4 (2), 219–236.
doi:10.5194/esd-4-219-2013

Higgins, R. W., Shi, W., Yarosh, E., and Joyce, R. (2000). Improved United States
precipitation quality control system and analysis. NCEP/Climate Predict. Cent. Atlas.
No. 7. U.S. Department of Commerce, National Oceanic andAtmospheric Administration,
National Weather Service.

Horton, R., Solecki,W., andRosenzweig, C. (2012). “Climate change in theNortheast:
a sourcebook. Draft technical input report prepared for the U.S. National climate
assessment.”

Horton, R., Yohe, G., Easterling, W., Kates, R., Ruth, M., Sussman, E., et al. (2014).
“Chapter 16: Northeast,”In Climate Change Impacts in the United States: The Third
National Climate Assessment. Editors J. M. Melillo, T. T. C. Richmond, and G. W. Yohe
(U.S. Global Change Research Program), 371–395. doi:10.7930/J0SF2T3P

Hosseinzadehtalaei, P., Tabari, H., and Willems, P. (2020). Climate change impact on
short-duration extreme precipitation and intensity – duration – frequency curves over
europe. J. Hydrology 590 (June), 125249. doi:10.1016/j.jhydrol.2020.125249

Hou, D., Charles, M., Luo, Y., Toth, Z., Zhu, Y., Roman, K., et al. (2014).
Climatology-calibrated precipitation analysis at fine scales: statistical adjustment of
stage IV toward CPC gauge-based analysis. Am. Meteorological Soc. 15 (6), 2542–2557.
doi:10.1175/JHM-D-11-0140.1

Huang, H., Patricola, C. M., Winter, J. M., Osterberg, E. C., and Mankin, J. S. (2021).
Rise in Northeast US extreme precipitation caused by atlantic variability and climate
change. Weather Clim. Extrem. 33, 100351. doi:10.1016/j.wace.2021.100351

Huang, Y., Elahi, E., You, J., Sheng, Y., Li, J., and Meng, A. (2024). Land use
policy implications of demographic shifts: analyzing the impact of aging rural
populations on agricultural carbon emissions in China. Land Use Policy 147, 107340.
doi:10.1016/j.landusepol.2024.107340

IPCC (2007). in Climate change 2007: the physical science basis. Contribution of
working Group I to the fourth assessment report of the intergovernmental panel on climate
change. Editors Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.
M. B., et al. (Cambridge: Cambridge University Press).

IPCC (2013). in Climate change 2013: the physical science basis. Working Group I
contribution to the fifth assessment report of the intergovernmental panel on climate
change. Editors Stocker, T. F., Quin, D., Plattner, G., Tignor, M. M. B., Allen, S. K.,
Boschung, J., et al. (Cambridge: Cambridge University Press).

IPCC (2022). in Climate change 2022: impacts, adaptation and vulnerability working
Group II contribution to the Sixth assessment report of the intergovernmental panel on
climate change. Editors Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S.,
Mintenbeck, K., Alegría, A., et al. (Cambridge, UK andNewYork, NY, USA: Cambridge
University Press. Cambridge University Press), 3056. doi:10.1017/9781009325844

Jiang, Z., Li, W., Xu, J., and Li, L. (2015). Extreme precipitation indices over China
in CMIP5 models. Part I: model evaluation. Am. Meteorological Soc. 28, 8603–8619.
doi:10.1175/JCLI-D-15-0099.1

Jiang, Z., Song, J., Li, L., Chen, W., Wang, Z., and Wang, J. (2012). Extreme climate
events in China: IPCC-AR4 model evaluation and projection. Clim. Change 110 (July),
385–401. doi:10.1007/s10584-011-0090-0

Jones, T. R., and Randall, D. A. (2011). Quantifying the limits of convective
parameterizations. J. Geophys. Res. 116 (August 2010), D08210–D08219.
doi:10.1029/2010JD014913

Kanniah, K. D., Beringer, J., and Hutley, L. B. (2011). Environmental controls on the
spatial variability of savanna productivity in the Northern Territory, Australia. Agric.
For. Meteorology 151 (11), 1429–1439. doi:10.1016/j.agrformet.2011.06.009

Karmalkar, A. V., and Bradley, R. S. (2017). Consequences of global warming of 1.
5 ˚ C and 2 ˚ C for regional temperature and precipitation changes in the contiguous
United States. PLoS ONE 12, 01686977–e168717. doi:10.1371/journal.pone.0168697

Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., et al.
(2019). “Significant improvement of cloud representation in the global climate model
MRI-ESM2.” Geosci. Model Dev. 2: 2875–2897. doi:10.5194/gmd-12-2875-2019

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2025.1542536
https://doi.org/10.1016/j.rse.2012.12.002
https://doi.org/10.1016/j.scitotenv.2016.08.213
https://doi.org/10.7930/NCA4.2018.CH18
https://doi.org/10.1175/1520-0477(2000)081<0417
https://doi.org/10.7930/J0H993CC
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1002/wcc.95
https://doi.org/10.1029/2021EF002539
https://doi.org/10.5194/gmdd-8-10539-2015
https://doi.org/10.1016/j.energy.2024.132789
https://doi.org/10.5194/gmd-13-3627-2020
https://doi.org/10.1038/srep18018
https://doi.org/10.1038/nclimate3110
https://doi.org/10.1002/hyp.11421
https://doi.org/10.1175/JCLI-D-17-0662.1
https://doi.org/10.1080/16742834.2020.1746175
https://doi.org/10.1002/asl.602
https://doi.org/10.7930/J08G8HMN
https://doi.org/10.7930/J08G8HMN
https://doi.org/10.1038/s41612-018-0048-2
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.7930/NCA4.2018.CH25
https://doi.org/10.1016/j.atmosres.2019.104680
https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2
https://doi.org/10.1038/nclimate1979
https://doi.org/10.1175/JHM-D-21-0116.1
https://doi.org/10.1175/JHM-D-21-0116.1
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.5194/esd-4-219-2013
https://doi.org/10.7930/J0SF2T3P
https://doi.org/10.1016/j.jhydrol.2020.125249
https://doi.org/10.1175/JHM-D-11-0140.1
https://doi.org/10.1016/j.wace.2021.100351
https://doi.org/10.1016/j.landusepol.2024.107340
https://doi.org/10.1017/9781009325844
https://doi.org/10.1175/JCLI-D-15-0099.1
https://doi.org/10.1007/s10584-011-0090-0
https://doi.org/10.1029/2010JD014913
https://doi.org/10.1016/j.agrformet.2011.06.009
https://doi.org/10.1371/journal.pone.0168697
https://doi.org/10.5194/gmd-12-2875-2019
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sharif et al. 10.3389/feart.2025.1542536

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The
community Earth system model (cesm) large ensemble project: a community resource
for studying climate change in the presence of internal climate variability. Bull. Am.
Meteorological Soc. 96 (8), 1333–1349. doi:10.1175/BAMS-D-13-00255.1

Kendall, M. G. (1948). Rank correlation methods. Biom. Trust 37 (1), 1–2.
doi:10.2307/2332540

Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C.,
et al. (2017). Do convection-permitting regional climate models improve projections
of future precipitation change? Am. Meteorological Soc. 98, 79–93. doi:10.1175/BAMS-
D-15-0004.1

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in
temperature and precipitation extremes in the CMIP5 ensemble. Springer, 345–357.
doi:10.1007/s10584-013-0705-8

Kidd, C., and Huffman, G. (2011). Review global precipitation measurement.
Meteorological 353, 334–353. doi:10.1002/met.284

Kloesel, K., Bartush, B., Banner, J., Brown, D., Lemery, J., Lin, X., et al. (2018). in
Ch 23: southern great plains. Impacts, risks, and adaptation in the United States: fourth
national climate assessment, volume II. Editors D. R. Reidmiller, C. W. Avery, D. R.
Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, et al. (Washington, DC, USA:
U.S. Global Change Research Program), 987–1035. doi:10.7930/NCA4.2018.CH23

Knutti, R., and Jan, S. (2012). Robustness and uncertainties in the newCMIP5 climate
model projections. Nat. Clim. Change, 1–6. doi:10.1038/nclimate1716

Kunkel, K. E. (2003). North American trends in extreme precipitation. Nat. Hazards
29, 291–305. doi:10.1023/a:1023694115864

Kunkel, K. E., Karl, T. R., Brooks, H., Kossin, J., Lawrimore, J. H., Arndt, D., et al.
(2013). Monitoring and understanding trends in extreme storms: state of knowledge.
Bull. Am. Meteorological Soc. 94 (4), 499–514. doi:10.1175/BAMS-D-11-00262.1

Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K., and Wunderle, S. (2021).
Climate change in the high mountain asia in CMIP6. Earth Syst. Dyn. 12, 1061–1098.
doi:10.5194/esd-12-1061-2021

Latif, M. (2010). Uncertainty in climate change projections. J. Geochem. Explor. 110,
1–7. doi:10.1016/j.gexplo.2010.09.011

Li, C., Zwiers, F., Zhang, X., Chen, G., Lu, J., Li, G., et al. (2019). Larger increases
in more extreme local precipitation events as climate warms. Geophys. Res. Lett. 46,
6885–6891. doi:10.1029/2019GL082908

Li, M., Sun, Q., Lovino, M. A., Ali, S., Islam, M., Li, T., et al. (2022). Non-uniform
changes in different daily precipitation events in the contiguous United States.Weather
Clim. Extrem. 35, 100417. doi:10.1016/j.wace.2022.100417

Liang, X.-Z., Xu, M., Kunkel, K. E., Grell, G. A., and Kain, J. S. (2007). Regional
climate model simulation of U . S.– Mexico summer precipitation using the optimal
ensemble of two cumulus parameterizations. Am. Meteorological Soc. 20, 5201–5207.
doi:10.1175/JCLI4306.1

Lin, Y., Dong,W., Zhang,M., Xie, Y., Xue,W., Huang, J., et al. (2017). Causes ofmodel
dry and warm bias over central U.S. And impact on climate projections.Nat. Commun.
8, 881–888. doi:10.1038/s41467-017-01040-2

Mallakpour, I., Sadegh, M., and Aghakouchak, A. (2020). Changes in the
exposure of California’s levee- protected critical infrastructure to flooding hazard
in a warming climate. Environ. Res. Lett. 15, 064032. doi:10.1088/1748-9326/
ab80ed

Mallakpour, I., Sadeghi, M., Mosaffa, H., Akbari, A., Sadegh, M., Nguyen, P., et al.
(2022). Discrepancies in changes in precipitation characteristics over the contiguous
United States based on six daily gridded precipitation datasets. Weather Clim. Extrem.
36, 100433. doi:10.1016/j.wace.2022.100433

Mann,H. B. (1945).Nonparametric tests against trend.Econometrica 13 (3), 245–259.
doi:10.2307/1907187

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann,
M., et al. (2010). Precipitation downscaling under climate change: recent developments
to bridge the gap between dynamical models and the end user. Rev. Geophys. 2009,
RG3003–34. doi:10.1029/2009RG000314

Martin-vide, J. (2004). Spatial distribution of a daily precipitation concentration
index in peninsular Spain. Int. J. Climatol. 971 (May), 959–971. doi:10.1002/joc.1030

Mathbout, S., Lopez-bustins, J. A., Royé, D., and Martin-vide, J. (2021).
Mediterranean-scale drought: regional datasets for exceptional meteorological
drought events during 1975-2019. Atmosphere 12, 941. doi:10.3390/atmos12080941

May, C., Luce, C., Casola, J., Chang, M., Cuhaciyan, J., Dalton, M., et al. (2018). “Ch
24: northwest,”. Impacts, risks, and adaptation in theUnited States: fourth national climate
assessment. Editors D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L.
M. Lewis, and T. K. Maycock, (Washington, DC, USA: U.S. Global Change Research
Program), II, 1036–1100. doi:10.7930/NCA4.2018.CH24

Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Ronald, S. (2000). The coupled
model intercomparison project (CMIP). Bull. Am. Meteorological Soc. 0477 (January).
doi:10.1175/1520-0477(2000)081<0313

Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J. (1997).
Intercomparison makes for a better climate model. Eos Trans. Am. Geophys. Union 78
(41), 445–451. doi:10.1029/97EO00276

Meehl, G. A., Covey, C., Delworth, T., Latif, M., Mcavaney, B., Mitchell, J. F. B.,
et al. (2007). The WCRP CMIP3 multimodel dataset - a new era in climate change
research.Bull. Am.Meteorological Soc. 88 (September), 1383–1394. doi:10.1175/BAMS-
88-9-1383

Meehl, G. A., Tebaldi, C., Walton, G., Easterling, D., and Mcdaniel, L. (2009).
Relative increase of record high maximum temperatures compared to record low
minimum temperatures in the U . S. Geophys. Res. Lett. 36 (December), 1–5.
doi:10.1029/2009GL040736

Melillo, J., Richmond, T. C., and Yohe, G. (2014). “Climate change impacts in the
United States: the third national climate assessment.” doi:10.7930/J0Z31WJ2

Merrifield, A. L., and Xie, S.-P. (2016). Summer U . S. Surface air temperature
variability: controlling factors and AMIP simulation biases. J. Clim. 29, 5123–5139.
doi:10.1175/JCLI-D-15-0705.1

Milinski, S., Maher, N., and Olonscheck, D. (2020). How large does a large ensemble
need to Be. Earth Syst. Dyn. 11, 885–901. doi:10.5194/esd-11-885-2020

Moise, A., Wilson, L., Grose, M., Whetton, P., Watterson, I., Bhend, J., et al.
(2015). Evaluation of CMIP3 and CMIP5 models over the Australian region to
inform confidence in projections. Aust. Meteorological Oceanogr. J. 5 (October), 19–53.
doi:10.22499/2.6501.004

Monier, E., and Gao, X. (2015). Climate change impacts on extreme events in the
United States: an uncertainty analysis. Clim. Change 131, 67–81. doi:10.1007/s10584-
013-1048-1

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Vuuren,
D. P. V., et al. (2010). The next generation of scenarios for climate change research and
assessment. Nature 463 (7282), 747–756. doi:10.1038/nature08823

Mote, P. W., Snover, A. K., Capalbo, S., Eigenbrode, S. D., Glick, P., Littell, J., et al.
(2014). “Chapter 21: Northwest,”. In Climate Change Impacts in the United States: The
Third National Climate Assessment. Editors J. M. Melillo, T. T. C. Richmond, and G. W.
Yohe (U.S. Global Change Research Program), 487–513. doi:10.7930/J04Q7RWX

Moustakis, Y., Papalexiou, S. M., Onof, C. J., and Paschalis, A. (2021). Seasonality,
intensity, and duration of rainfall extremes change in a warmer climate. Earth’s Future
9, 1–15. doi:10.1029/2020EF001824

Mueller, B., and Seneviratne, S. I. (2014). Systematic land climate and
evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett. 41 (December
2013), 128–134. doi:10.1002/2013GL058055

Navarro-Racines, C. E., Tarapues-Montenegro, J. E., and Ramírez-Villegas,
J. A. (2015). “BIAS-CORRECTION IN THE CCAFS-CLIMATE PORTAL: A
DESCRIPTION OF MEHOTODOLOGIES,” in Decision and policy analysis (DAPA)
research area. International center for tropical agriculture (CIAT). Colombia: Cali.

Neri, A., Villarini, G., Slater, L. J., and Napolitano, F. (2019). On the statistical
attribution of the frequency of flood events across the U.S. Midwest. Adv. Water Resour.
127 (March), 225–236. doi:10.1016/j.advwatres.2019.03.019

Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., Aghakouchak, A., Ashouri, H.,
et al. (2018). Global precipitation trends across spatial scales using satellite observations.
Am. Meteorological Soc. 99 (April), 689–697. doi:10.1175/BAMS-D-17-0065.1

Oki, T., and Kanae, S. (2006). Global hydrological cycles and world water resources.
Science 313 (August), 1068–1072. doi:10.1126/science.1128845

O’ Neill, B. C., Tebaldi, C., Van Vuuren, D., Eyring, V., Fridelingstein, P., George, H.,
et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6.
Geosci. Model Dev. (April), 1–35. doi:10.5194/gmd-2016-84

Oruc, S. (2022). Performance of bias corrected monthly CMIP6 climate
projections with different reference period data in Turkey. Hydrology 70, 777–789.
doi:10.1007/s11600-022-00731-9

Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M. (2017).
Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966–18010.
doi:10.1038/s41598-017-17966-y

Praveen, B., Talukdar, S., Mahato, S., and Mondal, J. (2020). “Analyzing trend and
forecasting of rainfall changes in India using non- parametrical and machine learning
approaches,” 1–21. doi:10.1038/s41598-020-67228-7

Prein, Andreas F., and Holland, G. J. (2018). Global estimates of damaging hail
hazard. Weather Clim. Extrem. 22 10–23. doi:10.1016/j.wace.2018.10.004

Prein, Andreas F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., and Holland, G.
J. (2017). The future intensification of hourly precipitation extremes. Nature 7, 48–52.
doi:10.1038/NCLIMATE3168

Pryor, S. C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R., et al.
(2014). “Chapter 18:Midwest”. InClimate Change Impacts in the United States:TheThird
National Climate Assessment. Editors J. M. Melillo, T. T. C. Richmond, and G. W. Yohe
(U.S. Global Change Research Program), 418–440. doi:10.7930/J0J1012N

Raghavan, S. V., Liu, J., Nguyen, N. S., Vu, M. T., and Liong, S. (2018). Assessment
of CMIP5 historical simulations of rainfall over Southeast asia. Springer, 989–1002.
doi:10.1007/s00704-017-2111-z

Rahat, S. H., Steinschneider, S., Kucharski, J., Arnold, W., Olzewski, J., Walker, W.,
et al. (2022). Characterizing hydrologic vulnerability under nonstationary climate and
antecedent conditions using a process-informed stochastic weather generator. J. Water
Resour. Plan. Manag. 148 (April). doi:10.1061/(ASCE)WR.1943-5452.0001557

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1542536
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.2307/2332540
https://doi.org/10.1175/BAMS-D-15-0004.1
https://doi.org/10.1175/BAMS-D-15-0004.1
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1002/met.284
https://doi.org/10.7930/NCA4.2018.CH23
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1023/a:1023694115864
https://doi.org/10.1175/BAMS-D-11-00262.1
https://doi.org/10.5194/esd-12-1061-2021
https://doi.org/10.1016/j.gexplo.2010.09.011
https://doi.org/10.1029/2019GL082908
https://doi.org/10.1016/j.wace.2022.100417
https://doi.org/10.1175/JCLI4306.1
https://doi.org/10.1038/s41467-017-01040-2
https://doi.org/10.1088/1748-9326/ab80ed
https://doi.org/10.1088/1748-9326/ab80ed
https://doi.org/10.1016/j.wace.2022.100433
https://doi.org/10.2307/1907187
https://doi.org/10.1029/2009RG000314
https://doi.org/10.1002/joc.1030
https://doi.org/10.3390/atmos12080941
https://doi.org/10.7930/NCA4.2018.CH24
https://doi.org/10.1175/1520-0477(2000)081<0313
https://doi.org/10.1029/97EO00276
https://doi.org/10.1175/BAMS-88-9-1383
https://doi.org/10.1175/BAMS-88-9-1383
https://doi.org/10.1029/2009GL040736
https://doi.org/10.7930/J0Z31WJ2
https://doi.org/10.1175/JCLI-D-15-0705.1
https://doi.org/10.5194/esd-11-885-2020
https://doi.org/10.22499/2.6501.004
https://doi.org/10.1007/s10584-013-1048-1
https://doi.org/10.1007/s10584-013-1048-1
https://doi.org/10.1038/nature08823
https://doi.org/10.7930/J04Q7RWX
https://doi.org/10.1029/2020EF001824
https://doi.org/10.1002/2013GL058055
https://doi.org/10.1016/j.advwatres.2019.03.019
https://doi.org/10.1175/BAMS-D-17-0065.1
https://doi.org/10.1126/science.1128845
https://doi.org/10.5194/gmd-2016-84
https://doi.org/10.1007/s11600-022-00731-9
https://doi.org/10.1038/s41598-017-17966-y
https://doi.org/10.1038/s41598-020-67228-7
https://doi.org/10.1016/j.wace.2018.10.004
https://doi.org/10.1038/NCLIMATE3168
https://doi.org/10.7930/J0J1012N
https://doi.org/10.1007/s00704-017-2111-z
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001557
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sharif et al. 10.3389/feart.2025.1542536

Raisanen, J. (2002). CO 2 -induced changes in interannual temperature and
precipitation variability in 19 CMIP2 experiments. J. Clim. 15, 2395–2411.
doi:10.1175/1520-0442(2002)015<2395:ciciit>2.0.co;2

Ramirez-villegas, J., Challinor, A. J., Thornton, P. K., and Jarvis, A. (2013).
Implications of regional improvement in global climate models for agricultural impact
research. Environ. Res. Lett. 8, 024018. doi:10.1088/1748-9326/8/2/024018

Randall, A. A., Bitz, C. M., Danabasoglu, G., Scott Denning, A., Gent, P. R.,
Gettelman, A., et al. (2019). 100 Years of Earth system model development. Meteorol.
Monogr. 59, 12.1–12.66. doi:10.1175/AMSMONOGRAPHS-D-18-0018.1

Reidmiller, D. R., Avery, C. W., Easterling, D. R., Kunkel, K. E., Lewis, K. L. M.,
Maycock, T. K., et al. (2018). “Impacts, risks, and adaptation in the United States: fourth
national climate assessment,”, II. Washington, DC, USA: U.S. Global Change Research
Program, 186. doi:10.7930/NCA4.2018.RiB

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., Neill, B. C. O., Fujimori,
S., et al. (2017). The shared socioeconomic Pathways and their energy, land use,
and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42,
153–168. doi:10.1016/j.gloenvcha.2016.05.009

Rodgers, K. B., Lee, S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser,
C., et al. (2021). Ubiquity of human-induced changes in climate variability. Earth Syst.
Dyn. doi:10.5194/esd-2021-50

Roy´e, D., and Martin-Vide, J. (2017). Concentration of daily precipitation in the
contiguous United States. Atmos. Res. doi:10.1016/j.atmosres.2017.06.011

Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., and Mote, P. W. (2015). Evaluation
of CMIP5 20 Th century climate simulations for the pacific northwest USA. J. Geophys.
Res. Atmos. 118 (April 2013), 884–907. doi:10.1002/jgrd.50843

Saki, S. A., Sofia, G., and Anagnostou, E. N. (2023). Characterizing CONUS-wide
spatio-temporal changes in daily precipitation, flow, and variability of extremes. J.
Hydrology 626 (PB), 130336. doi:10.1016/j.jhydrol.2023.130336

Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, A., et al.
(2015). Causes of the 2011-14 California drought. J. Clim. 28 (18), 6997–7024.
doi:10.1175/JCLI-D-14-00860.1

Shafer, M., Ojima, D., Antle, J. M., Kluck, D., McPherson, R. A., Petersen, S., et al.
(2014). “Chapter 19: Great Plains,”. In Climate Change Impacts in the United States: The
Third National Climate Assessment. Editors J. M. Melillo, T. T. C. Terese, and G. W. Yohe
(U.S. Global Change Research Program), 441–461. doi:10.7930/J0D798BC

Sharif, R. B., Habib, E. H., and ElSaadani, M. (2020). Evaluation of radar-rainfall
products over coastal Louisiana. Remote Sens. 12, 1477. doi:10.3390/rs12091477

Sharif, R. B., Houser, P., Aquila, V., and Maggioni, V. (2022). Investigating
rainfall patterns in the hubei province, China and northern Italy during the
covid-19 lockdowns. Front. Clim. 3 (January), 1–10. doi:10.3389/fclim.2021.
799054

Silva, R. M. da, Santos, C. A. G., Moreira, M., Corte-Real, J. ˜o, Silva, V. C. L., and
Medeiros, I. C. (2015). Rainfall and river flow trends using Mann – Kendall and sen ’
s slope estimator statistical tests in the cobres river basin. Nat. Hazards 77, 1205–1221.
doi:10.1007/s11069-015-1644-7

Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia,
R. R., et al. (2020). An evaluation of the large‐scale atmospheric circulation and
its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos. 125.
doi:10.1029/2020JD032835

Slater, L., Villarini, G., Archfield, S., Faulkner, D., Lamb, R., Khouakhi, A., et al.
(2021). Global changes in 20‐year 50‐year and 100‐year river floods.Geophys. Res. Lett.
48. doi:10.1029/2020GL091824

Srivastava, A., Grotjahn, R., and Ullrich, P. A. (2020). Evaluation of historical CMIP6
model simulations of extreme precipitation over contiguous US regions.Weather Clim.
Extrem. 29, 100268. doi:10.1016/j.wace.2020.100268

Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B. (2010). Characterizing changes
in drought risk for the United States from climate change. Environ. Res. Lett. 5, 044012.
doi:10.1088/1748-9326/5/4/044012

Su, F., Duan, X., Chen, D., Zhenchun, H., and Cuo, L. (2013). Evaluation of the
global climate models in the CMIP5 over the Tibetan plateau. J. Clim. 26, 3187–3208.
doi:10.1175/JCLI-D-12-00321.1

Supharatid, S., Aribarg, T., and Nafung, J. (2022). Bias - corrected CMIP6
climate model projection over Southeast asia. Theor. Appl. Climatol. 147, 669–690.
doi:10.1007/s00704-021-03844-1

Swain, D. L., Baird, L., Neelin, J. D., and Hall, A. (2018). Increasing precipitation
volatility in twenty-first-century California. Nat. Clim. Change 8 (5), 427–433.
doi:10.1038/s41558-018-0140-y

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the
experiment design. Bull. Am. Meteorological Soc. 93, 485–498. doi:10.1175/BAMS-D-
11-00094.1

Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A. (2006). Going to the
extremes. Springer, 185–211. doi:10.1007/s10584-006-9051-4

Teutschbein, C., and Jan, S. (2012). Bias correction of regional climate model
simulations for hydrological climate-change impact studies: review and evaluation of
different methods. J. Hydrology 456–457, 12–29. doi:10.1016/j.jhydrol.2012.05.052

Thackeray, C. W., DeAngelis, A. M., Hall, A., Swain, D. L., and Qu, X. (2018). On the
connection between global hydrologic sensitivity and regional wet extremes. Geophys.
Res. Lett. 45, 343–351. doi:10.1029/2018GL079698

Trenberth, K. E. (2011). Changes in precipitation with climate change. Cliimate Res.
47, 123–138. doi:10.3354/cr00953

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. (2003). The changing
character of precipitation. Am. Meteorological Soc. 84, 1205–1218. doi:10.1175/BAMS-
84-9-1205

Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman, A. J.
(2020). Robust future changes in meteorological drought in CMIP6 projections despite
uncertainty in precipitation. Geophys. Res. Lett. 47, 1–9. doi:10.1029/2020GL087820

Vuuren, D. P. V., Kriegler, E., O’ Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R.,
et al. (2014). A new scenario framework for climate change research: scenario matrix
architecture. Clim. Change 122, 373–386. doi:10.1007/s10584-013-0906-1

Wang, C., Zhang, L., Lee, S.-ki, Wu, L., and Mechoso, C. R. (2014). A global
perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205.
doi:10.1038/nclimate2118

Wasko, C., Sharma, A., and Johnson, F. (2015). Does storm duration modulate
the extreme precipitation‐temperature scaling relationship? Geophys. Res. Lett. 42,
8783–8790. doi:10.1002/2015GL066274

Wetherald, R. T. (2009). Changes of variability in response to increasing greenhouse
gases. Part II: hydrology. J. Clim. 2002, 6089–6103. doi:10.1175/2009JCLI2834.1

Wijeratne, V. P. I. S., Li, G., Mehmood, M. S., and Abbas, A. (2023). Assessing
the impact of long-term ENSO, SST, and IOD dynamics on extreme hydrological
events (EHEs) in the kelani river basin (KRB), Sri Lanka. Atmosphere 14 (1), 79.
doi:10.3390/atmos14010079

Willner, S. N., Otto, C., and Levermann, A. (2018). Global economic response to river
floods. Nat. Clim. Change 8 (July), 594–598. doi:10.1038/s41558-018-0173-2

Wu, S.-ye (2015). Changing characteristics of precipitation for the contiguous United
States. Clim. Change 132, 677–692. doi:10.1007/s10584-015-1453-8

Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., et al. (2007).
A gauge-based analysis of daily precipitation over east asia. Am. Meteorological Soc. 8,
607–626. doi:10.1175/JHM583.1

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., and Fu, C. (2021). Bias-corrected CMIP6
global dataset for dynamical downscaling of the historical and future climate (1979 –
2100). Nature 8, 293–311. doi:10.1038/s41597-021-01079-3

Yang, T., Li, Q., Chen, X., Maeyer, P. D., Yan, X., Liu, Y., et al. (2020). Spatiotemporal
variability of the precipitation concentration and diversity in central asia. Atmos. Res.
241, 104954. doi:10.1016/j.atmosres.2020.104954

Zamani, Y., Monfared, S. A. H., Moghaddam, M. A., and Hamidianpour, M.
(2020). A comparison of CMIP6 and CMIP5 projections for precipitation to
observational data: the case of northeastern Iran.Theor. Appl. Climatol. 142, 1613–1623.
doi:10.1007/s00704-020-03406-x

Zelle, H., Jan Van Oldenborgh, G., Burgers, G., and Dijkstra, H. (2005). El niño
and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J.
Clim. 18, 4669–4683. doi:10.1175/jcli3574.1

Zhai, P., Zhang, X., Wan, H., and Pan, X. (2005). Trends in total precipitation
and frequency of daily precipitation extremes over China. J. Clim. 18, 1096–1108.
doi:10.1175/JCLI-3318.1

Zhang, K., Yao, Y., Qian, X., and Wang, J. (2019). Various characteristics of
precipitation concentration index and its cause analysis in China between 1960 and
2016. Int. J. Climatol. 39, 4648–4658. doi:10.1002/joc.6092

Frontiers in Earth Science 18 frontiersin.org

https://doi.org/10.3389/feart.2025.1542536
https://doi.org/10.1175/1520-0442(2002)015<2395:ciciit>2.0.co;2
https://doi.org/10.1088/1748-9326/8/2/024018
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0018.1
https://doi.org/10.7930/NCA4.2018.RiB
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.5194/esd-2021-50
https://doi.org/10.1016/j.atmosres.2017.06.011
https://doi.org/10.1002/jgrd.50843
https://doi.org/10.1016/j.jhydrol.2023.130336
https://doi.org/10.1175/JCLI-D-14-00860.1
https://doi.org/10.7930/J0D798BC
https://doi.org/10.3390/rs12091477
https://doi.org/10.3389/fclim.2021.799054
https://doi.org/10.3389/fclim.2021.799054
https://doi.org/10.1007/s11069-015-1644-7
https://doi.org/10.1029/2020JD032835
https://doi.org/10.1029/2020GL091824
https://doi.org/10.1016/j.wace.2020.100268
https://doi.org/10.1088/1748-9326/5/4/044012
https://doi.org/10.1175/JCLI-D-12-00321.1
https://doi.org/10.1007/s00704-021-03844-1
https://doi.org/10.1038/s41558-018-0140-y
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1007/s10584-006-9051-4
https://doi.org/10.1016/j.jhydrol.2012.05.052
https://doi.org/10.1029/2018GL079698
https://doi.org/10.3354/cr00953
https://doi.org/10.1175/BAMS-84-9-1205
https://doi.org/10.1175/BAMS-84-9-1205
https://doi.org/10.1029/2020GL087820
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1038/nclimate2118
https://doi.org/10.1002/2015GL066274
https://doi.org/10.1175/2009JCLI2834.1
https://doi.org/10.3390/atmos14010079
https://doi.org/10.1038/s41558-018-0173-2
https://doi.org/10.1007/s10584-015-1453-8
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1038/s41597-021-01079-3
https://doi.org/10.1016/j.atmosres.2020.104954
https://doi.org/10.1007/s00704-020-03406-x
https://doi.org/10.1175/jcli3574.1
https://doi.org/10.1175/JCLI-3318.1
https://doi.org/10.1002/joc.6092
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Methodology
	2.1 Study area
	2.2 Datasets
	2.3 Methodological approach

	3 Results and discussions
	3.1 Evaluation of historical climate model simulations
	3.2 Historical versus future precipitation patterns

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

