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Introduction: Sedimentary micro-scale facies research is essential for
characterizing the lateral and vertical evolutionary patterns and contact
relationships within sedimentary facies. This is critical for the redevelopment
of high-water-cut oil reservoirs. The complexity of river channel sands,
including their horizontal and vertical heterogeneity, well connectivity, and
the effectiveness of water injection, necessitates a more refined subdivision
of sedimentary facies. Traditional manual identification methods are labor-
intensive and prone to subjectivity, highlighting the need for a more automated
and precise solution.

Methods: This paper integrates well-logging sedimentology with statistical
theory, selecting multiple reservoir and logging parameters to establish a new
classification standard for river channel sand sedimentary micro-scale facies.
Based on deep learning techniques, we propose a network that combines
feature attention and spatio-temporal feature extraction. The feature attention
module dynamically assigns weights to logging parameters based on their
correlation with the target classification, enhancing the contribution of key
parameters to the classification task. Meanwhile, the spatio-temporal feature
extraction module fully leverages spatial and sequential information from the
logging data, enabling precise identification of river channel sand sedimentary
micro-scale facies.

Results: This method, applied to a real-world oilfield for residual oil
development, subdivides deltaic river channel sand sedimentary micro-
scale facies into four distinct types. It improves overall accuracy by
8% compared to traditional CNN models and significantly outperforms
existing machine learning methods. Notably, the method achieves
100% classification accuracy for certain micro-facies categories, with
an overall classification accuracy of 94.9%, demonstrating its superior
performance and potential for application in complex sedimentary
environments.

Discussion: This approach not only enhances the accuracy of sedimentary
micro-scale facies classification but also offers a new framework
for analyzing the connectivity between injection and production well
groups. The integration of spatio-temporal feature extraction with feature
attention significantly improves model performance, especially in the
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complex, heterogeneous environments typical of river channel
sands. This method represents a substantial improvement over
traditional models and has broad applicability in the field of reservoir
management.

KEYWORDS

sedimentary micro-scale facies, spatio-temporal characteristics, deep learning
technology, attention mechanism, convolutional neural network, long short-term
memory

1 Introduction

As oilfield development technologies continue to advance,
challenges such as the rapid decline in oil and gas production and the
gradual increase in water cut have become increasingly prominent
(Li et al., 2013; Song, 2023). Complex factors such as difficulties in
understanding enrichment patterns, well connectivity, and reservoir
heterogeneity remain major constraints in the development of
remaining oil reserves (Shu et al., 2017). Since the distribution of
sedimentarymicro-scale facies directly influences the distribution of
oil and gas, studying these micro-scale facies is essential for guiding
the spatial analysis of remaining oil enrichment and production
prediction (Luo et al., 2022; Peng and Guo, 2023). Consequently,
sedimentarymicro-scale facies analysis and intelligent identification
have emerged as pivotal components in oil and gas exploration and
development.

Well-logging data, which is rich in geological sedimentary
information (Kaakinen et al., 2009), serves as a critical foundation
for sedimentary micro-scale facies identification. However,
accurately delineating the boundaries of different sedimentary
micro-scale facies remains a significant challenge, especially
during the water injection development phase, where severe
horizontal and vertical heterogeneity exists within the channel
sands of oil reservoirs. There is an urgent need to conduct detailed
geological studies of thick oil reservoirs, identify the contact
patterns of river channels with different depositional origins, and
clarify the connectivity between injection and production well
groups. Achieving these objectives requires further subdivision
and intelligent recognition of river channel sand sedimentary
micro-scale facies.

Traditional machine learning techniques, such as support
vector machines (SVMs) (Liu et al., 2020), fuzzy clustering
neural networks (Zhang, 2013), and backpropagation (BP) neural
networks (Tang, 2023), have been widely used for automatic
identification of sedimentary micro-scale facies. Fuzzy clustering,
often enhanced with expert input, is used for facies classification
based on specific needs (Cherana et al., 2022), but is sensitive
to noise and outliers, limiting generalization. SVMs, which
use statistical theory for lithofacies prediction (Wang et al.,
2019), improve accuracy but struggle with large-scale data
and inefficient parameter optimization. BP neural networks
combined with principal component analysis (PCA) (Li et al.,
2017; Zhang, 2013) enhance accuracy and efficiency, yet suffer
from sensitivity to initial weights and instability. Self-organizing
neural networks (Zhang K. et al., 2022) reduce training iterations
and time costs in facies identification.

Despite their successes, traditional machine learning methods
are limited by their reliance on linear relationships between
inputs and targets, effectively handling redundant structures
but failing to capture the complex non-linear relationships in
logging data (Hou et al., 2020). They also neglect trends and
correlations with geological depth (Zeng et al., 2022), restricting
their ability to extract deep non-linear information and retain
historical data, thereby impacting generalization and learning
efficiency.

Deep learning has become essential for extracting nonlinear
features in heterogeneous reservoirs, improvingmodel performance
through structural and parameter optimizations (de Lima et al.,
2020; Shengli et al., 2016; Zhang H. et al., 2022). Convolutional
Neural Networks (CNNs), with their weight-sharing and pooling
capabilities, enable efficient extraction of spatial information
from logging parameters (Guo and Zhu, 2019; Song et al.,
2022; de Lima et al., 2020), reducing redundancy and overfitting.
Parameters like natural gamma and resistivity serve as direct
inputs for one-dimensional CNNs, achieving high accuracy in
sedimentary micro-scale facies identification (Imamverdiyev and
Sukhostat, 2019). Twin CNNs (Feng et al., 2019) and U-Net
architectures (Liu et al., 2022) transform lithofacies interpretation
into supervised image tasks, capturing global and local texture
features in rock images (Zhu et al., 2018). CNN-based models offer
higher accuracy and faster computation than traditional methods.
Recurrent Neural Networks (RNNs) use memory units to leverage
temporal information from logging data, improving lithofacies
identification accuracy (Choi et al., 2020; dos Santos et al., 2021;
Chen et al., 2021; Tian and Verma, 2022). Given the continuity
of petrographic profiles in the field, sensitivity analyses are often
performed on logging parameters like natural gamma and bulk
density. Long Short-Term Memory (LSTM) networks are then used
for lithofacies classification, analyzing vertical correlations along the
reservoir (Khan and Kirmani, 2024), while Gated Recurrent Unit
(GRU) networks, simplifying the LSTM design, are more effective
for small datasets (Feng, 2024).

While single deep neural networks can model the nonlinear
relationships between logging parameters, their ability to refine
both spatial and temporal features of reservoir attributes remains
limited, often resulting in poor generalizability and stability. For
example, CNNs may overlook sequential correlations between
sedimentary micro-scale facies and logging parameters at depth,
failing to accurately capture vertical geological features during
identification processes. Although RNNs are adept at capturing
these sequential correlations, their single-layer networks exhibit
limited feature extraction capabilities, and deeper networks are
prone to degradation issues (Aslam et al., 2020). Moreover, directly
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TABLE 1 Comparison of methods for sedimentary micro-scale facies identification.

Method Advantages Disadvantages Application scenarios

Support Vector Machine (SVM) - Based on statistical theory
- Suitable for small-scale datasets

- Poor performance with large datasets
- Time-consuming parameter
optimization

- Applied in lithofacies prediction for
small-scale reservoirs

Fuzzy Clustering Neural Networks - High classification accuracy in specific
areas
- Can incorporate expert knowledge

- Sensitive to noise and outliers
- Limited generalization ability

- Applied in sedimentary facies
classification in specific operational
areas

Backpropagation Neural Networks (BP) - Accelerates convergence when
combined with PCA
- Suitable for small datasets

- Sensitive to initial weights
- Poor operational stability

- Applied in lithofacies identification in
shallow reservoirs

Convolutional Neural Networks (CNN) - Better at extracting spatial features
- Suitable for simpler models

- Unable to effectively capture temporal
correlations

- Applied in sedimentary facies
identification for homogeneous
reservoirs

FASTN - Equipped with feature attention
- Capable of focusing on temporal and
spatial information

- More complex compared to previous
models

- Applied in the subdivision of
sedimentary micro-scale facies in
reservoirs

training neural networks with raw logging parameters often fails
to fully exploit the rich information contained in logging data,
making it difficult to capture the complex geological structures
and variations in log parameter waveforms, such as shape and
amplitude (Luo et al., 2022). These limitations hinder significant
advancements in the precise classification of sedimentary micro-
scale facies. Table 1 summarizes the advantages, disadvantages, and
application scenarios of previous methods for sedimentary micro-
scale facies identification as well as the proposed method in this
study.

Based on the analysis of existing approaches, this paper
proposes a novel intelligent identification method for channel
sand sedimentary micro-scale faciesâ€“the Feature Attention
and Spatio-Temporal Network (FASTN). Traditional methods
often struggle to capture the complex non-linear relationships
between logging parameters and sedimentary facies, limiting
their ability to fully characterize sedimentary features, particularly
in heterogeneous reservoirs. In contrast, the proposed method
overcomes these limitations by integrating both spatial and
temporal features of logging data, providing a more detailed and
accurate identification of sedimentary micro-scale facies. A key
innovation of thismethod is the feature attentionmechanism, which
dynamically assigns greater weight to features that are more relevant
to the classification results, ensuring that critical information
is prioritized and irrelevant or noisy data is downweighted.
The method begins by combining logging sedimentology with
statistical theories to establish a model for subdividing channel
sand facies, selecting optimal parameters and constructing new
neural network inputs based on these features. By leveraging
a combination of Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks, enhanced with this
attention mechanism, the model effectively captures and refines
spatiotemporal information. Finally, the method is validated
in various residual oil development fields, showing an 8%
improvement in accuracy over traditional CNN-based models. This
highlights the ability of the method to enhance sedimentary facies

identification through more targeted and effective spatiotemporal
analysis.

2 Logging sedimentary micro-scale
facies pattern

2.1 Study area overview

The study area is situated in the Songliao Basin, a large
intracontinental rift basin located in the central part of northeast
China. The Yaojia Formation, part of the Upper Cretaceous system,
is dominated by deltaic deposits and represents a critical interval
for hydrocarbon exploration in the basin (Figure 1). The target
stratum in the study area belongs to delta front facies deposits
(Yang et al., 2005; 2022), influenced by the dual hydrodynamic
forces of rivers and lake waves. It is characterized by straight,
narrow distributary channels that are heavily incised and laterally
stacked. Additionally, abandoned channels and discontinuous inter-
channel deposits are scattered throughout the area, predominantly
arranged in a mesh-like or dendritic pattern. The drilling encounter
rate for channel sands is approximately 30%–40%, with widths
ranging from 100 to 300 m and an average channel thickness
of 3.0 m. As the continuity of the channel sands diminishes,
the well network’s control over the sand bodies weakens, and
inter-channel sand bodies are interspersed in flaky or strip-
like patterns along channel margins, without forming extinction
zones.

Analysis of the channel sand depositional profiles (Figure 2)
reveals significant differences in thickness and hydrodynamic
conditions across different parts of the same channel. The channels
consist of geomorphic units such as incised zones, active channels,
channel margins, and abandoned channels, each with distinct
geological characteristics. These differences result in significant
variations in reservoir quality, further intensifying the lateral and
vertical heterogeneity of the reservoirs. Currently, with 399 oil
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FIGURE 1
(A) The geographical location of the Songliao Basin in China. (B) The structural framework of the study area and the location of well XN within it. (C)
The stratigraphic column of the study area, illustrating the formations, lithology, and depth distribution.

wells completed, the study area has entered the polymer flooding
stage, and the remaining oil exhibits highly dispersed patterns
with localized enrichment, especially in areas with poor reservoir
connectivity. The complexity of inter-well connectivity and uneven
effectiveness highlights the necessity of refining the subdivision
of channel sand sedimentary micro-scale facies. Investigating
the connectivity differences among these geological units will
aid in accurately evaluating reservoir potential and provide a
scientific basis for designing customized strategies for remaining oil
recovery.

2.2 Criteria for sedimentary micro-scale
facies classification

There is no direct correspondence between logging facies and
sedimentarymicro-scale facies, particularly because paleontological
and geochemical indicators are often challenging to derive from
logging data.This study, centered on core-calibrated logging, aims to
establish the relationship between sedimentary subfacies andmicro-
scale facies identification under sedimentary facies calibration
through statistical analysis and knowledge-based reasoning. As a
result, a sedimentarymicro-scale facies-logging facies interpretation
model is developed to provide standards for further subdivision of
channel sand sedimentary micro-scale facies.

Core wells and representative basic wells along the main
trunk are selected to examine the well log characteristics of
sedimentary micro-scale facies. Given the multifactorial nature
of sedimentary micro-scale facies identification, a single well
log parameter is insufficient to fully characterize a sedimentary
micro-scale facies unit. Therefore, this study focuses on analyzing
river channel sand facies samples from 15 closed-core wells and
51 basic trunk wells within the study area. Definitions and key
abbreviations related to the analysis are summarized in Table 2. A
detailed investigation is conducted into the relationships between
well logging parameters, including spontaneous potential (SP),
gamma ray (GR), micro-normal resistivity (Rmn), formation
thickness ( f th), and effective thickness (eth), with sedimentary
micro-scale facies. In previous studies, effective thickness and
the effective thickness/formation thickness ratio have been used
to distinguish different sedimentary facies. However, when
subdividing sedimentary microfacies within a single facies, these
two parameters tend to overlap significantly, making it difficult
to effectively differentiate between the microfacies. Therefore,
we introduce Rmn-GS as a new parameter to further subdivide
channel sand sedimentary microfacies, enhancing the accuracy of
microfacies identification.

Resistivitymicro-logging includes two electrode systems:micro-
gradient and micro-potential. The micro-gradient electrode system
has a smaller detection range and mainly reflects the resistivity
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FIGURE 2
The channel sand depositional profiles, showing variations in thickness and hydrodynamic conditions across different geomorphic units.

TABLE 2 Important abbreviations list.

Abbr Definition

SP spontaneous potential

GR gamma ray

Rmn micro-normal resistivity

Rg micro-gradient resistivity

f th formation thickness

eth effective thickness

eth/f th the effective thickness/formation thickness ratio

Rmn-GS the root mean square of micro-normal variance

of the mud cake on the borehole wall, while the micro-potential
electrode systemhas a larger detection range, primarily reflecting the
resistivity of the wash zone. In permeable formations, mud filtrate
infiltration during drilling leads to the formation of a mud cake with
lower resistivity than the surrounding wash zone. Consequently,
the micro-gradient and micro-potential curves exhibit a positive
difference. Micro-electrode logging offers the highest vertical
resolution in conventional logging, reaching up to 0.2 m, which
makes it capable of capturing subtle water flow fluctuations during
the deposition of channel sand sedimentary micro-scale facies.

Since the development of the Daqing oilfield, micro-electrode
logging has been widely used for open-hole logging measurements,
making the micro-potential logging curve an optimal parameter
for the subdivision of channel sand sedimentary micro-scale
facies. To reflect the smoothness of the well logging curve, the
root mean square of the variance (variance root parameter)
is employed. Combining logging sedimentology and statistical
theory, the effective thickness (eth) of the study area is selected,
along with the effective thickness/formation thickness ratio
(eth/f th) and the root mean square of micro-normal variance
(Rmn-GS), as key well log features to represent sedimentary

TABLE 3 Classification criteria of channel sand sedimentary micro-scale
facies (m).

Class of
channel sand

Type I Type II Type III Type IV

Standard

eth ≥4.0 [3,4.5] [1.5,3.5] < 2.0

eth/f th [0.8,1.0] [0.7,0.9] [0.4,0.7] [0.2,0.5]

Rmn-GS [0.2,0.3] [0.25,0.4] [0.35,0.6] [0.35,0.55]

micro-scale facies. The root mean square of the micro-potential
variance reflects the degree of dentate morphology in sedimentary
micro-scale facies sections: the larger the value, the more
pronounced the dentate features.This parameter is calculated using
Equation 1.

GS = (G1 + S2)
1
2 = √
∑M(h)

i=1
(Y (i) −Y (i+ h))2

2M (h)
+
∑N

i=1
(Y (i) −V)2

N− 1
(1)

where, G1 =
∑M(h)i=1 (Y(i)−Y(i+h))

2

2M(h)
represents the variance function of the

logging data [Y(i),Y(i+ h)] with a step size of h, capturing local
changes at the microscopic scale, and M(h) denotes the number
of observations for local changes with a step size of h. Similarly,
S2 = ∑

N
i=1(Y(i)−V)

2

N−1
reflects the variance function of the overall changes

during this stage, where N is the total number of observed data
points throughout the entire stage.

By comparing the characteristics of the Rmn-GS curves, the
channel sand facies in the study area are further subdivided into
four types of sedimentary micro-scale facies, as detailed in Table 3.
The crenulation degree progressively increases from Class I to Class
III, with Class IV channel sands exhibiting the highest degree
of crenulation among all types. The logging curve characteristics
corresponding to each sedimentary micro-scale facies type are
illustrated in Figure 3.

For class I channel sand sedimentary micro-
scale facies (Figure 3a, Incised Zone), the Rmn-GS curve typically
exhibits high or extremely high amplitude characteristics, with
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FIGURE 3
Sedimentary micro-scale facies log curve characteristics. (a) Type I (Incised Zone), (b) Type II (Channel Sand), (c) Type III (Inter-channel Sand), (d) Type
IV (Abandoned Channel).

moderate to thick layers. The micro-electrode and micro-potential
curves display a characteristic thick box shape, marked by a sharp
increase at the base and a gradual-to-sharp transition at the top.
The amplitude difference between extremely high and high values
is significant, and the curve morphology is generally smooth. The
effective thickness is greater than or equal to 4.0 m, while the ratio
of effective thickness to formation thickness ranges from 0.8 to
1.0.

For class II channel sand sedimentary micro-
scale facies (Figure 3b, Channel Sand), the Rmn-GS curve also
demonstrates high or extremely high amplitude characteristics,
with moderate layer thicknesses. The micro-electrode and micro-
potential curves show a typical bell-shaped or thick box-shaped
form, featuring a sharp increase at the base and a gradual-to-
sharp transition at the top. The amplitude difference between

extremely high and high values remains significant, and the
curve morphology transitions from smooth to slightly dentate.
The effective thickness ranges from 3.0 to 4.5 m, with the
effective thickness-to-formation thickness ratio between 0.7 and
0.9.

For class III channel sand sedimentary micro-
scale facies (Figure 3c, Inter-channel Sand), the Rmn-GS
curve continues to exhibit high or extremely high amplitude
characteristics, but with fine to medium layers. The micro-electrode
and micro-potential curves display a bell-shaped, thick box-shaped,
or thin box-shaped form, characterized by a sharp increase at the
base and a gradual-to-sharp transition at the top. The amplitude
difference between extremely high and high values remains
significant, and the curve morphology ranges from smooth to
dentate. The effective thickness falls between 1.5 and 3.5 m, with
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TABLE 4 Test set data condition.

Stat.

Param.mets

eth fth Eth/fth Rmn-GS

Count 137 137 137 137

Std 3.31 5.65 0.61 0.69

First quartile (25%) 2.30 4.90 0.41 0.31

Median (50%) 3.3 5.60 0.64 0.46

Third quartile (75%) 4.20 6.50 0.77 0.63

Min 0.80 1.50 0.19 0.13

Max 6.50 9.20 1.00 5.37

the effective thickness-to-formation thickness ratio ranging from
0.4 to 0.7.

For class IV channel sand sedimentary micro-
scale facies (Figure 3d, Abandoned Channel), the Rmn-GS
curve consistently exhibits high or extremely high amplitude
characteristics, with fine layers. The micro-electrode and micro-
potential curves are bell-shaped or thin box-shaped, featuring a
sharp increase at the base and a gradual-to-sharp transition at the
top. The amplitude difference between extremely high and high
values is significant, and the curve morphology ranges from smooth
to dentate. The effective thickness is less than or equal to 2.0 m,
and the effective thickness-to-formation thickness ratio ranges from
0.2 to 0.55.

2.3 Dataset and preprocessing

According to the subdivision standards for channel sand
sedimentary micro-scale facies, 15 tightly spaced core wells and
51 main wells within the study area are selected as research
subjects to construct a logging dataset. This dataset comprises
parameters such as effective thickness (eth), the ratio of effective
thickness to formation thickness (eth/f th), the root mean
square of micro-potential variance (Rmn-GS), and channel sand
facies characteristics. The dataset is divided into a training set
accounting for 80%, and a test set accounting for the remaining
20%. Detailed information about the test set is provided in
Table 4.

Figure 4 illustrates the distribution of actual channel sand facies
samples in the test set. In the figure, I represents incised zone (Class
I), II represents channel sand (Class II), III represents inter-channel
sand (Class III), and IV represents abadoned channel (Class IV).
The test set comprises 25 samples of incised zone, 28 samples of
channel sand, 55 samples of inter-channel sand, and 29 samples of
abadoned channel.

The Maximum Information Coefficient (MIC) is employed
to evaluate the linear relationships between sedimentary micro-
scale facies and their associated logging parameters (Cao et al.,
2021). As illustrated in Figure 5, the correlation coefficients between

FIGURE 4
Percentage composition of sedimentary micro-scale facies in
the test set.

FIGURE 5
Relationships between classes of channel sand sedimentary
micro-scale facies and logging parameters, quantified using the
Maximum Information Coefficient (MIC).

channel sand sedimentary micro-scale facies and the parameters
effective thickness (eth), formation thickness ( f th), root mean
square of micro-potential variance (Rmn-GS), and the ratio of
effective thickness to formation thickness (eth/f th) are 0.38, 0.24,
0.49, and 0.35, respectively. These relatively weak relationships,
coupled with the inherent heterogeneity of reservoir structures,
present significant challenges for accurately predicting channel sand
sedimentary micro-scale facies.

3 Methods

3.1 Model design

This section proposes the Feature Attention and Spatio-
Temporal Network (FASTN). The model combines the feature
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FIGURE 6
The architecture of the sedimentary micro-scale facies intelligent identification model FASTN. The model takes several characteristic parameters as
input and outputs the probabilities of lithofacies categories.

attention mechanism with convolutional neural network and long
short term memory recurrent neural network (LSTM) to realize
intelligent recognition of channel sand sedimentary micro-scale
facies. The network architecture is illustrated in Figure 6.

The FASTN model utilizes three feature parameters as input
data: effective thickness, the ratio of effective thickness to formation
thickness (eth/f th), and Rmn-GS. The model is composed of three
main modules: the Feature Attention (FAtt) module, the Spatial
Features (SF) module, and the Temporal Features (TF) module.
Its primary focus is the extraction of key logging features for
sedimentary micro-scale facies classification.

Firstly, the FAtt module calculates and assigns similarity weights
between the target and the input logging parameters, enabling the
model to emphasize logging data that is more relevant to the target.
By weighting the input data, this module not only enhances focus
on critical features but also reduces training time and improves
model accuracy. Secondly, the SFmodule employsmultiple localized
and sliding filters to capture multi-scale spatial features across
different logging parameters. Subsequently, the TF module, based
on the LSTM network, integrates current and neighboring temporal
information to extract essential temporal features. Finally, the
fully connected layer processes the extracted features to output
the probabilities of lithofacies categories, enabling the intelligent
classification of sedimentary micro-scale facies.

To address the challenges in the subdivision of sedimentary
micro-scale facies, the FASTN model incorporates several key
innovations:

1. Feature AttentionMechanism: By weighting the input features,
the model focuses on the most relevant geological features for
the recognition of sedimentary micro-scale facies, improving
classification accuracy and reducing training time while
minimizing noise interference.

2. Joint Extraction of Spatial and Temporal Features: The
Spatial Features (SF) module captures spatial variations
using multi-scale filters, enhancing the modelâ€™s ability to
recognize spatial differences in strata, while the Temporal
Features (TF) module, based on LSTM, handles time-
dependent relationships and improves classification precision
by capturing temporal changes in the strata.

3. Multi-Level Feature Fusion: FASTN integrates feature
attention, spatial, and temporal features to extract key
information from multiple perspectives, addressing the
limitations of traditional methods in handling complex
geological features.

These innovations enable FASTN to effectively perform
sedimentary micro-scale facies recognition, solving the high-
dimensional complexity in sedimentary micro-scale facies
subdivision and providing a more accurate solution for sedimentary
micro-scale facies identification.

3.2 Feature attention module

Directly using raw data as input for neural networks treats
all parameters as equally important due to the lack of feature
selection or preprocessing, which disregards the varying significance
of different parameters to the identification target. This approach
may increase the storage requirements for high-dimensional data,
reduce computational efficiency, and make it difficult to effectively
extract nonlinear and complex key features, potentially impacting
the identification accuracy. Inspired by the human brainâ€™s signal
processing mechanism (Cowan, 2001), the attention mechanism
addresses this issue by dynamically adjusting the weighting of
information. It measures the similarity between the identification
target and the input data, assigning greater weights to parameters
with higher relevance. This enables more accurate predictions,
reduces storage space requirements, and optimizes computational
efficiency.

To tackle the limitation that CNN does not explicitly assign
feature importance, this study integrates an attention mechanism
with CNN to construct a feature attention module. While CNN
can automatically learn spatial and hierarchical patterns through
convolutional filters, it does not inherently distinguish the relative
importance of different input features at a global level.The proposed
module, as illustrated in Figure 7, explicitly assigns adaptive weights
to input parameters based on their correlation with the target
representation, ensuring that more relevant logging data receives
higher emphasis.
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FIGURE 7
Network architecture of the feature attention module. ⊗ represents
the Hadamard product, which performs element-wise multiplication
between the generated feature weights and the input parameters.

1. CNN Layer: The CNN layer computes the similarity weights
Cw(xm,Y) between each input logging parameter xm =
ethm, (eth/fth)m, (Rmn−GS)m and the identification target
Y, as shown in Equation 2.

Cw (xm,Y) = tanh(wa1x
m +wa2Y+ b) (2)

In this equation, wa1 and wa2 represent the weights of the CNN
layer, while b denotes the bias value.Thehyperbolic tangent function
tanh (⋅) is used for activation. These similarity weights are then
applied to the input parameters to generate the weighted data ̃xm =
Cw(xm,Y)xm.

2. Multi-Layer Perceptron Layer: Using ̃xm as the input data
for the multi-layer perceptron (MLP) layer, along with
feedback information from the CNN layers Dt−1, the feature
attention weights emt for the logging parameters toward the
representation target are calculated as shown in Equation 3.

emt = v
m
t tanh(Dt−1 + u

m
t ̃x

m
t + b

m
t ) (3)

Here, vmt , u
m
t , and b

m
t represent the trained weights and biases of

the perceptron layer.

3. SoftmaxLayer:The feature attentionweights emt are normalized
through the softmax layer to obtain the normalized feature
attention weights Fmt , as described in Equation 4.

Fmt = so ftmax(emt ) (4)

4. Weighted Logging Data: Using the normalized feature
attention weights, the input logging data xmt is either enhanced

or attenuated (Fmt x
m
t ), depending on its linear correlation to

the target, to generate the key logging features ̃xt as input for
the SF module, as defined in Equation 5.

̃xt = (F
1
t x

1
t ,F

2
t x

2
t ,…,F

m
t x

m
t ) (5)

The main goal of the Feature Attention Module is to
dynamically adjust the weights of input features, enabling the
model to focus on the most relevant features and thus improving
classification accuracy. In the task of sedimentary micro-scale
facies classification, the input data contains various types of
features (such as thickness, Rmn-GS, etc.), and these features
have different levels of importance across different micro-scale
facies. Therefore, the model needs a mechanism to identify and
emphasize those features that are most critical to the classification
outcome.

Specifically, the Feature Attention Module calculates an
“attention score” for each feature and assigns a weight to it,
allowing the model to focus more on features with higher
influence during training. During classification, some features
may have a decisive impact on the result, while others may
provide only supplementary information. Through the attention
mechanism, the model can effectively distinguish the relative
importance of these features, thereby achieving more precise
classification.

3.3 Spatial feature extraction

Convolutional neural networks (CNNs) possess strong
nonlinear fitting capabilities and the inherent advantage of weight
sharing, which are instrumental in extracting spatial information
from the nonlinear latent relationships between logging data
and sedimentary micro-scale facies. These properties enhance
model accuracy while significantly reducing computational costs.
Building on these strengths, a spatial features (SF) module has
been developed to capture the multi-scale spatial features of
various logging parameters. This module is composed of three
CNN layers: the first layer has 16 1× 1 convolutional kernels,
the second layer has 8 1× 1 convolutional kernels, and the third
layer has 16 3× 3 convolutional kernels. Each layerâ€™s structure
incorporates operations such as input, convolution, activation, and
pooling.

Key logging features serve as the input data for the SF
module. Through processing, the module extracts spatial feature
information, as described in Equation 6. The spatial information
output from the first CNN layer is fed back to the FAtt module,
while the output from the third CNN layer serves as the input for
the Temporal Features (TF) module.

Di
N,t = R(w

i
N,t ⊗ ( ̃x

t) + biN,t) (6)

where Di
N,t represents the output value of the N-th neuron

(N ∈ [1,12]) in the i-th network layer at time t. Here, i = 1,2,3 refers
to the specific network layer. The function R(⋅) denotes the ReLU
activation function, while w and b correspond to the weights and
biases of the CNN network, respectively. The symbol ⊗ signifies the
convolution operation.
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The Spatial Feature Extraction module uses Convolutional
Neural Networks (CNN) to extract spatial features from the input
data. Geological data often exhibits spatial structural characteristics,
especially the sedimentary layers and geological features, which
display distinct spatial distribution patterns. Therefore, effectively
extracting spatial features from the data is crucial for improving the
model’s classification accuracy.

CNN has significant advantages in extracting spatial features. It
can automatically identify local spatial patterns in the input data and
abstract high-level spatial features through convolution operations.
In this model, CNN is responsible for handling spatial information
in the geological data, such as the distribution of sedimentary layers,
helping the model recognize spatial differences between different
micro-scale facies. Specifically, the spatial feature extractionmodule
uses multiple convolution and pooling operations to extract spatial
features from the raw input data. Through iterative spatial feature
learning, CNN is able to capture both local and global spatial
patterns in the input data and pass these features to subsequent
modules for deeper analysis and classification. In the case of severe
horizontal and vertical heterogeneity in the river channel sand
bodies in the study area, CNN can significantly enhance the model’s
classification capability.

3.4 Temporal feature extraction

Logging data is typically acquired as a time-ordered sequence,
where the information for each logging attribute at a given depth
is not only influenced by subsequent depths but also closely related
to preceding depths. To capture the temporal features of logging
data within a certain depth range, a Temporal Features (TF)
module has been constructed, consisting of four stacked LSTM
layers. The network structure of the first layer in this module
is shown in Figure 8. In the figure, xt represents the input data at
time step t, ht represents the hidden state at time step t, and Ct
represents the cell state at time step t. The forget gate ft determines
the information to be forgotten from the cell state at time step t,
while the input gate it determines the new information to be stored
in the cell state at time step t. The candidate cell state C̃t is the
new information generated at time step t, and the output gate ot
determines the information to be output as the hidden state at time
step t. The sigmoid activation function σ is used to control the flow
of information, ⊗ denotes the Hadamard product (element-wise
multiplication) and ⊕ denotes element-wise addition, which is used
to update the cell stateCt by combining the outputs of the forget gate
and the input gate.

The spatial feature information output from the SFmodule is fed
into the Temporal Features (TF) module. The process of extracting
temporal features within a certain time range is described as
follows:

1. Forget Gate: The input information x1t = [D
3
1,t,D

3
2,t,…,D

3
N,t]

at time t and the output information h1t−1 =
[h11,t−1,h

1
2,t−1,…,h

1
N,t−1] from the previous moment are

merged. The forget gate performs key feature extraction
by calculating the feature extraction probability f1t using
Equation 7:

f1t = 1/(1+ exp[−(w
1
fx

1
t + u

1
fh

1
t−1 + b

1
f)]) (7)

where w1
f and u

1
f are the weights of the forget gate, and b

1
f is the bias.

The superscripts indicate the LSTM layer number, ranging from 1 to
4.

2. Input Gate: The input gate extracts key parameter features
from the current input data and the historical memory
information from the previous moment. The feature
extraction probability i1t of the input gate is calculated using
Equation 8:

i1t =
1

1+ exp[−(w1
i x

1
t + u

1
i h

1
t−1 + b

1
i )]

(8)

3. Temporary Feature Memory Cell: A temporary feature
memory cell, C̃1

t , is generated through the Tanh
function, which integrates new logging parameter
information into the memory cell, as expressed in
Equation 9:

C̃1
t =

1− exp[−2(w1
cx

1
t + u

1
ch

1
t + b

1
c)]

1+ exp[−2(w1
cx

1
t + u

1
ch

1
t + b

1
c)]

(9)

Temporary feature memory cell Ĉ1
t−1, which is highly related

to the target of sedimentary micro-scale facies identification, is
determined by multiplying feature probability f1t with the memory
information of the previousmomentC1

t−1, represented as Ĉ
1
t−1 = f1t ×

C1
t−1. The key feature memory information for the current moment,

C1
t−1, is established by weighting the temporary feature memories

from the previous and current moments, represented as C1
t = Ĉ

1
t−1 +

i1t × C̃
1
t .

4. Output Gate: The output gate processes the input
data and historical memory information to calculate
the feature extraction probability of the output gate,
O1
t , using Equation 10:

Õ1
t =

1
1+ exp[−(w1

0xt + u
1
0h

1
t−1 + b

1
0)]

(10)

where w1
0 and u10 represent the weights, and b10 is the

bias of the output gate. The key parameter features for
lithofacies classification are determined by weighting the current
momentâ€™s key feature memory information C1

t with the
output gateâ€™s feature extraction probability, as shown in
Equation 11:

h1t = O
1
t ×

1− exp(−2C1
t )

1+ exp(−2C1
t )

(11)

5. Classification: The output information from the TF module
is input into the fully connected network and processed
using the Softmax activation function to obtain the
probabilities of sedimentary micro-scale facies categories, as
expressed in Equation 12:

Pk =
exp(wkh

3
t + bk)

∑4
k=1

exp(wkh
3
t + bk)

(12)
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FIGURE 8
The architecture of LSTM units in temporal features module.

where Pk denotes the probability of the k-th lithofacies category,
while wk and bk represent the trained weights and biases of the k-th
neuron in the fully connected network layer.

The Temporal Feature Extractionmodule uses Long Short-Term
Memory (LSTM) networks to capture the temporal dependencies
in the data. In sedimentary micro-scale facies classification tasks,
especially with depth-related information, geological data often
exhibits clear temporal dependencies â€” that is, as the depth
increases, the features of the sedimentary micro-scale facies change.
This depth dependency indicates that the differences between
micro-scale facies are closely related to depth. Therefore, effectively
capturing and modeling the temporal features in the data is crucial
for improving the model’s classification accuracy.

LSTM has unique advantages in handling temporal data.
It retains long-term dependency information through memory
cells, making it particularly suitable for capturing long-term
dependencies in depth changes or time series. In this model,
LSTM handles the temporal dependencies in geological data,
linking the features of each depth layer with those of adjacent
layers. By using LSTM, the model can better understand the
relationships between different depth layers, accurately handling
the complex feature differences that arise with depth changes,
and correctly classifying micro-scale facies with depth-dependent
characteristics.

3.5 Evaluation metrics

To intuitively evaluate the sedimentary micro-scale facies
identification performance of the model, this paper employs
a confusion matrix to illustrate the prediction accuracy across
different categories, as shown in Table 5. The confusion matrix
compares the predicted categories with the actual categories, with
each cell representing the number of instances where the model
classified samples into specific categories.

Accuracy is a commonly used evaluation metric. It is defined
as the ratio of correctly predicted samples to the total number of
samples, as shown in Equation 13.

Accuracy = TP+TN
TP+TN+ FP+ FN

(13)

TABLE 5 Confusion matrix for evaluating model performance.

Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

F1-score is another common evaluation metric for sedimentary
micro-scale facies classification, as defined in Equation 14.

F1− score = 2× Precision×Recall
Precision+Recall

(14)

where Precision = TP
TP+FP

denotes precision, which measures the
accuracy of identifying the kth sedimentary micro-scale facies class,
and Recall = TP

TP+FN
represents recall, which reflects the probability

that samples belonging to the kth sedimentary micro-scale facies
class are correctly identified. A higher recall indicates fewer
misclassifications.

Precision and recall are often conflicting metrics, as improving
one typically leads to a reduction in the other. F1-score balances
precision and recall, providing a single metric that considers both.
Consequently, this paper adopts both accuracy and F1-score as the
evaluation metric for model construction.

4 Case study

4.1 Operating environment

In this study, all model training and testing code were executed
on the Windows platform using the TensorFlow and Keras deep
learning frameworks. To evaluate the performance of the FASTN
model proposed in this paper, five additional models, Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU), Support
VectorMachine (SVM), and Backpropagation Neural Network (BP)
were developed for comparison. The input data and experimental
settings for all models were kept consistent: We performed five-fold
cross-validation for all models. In this approach, the entire dataset
is divided into five equal-sized subsets. Each subset is used as a test

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1542579
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhao et al. 10.3389/feart.2025.1542579

set once, while the remaining four subsets are combined to form the
training set. This process is repeated five times, ensuring that each
subset is used as a test set exactly once. Consequently, in each fold,
the training set size is 80% of the entire dataset, and the test set size
is 20%. To prevent overfitting, Dropout techniques and the Adam
optimizer were employed.

Network parameters for FASTN were iteratively tuned,
achieving optimal performancewith the following settings: an initial
learning rate of 1e− 3, Adam used as the optimizer, dropout set
to 0.15, 100 iterations, and a batch size of 4. The loss function
is set to cross-entropy. Due to the computational challenges
associated with training the model, the hyperparameters were
carefully selected to balance training efficiency and predictive
accuracy. By employing five-fold cross-validation, the randomness
associated with data partitioning is mitigated. This approach
eliminates the need for a separate validation set, fully utilizes the
dataset, and ensures the comprehensiveness and stability of model
evaluation (Muscarella et al., 2014).

4.2 Comparative experiments and analysis

This experiment was conducted using the logging dataset
constructed from 15 tightly spaced core wells and 51 main
wells in the study area for training and testing. We conduct
comparative experiments to evaluate the performance of the
proposed FASTN model against several traditional and advanced
neural network models, including LSTM, GRU, SVM, and BP,
as shown in Table 6.The aim is to demonstrate the superiority of the
FASTNmodel in terms of accuracy and efficiency for the subdivision
of channel sand sedimentary micro-scale facies. The architectures
and configurations of these baseline models are detailed below. The
hyperparameters of these baseline models were carefully selected
and manually tuned based on preliminary experiments to ensure
that their performance was not underestimated. This approach
ensures a fair comparison between different models.

Long Short-Term Memory (LSTM): We employ a three-layer
unidirectional LSTM model. The input layer receives standardized
data. The core of the model consists of three stacked LSTM
layers, each with 16 hidden units, incorporating a 0.15 dropout
rate to mitigate overfitting. The final LSTM output is passed
through a fully connected layer, mapping to four classes, followed
by a Softmax activation function to obtain class probabilities.
The model is optimized using the Adam optimizer with a
learning rate of 1e− 3, and the loss function is set to cross-
entropy. Training is conducted with a batch size of 4 for 100
epochs.

Gated Recurrent Unit (GRU): We employ a three-layer GRU
model. The input layer receives standardized well-logging data,
while the core network comprises three GRU layers, each with
16 hidden units and a 0.15 dropout rate to mitigate overfitting.
The final GRU output is passed through a fully connected layer,
mapping to four classes, followed by a Softmax activation function
for probability distribution.Themodel is optimized using the Adam
optimizer with a learning rate of 1e− 3, and cross-entropy is used
as the loss function. Training is conducted with a batch size of 4 for
100 epochs.

TABLE 6 Comparison of model performance. The optimal results are
shown in bold.

Model Class I Class
II

Class
III

Class
IV

Overall

LSTM 84.89% 81.67% 89.10% 100% 88.33%

GRU 84.17% 61.25% 89.06% 100% 84.71%

SVM 77.67% 22.67% 76.28% 89.14% 65.05%

BP 91.67% 56.02% 91.25% 100% 82.46%

FASTN 100% 82.14% 96.36% 100% 94.90%

Support Vector Machine (SVM): The Support Vector Machine
(SVM) we use applies the Radial Basis Function (RBF) kernel to
classify the input standardized logging data.The input layer receives
the standardized feature data. By choosing theRBFkernel, themodel
is able to capture complex nonlinear relationships in the data. To
prevent overfitting, the model uses regularization parameters C = 1
and gamma = ‘scale’, where C controls the tolerance for errors, and
gamma controls the complexity of the model.

Backpropagation Neural Network (BP): The BP neural network
we use consists of three fully connected layers. The input layer
receives standardized well log data. The network has three hidden
layers, each with 16 neurons, and uses the ReLU activation
function to enhance nonlinear representation capability. To prevent
overfitting, a dropout rate of 0.15 is applied between the hidden
layers. In the output layer, the data passes through a fully connected
layer and produces a probability distribution over four categories,
with a Softmax activation function for normalization. The network
is optimized using the Adam optimizer with a learning rate of
1e− 3, and the loss function is cross-entropy loss. The training
process uses a batch size of 4 for iterations, with a total of 100
epochs.

The recognition accuracy of SVM for Class II (Channel Sand)
is only 22.67%. This is due to the inherent limitations of SVM
when dealing with non-linear and complex data. Particularly when
faced with high-dimensional and noisy data, traditional SVM
models are heavily affected. SVM relies on the internal structure
of the sample data, and its parameter optimization is relatively
complex. For geological data that exhibits significant complexity and
heterogeneity, SVM fails to effectively capture the feature differences,
leading to poor classification performance.

The performance of BP (Backpropagation Neural Network) in
Class II is significantly weaker than that of the other three classes,
with an accuracy of only 56.02%. BP is highly susceptible to initial
weights, sensitive to data noise, and prone to falling into local
optima. In Class II recognition, because of its relatively simple data
processing approach, BP likely fails to effectively extract the complex
relationships between the data.

GRU (Gated Recurrent Unit) achieves an accuracy of only
61.25% for Class II (Channel Sand). Although GRU can capture
the depth-dependent changes in sedimentary micro-scale facies, it
still struggles to correctly classify some categories with ambiguous
boundaries. The relatively simple structure of GRU limits its ability
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to capture temporal and spatial features effectively, resulting in an
inability to distinguish differences between similar features.

LSTM (Long Short-Term Memory) achieves an accuracy of
81.67% for Class II, which is an improvement over GRU.The model
complexity of LSTM is higher than that of GRU, and it is more
reliant on data, requiring effective selection and weighting of the
data.

By introducing a feature attention mechanism, FASTN
dynamically adjusts the weights of input features, allowing the
model to focus more on the most relevant geological features for the
task. This mechanism significantly improves recognition accuracy,
particularly in complex sedimentarymicro-scale facies classification
tasks. For categories with distinct geological features, such as Class
I (Incised Zone) and Class IV (Abandoned Channel), the FASTN
model improves classification accuracy by enhancing the weights of
the relevant features, achieving a perfect accuracy of 100% for these
two categories. Additionally, FASTN also achieves an accuracy of
82.14% for Class II and 96.36% for Class III, with an overall accuracy
of 94.9%, which is the best model among all.

FASTN combines a spatial module and a temporal module,
integrating Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks to simultaneously extract spatial
and temporal features. The CNN is primarily used to extract
spatial information from logging data, while LSTM is adept at
capturing temporal dependencies. By using LSTM to capture
temporal information and combining it with CNN for spatial feature
processing, especially in cases of significant geological changes and
deep information impacts, FASTN can more accurately delineate
micro-scale facies, compensating for the inability of traditional
models to handle the complex relationship between depth and
temporal sequences effectively.

4.3 Ablation study

To further verify the impact of eachmodule on the performance
of channel sand sedimentary micro-scale facies identification, this
study conducted ablation experiments. The ablation experiments
involved gradually removing certain key components of the model
to assess each module’s contribution to the overall performance of
the model. This approach allows for a clear understanding of the
role that each module plays in enhancing model performance and
provides a basis for future model optimization and improvement.
In the ablation experiments, the model’s performance under
different module configurations was tested, demonstrating the
effectiveness of each module and its contribution to improving
model accuracy. Table 7 presents the ablation results for each
sedimentary micro-scale facies class, along with the overall
identification performance of each model.

Figure 9 shows the parameter curves of the test set and
the distribution of channel sand sedimentary micro-scale facies
identification results across different models in the ablation study
compared to the actual lithofacies.

From Figure 9, it is evident that the CNN model exhibits
noticeable underfitting in lithofacies classification. For instance,
at sample points 11, 20, 25, 31, 78, 96, 124, 125, and 135, the
model incorrectly classifies the third type of channel facies as the
fourth type. At sample point 95, the fourth type of channel facies

is misclassified as the third type; at sample point 97, the first type
is misclassified as the second type; and at sample points 40, 87,
and 106, the third type is misjudged as the second type. Significant
misclassification issues are observed between the third and fourth
types of channel sand sedimentary micro-scale facies. According to
the classification standards for the third and fourth types of channel
sands, this indicates that the CNN model struggles with feature
extraction for the parameter Rmn-GS.

The CNN-LSTM model, with its Temporal Features (TF)
module, improves the extraction of temporal features, leading to
a notable reduction in misclassification of channel sand facies
samples. For example, at sample points 20, 25, 31, 96, 101, 124, and
135, the third type of channel sand sedimentary micro-scale facies is
mistakenly identified as the fourth type. At points 55, 108, 129, and
134, the second type is misjudged as the first type. The TF module
enhances the ability of the model to capture temporal features by
leveraging the cumulative effect of logging parameters over time,
therebymitigating boundary ambiguity issues introduced bymanual
classification standards.

The F-CNN model demonstrates enhanced discriminative
capability for the third and fourth types of channel sand sedimentary
micro-scale facies. Misclassifications are limited to a few sample
points, such as where the third type is misclassified as the first
type (sample point 9), the fourth type (sample point 12), and
where the second type (sample point 13) is misclassified as the
third type. By applying attention to both spatial and temporal
features, the F-CNN model better differentiates between similar
classes, significantly reducing misclassifications between the third
and fourth types of channel sand sedimentary microfacies. This
highlights the crucial role of feature attention in improving
classification performance, especially in cases where sedimentary
facies exhibit subtle differences that are challenging for traditional
models to distinguish.The inclusion of the attentionmodule enables
the model to assign appropriate weights based on the relevance
of input parameters to the target, allowing it to focus on critical
logging parameters like Rmn-GS for more accurate delineation of
sedimentary microfacies characteristics.

The FASTN model exhibits the fewest misclassified samples
among the tested models. Misclassifications occur at sample
points 13, 64, 67, and 91, where the second type of channel
facies is misidentified as the first type, and at sample point
101, where the third type is also misclassified as the first type.
Additionally, one instance is observed where the third type of
channel sand sedimentary micro-scale facies (sample point 68)
is misclassified as the second type. Compared to the F-CNN
model, the FASTN model, which combines the feature attention
mechanism with both CNN and LSTM modules, shows significant
improvements in temporal feature extraction and precision in
subdividing the channel sand sedimentary micro-scale facies. The
enhanced spatial and temporal feature extraction, along with a
focus on the most important features, enables the FASTN model to
achieve superior classification accuracy. The misclassification rates
are notably reduced across all sample points, and the boundary
between the third and fourth types of microfacies is more clearly
defined. This demonstrates the effectiveness of the FASTN model
in addressing the challenges faced by previous models and offering
a more robust and accurate solution for sedimentary microfacies
classification.
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TABLE 7 Results of ablation study. In the table, “✓” denotes the model contains this module. The optimal results are shown in bold.

Method FAtt SF TF Class I Class II Class III Class IV Overall

CNN ✓ 96% 96.40% 76.36% 89.65% 86.90%

CNN-LSTM ✓ ✓ 100% 85.71% 87.27% 93.10% 90.50%

F-CNN ✓ ✓ 88% 92.85% 92.72% 96.55% 92.70%

FASTN ✓ ✓ ✓ 100% 82.14% 96.26% 100% 94.90%

FIGURE 9
Test set logging curves and sedimentary micro-scale facies identification results of different models.

Figure 10 shows the confusion matrices of different models,
which presents the channel sand sedimentary micro-scale facies
identification results for different models using three input
parameters. The horizontal and vertical coordinates 1-4 represent
class I-IV of channel sand sedimentary micro-scale facies.The CNN
model achieves an overall accuracy of 86.9%. It correctly identifies 24
instances of the first type of channel sand sedimentary micro-scale
facies, with 1 misclassified as the second type; correctly classifies
27 instances of the second type, with 1 misclassified as the third

type; accurately recognizes 42 instances of the third type, but 3 and
10 are misclassified as the second and fourth types, respectively;
and correctly identifies 26 instances of the fourth type, with 2 and
1 misclassified as the second and third types, respectively. Notably,
the CNN model demonstrates poor identification performance
for the third type of channel facies, with an F1-score of only
84.9%.

Compared to the CNN model, the CNN-LSTM model
demonstrates an improvement of 3.6% in identification accuracy,
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FIGURE 10
Results of channel sand sedimentary micro-scale facies identification of different models. (a) CNN, (b) CNN-LSTM, (c) F-CNN, (d) FASTN.

correctly identifying 25, 24, 48, and 27 instances of the four
channel sand sedimentary micro-scale facies, respectively. The
misclassification rate for the third and fourth types of channel
sand sedimentary micro-scale facies has significantly decreased,
with the best identification performance observed for the first
type. This highlights the advantage of the model in extracting key
spatio-temporal features.

Building on the CNN model, the incorporation of the
feature attention module for weighting input parameters allows
the F-CNN model to achieve a sedimentary micro-scale facies
identification accuracy of 92.7%, with 10 instances misclassified

into other categories. The FASTN model further improves the
overall identification accuracy to 94.9%, achieving 100% accuracy
for the first and fourth types of sedimentary micro-scale facies,
and FASTN performs well on the third type, with an F1-
score of 98.2%. Only a small number of instances (7) are
misclassified, and the model exhibits more precise boundary
delineation between the third and fourth types. This enables
accurate and intelligent identification of channel sand sedimentary
micro-scale facies, providing essential data support for further
clarifying the interconnection between injection and production
well groups.
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FIGURE 11
Results of channel sand sedimentary micro-scale facies identification across another work area.

4.4 Universality analysis

Using the same network structure and parameters, this
study tested another dataset from a different work area. The
same logging parameters were selected, with 190 sample
sets designated as the test set (20%) to achieve intelligent
identification of channel sand sedimentary micro-scale
facies.

Figure 11 presents the identification results of the proposed
method, achieving an F1-score of 94.70%. Five instances of the first
type of sedimentary micro-scale facies were misclassified as the
second type, while the boundaries between the third and fourth
types of sedimentarymicro-scale facies were clearly delineated, with
only 2 misclassifications. Additionally, the identification accuracy
for the fourth type of sedimentary micro-scale facies reached
100%. These experimental results demonstrate that the proposed
method is applicable for channel sand sedimentary micro-scale
facies identification across different work areas.

5 Conclusion

This paper proposes a deep learning-based method for
intelligent identification of channel sand sedimentary micro-
scale facies, focusing on extracting key logging parameter
features to achieve high-precision reservoir subdivision. The
main contributions are as follows:

1. The study selects eth, eth/f th, and Rmn-GS as key feature
parameters to establish a classification standard for channel
sand sedimentary micro-scale facies, providing a refined
characterization method for reservoir connectivity between
injection and production wells.

2. The proposed FASTN model incorporates an LSTM
network, effectively handling depth and temporal
relationships in logging curves. The feature attention module
dynamically assigns weights to parameters, enabling the
model to focus on more critical features, achieving an
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accuracy improvement of 8% compared to traditional
CNN models.

3. FASTN effectively handles nonlinear relationships in data,
demonstrating strong generalization capability and providing
a novel approach for intelligent sedimentary micro-scale facies
identification. Compared to traditional manual methods,
it significantly improves work efficiency and identification
accuracy, achieving a subdivision accuracy of over 94%. The
method has been applied in the Daqing Oilfield, offering
valuable guidance for reservoir development.
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