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Introduction: Karst collapse monitoring is a complex task due to data
sparsity, underground dynamics, and the demand for real-time risk assessment.
Traditional approaches often fall short in delivering timely and accurate
evaluations of collapse risks.

Methods: To address these challenges, we propose the Integrated Karst
Collapse Prediction Network (IKCPNet), a novel framework that combines
multi-source imaging, geophysical modeling, andmachine learning techniques.
IKCPNet processes seismic imaging, hydrological patterns, and environmental
factors using an advanced data encoding mechanism and a physics-informed
module to capture subsurface changes. A dynamic risk assessment strategy is
incorporated to enable real-time feedback and probabilistic mapping.

Results: Experimental evaluations on the OpenSARShip dataset demonstrate
that IKCPNet achieves an accuracy of 94.34 ± 0.02 and an IoU of 90.23 ±0.02,
outperforming the previous best model by 1.22 and 0.89 points, respectively.

Discussion: These results highlight the effectiveness of IKCPNet in improving
prediction accuracy and risk mitigation, showcasing its potential for enhancing
geological hazard monitoring through multi-source data integration.

KEYWORDS

karst collapse, multi-source image, segmentation techniques, cyber-physical systems,
risk prediction

1 Introduction

The study of multi-source image feature extraction and segmentation techniques is
critical for monitoring post-hazard consequences, including damages, spatial changes, and
environmental impacts (Yusuf et al., 2024). These techniques are particularly valuable
in areas rendered inaccessible to traditional monitoring methods after disasters, whether
natural or human-induced (Kopiika et al., 2025). By leveraging data from disparate sources
such as satellites, UAVs, and digital image correlation (DIC), multi-source imagery provides
a robust platform to assess the condition of lands, buildings, and infrastructural assets.
The integration of these data sources enables detailed evaluations of surface deformations,
structural integrity, and temporal changes, facilitating proactive disaster management and
post-event recovery planning (Wang et al., 2024). Karst collapse monitoring, as one of the
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most critical applications of such multi-source approaches, plays a
vital role in mitigating geological hazards and ensuring public safety
(Wang, 2024). Karst collapses, often caused bynatural processes such
as water erosion or human activities like mining, can lead to severe
damage to infrastructure and loss of life. Monitoring these collapses
requires precise and timely detection of surface deformations and
subsurface features. Multi-source imagery, including satellite, aerial,
and ground-based images, offers a rich dataset to capture the
complex spatial and temporal dynamics of karst areas (Kopiika et al.,
2024). The diverse nature of these data sources necessitates
advanced feature extraction and segmentation techniques to
integrate, analyze, and interpret them effectively (Hatamizadeh et al.,
2021). Accurate segmentation enables the identification of
vulnerable zones and the prediction of collapse events, supporting
proactive disaster management and risk mitigation strategies
(Xu et al., 2023).

These techniques usedmanually defined rules and deterministic
models to identify features such as sinkholes, fractures, and surface
deformations from imagery (Huang et al., 2020a). By leveraging
domain knowledge, these methods were able to achieve a certain
degree of accuracy in controlled settings (Yu et al., 2023). For
example, edge detection algorithms and morphological operations
were employed to delineate collapse features (Valanarasu et al.,
2021).These approaches were limited by their reliance on predefined
thresholds and their inability to adapt to variations in image quality,
environmental conditions, and data sources (Zhang et al., 2021).
The labor-intensive nature of rule creation and the static nature
of symbolic systems restricted their scalability and applicability in
dynamic karst environments (Kopiika and Blikharskyy, 2024).These
methods utilize supervised and unsupervised learning algorithms
to identify patterns in large datasets, enabling the automatic
classification of features relevant to karst collapse monitoring
(Jain et al., 2022). Techniques such as random forests, support
vector machines, and k-means clustering have been employed to
analyze spectral, spatial, and textural information from images
(Zhang et al., 2024). Machine learning has proven effective in
handling diverse data sources and accommodating variations in
environmental conditions (Yin et al., 2022). Its reliance on extensive
labeled datasets and sensitivity to parameter tuning often pose
challenges, particularly in regions where labeled data are scarce
or inconsistently distributed (Wu et al., 2022). Moreover, the
interpretability of thesemodels remains a concern, as understanding
the rationale behind their predictions is critical for geological
applications (Malhotra et al., 2022).

Recent advancements in deep learning have transformed
the landscape of feature extraction and segmentation for karst
monitoring (Huan et al., 2023). Convolutional neural networks
(CNNs), for instance, have demonstrated remarkable success
in automatically learning hierarchical representations of image
features, enabling highly accurate segmentation of karst collapse
regions. Pre-trained models, such as U-Net and Mask R-CNN,
have further enhanced this capability by enabling transfer
learning, where knowledge from general image processing
tasks is adapted to the specific domain of karst monitoring
(Luo et al., 2020). These models excel in integrating multi-
source imagery, capturing complex spatial patterns, and providing
detailed segmentations of collapse features (Lüddecke and

Ecker, 2021). Deep learning approaches often require substantial
computational resources and are limited by their “black-box”
nature, which hinders their acceptance in domains that prioritize
transparency and explainability. The variability and noise inherent
in multi-source imagery remain challenges for deep learning-
based methods.

Traditional karst collapse monitoring techniques primarily rely
on field surveys, geophysical imaging, and hydrological analysis
(Jha et al., 2020). While these methods provide valuable insights
into subsurface conditions, they suffer from several limitations. First,
many approaches depend on sparse observational data, limiting
their ability to detect early-stage collapse indicators (Chaitanya et al.,
2020). Second, existing methods often lack the capability to
integrate multi-source geospatial information effectively, leading
to incomplete risk assessments. Third, machine learning-based
approaches have demonstrated promise in hazard prediction but
often operate as black-boxmodels,making themdifficult to interpret
in geological contexts (Atigh et al., 2022). most current techniques
struggle with real-time adaptability, which is crucial for early
warning systems and disaster response.

Research Gap: Despite advances in remote sensing and
computational modeling, there remains a lack of an integrated
framework that can (1) fuse multi-source data from seismic,
hydrological, and environmental measurements, (2) incorporate
geophysical principles into predictive models, and (3) adapt
dynamically to real-time feedback for risk assessment. Existing
solutions either focus on empirical correlations without a physics-
based foundation or rely solely on geophysical models without
leveraging modern AI-driven feature extraction techniques. To
bridge this gap, we propose the Integrated Karst Collapse Prediction
Network (IKCPNet), a novel framework that combines multi-
modal sensing, physics-informed geomechanical modeling, and
machine learning-based segmentation. IKCPNet addresses the
aforementioned challenges by.

• Introducing a hybrid feature extraction mechanism that fuses
seismic imaging, hydrological data, and environmentalmetrics
to provide a holistic risk assessment.
• Embedding geophysical principles within the model to
improve interpretability and align predictions with real-world
geological processes.
• Implementing a Dynamic Risk Mitigation Strategy (DRMS)
that adapts predictions based on real-time environmental
changes, ensuring robust early warning capabilities.

By integrating these innovations, IKCPNet provides a
comprehensive solution for karst collapse monitoring, significantly
improving prediction accuracy, interpretability, and adaptability.
Experimental results demonstrate that our framework outperforms
state-of-the-art methods in terms of risk assessment precision and
segmentation quality.

The remainder of this paper is organized as follows:
Section 3 details the proposed methodology, including data fusion
strategies and geophysical modeling techniques. Section 4 presents
experimental results and comparative evaluations. Section 6
discusses key findings and potential limitations and
summarizes our contributions and outlines future research
directions.
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2 Related work

2.1 Multi-source image feature integration

The use of multi-source imaging in karst collapse monitoring
has gained significant traction due to its ability to capture diverse
and complementary data features (Chen et al., 2020). By combining
data from optical, thermal, LiDAR, and hyperspectral imaging,
researchers can extract detailed information about geological
structures, surface deformations, and environmental conditions.
Feature extraction techniques tailored to these imaging modalities
enable the identification of subtle changes indicative of karst
collapse risks, such as soil subsidence, vegetation stress, and water
infiltration patterns (Ouyang et al., 2020). Advanced algorithms,
such as convolutional neural networks (CNNs) and wavelet
transforms, are frequently employed to process multi-source
image data. These techniques are effective in isolating key features
while suppressing noise, enhancing the reliability of collapse risk
assessments (Gao et al., 2021). For instance, optical imaging
provides high-resolution spatial data, while thermal imaging
highlights temperature anomalies associated with underground
water flow (Lin et al., 2021). LiDAR data offers precise topographic
measurements, and hyperspectral imaging captures material
composition changes. Integrating these features into a unified
framework enhances the detection and prediction of karst collapses,
making it a cornerstone of geohazard monitoring systems.

2.2 Automated image segmentation
methods

Accurate segmentation of multi-source images is critical
for delineating regions affected by karst collapse and assessing
their spatial extent (Liu et al., 2021). Traditional segmentation
methods, such as thresholding and edge detection, are increasingly
being replaced by more sophisticated machine learning and deep
learning approaches (Wang et al., 2021). Techniques like U-Net,
Mask R-CNN, and Fully Convolutional Networks (FCNs) enable
the automated and precise segmentation of complex geological
features, even in heterogeneous terrains (Jin et al., 2024). Recent
advances emphasize the integration of contextual information
through multi-scale and multi-modal approaches. For example,
LiDAR data can provide a baseline topographic map, while optical
and hyperspectral images contribute spectral and textural details
for refining segmentation boundaries (Jin et al., 2023b). These
techniques allow for the detection of collapse-prone areas by
identifying subsurface cavities, cracks, and shifts in vegetation cover.
Segmentation models trained on annotated datasets can generalize
to new regions, improving their applicability in monitoring
widespread karst landscapes (Jin et al., 2023a). The development of
automated, high-accuracy segmentation methods is instrumental in
enabling timely and effective karst collapse riskmitigation strategies.

2.3 Applications in early warning systems

Multi-source image feature extraction and segmentation
play a pivotal role in the development of early warning systems

for karst collapse (Isensee et al., 2020). By integrating imaging
data with geospatial and temporal analyses, these systems can
detect early indicators of instability, such as gradual surface
deformation or changes in hydrological conditions. Automated
pipelines for processing and analyzing multi-source data ensure
that potential collapse events are identified with minimal delay,
allowing for proactive risk management. Real-time monitoring
systems utilize cloud-based platforms to aggregate and analyze data
from diverse imaging sources, delivering alerts to stakeholders
through user-friendly interfaces (Cao et al., 2021). Feature
extraction and segmentation algorithms are continuously updated
with new data, improving the predictive accuracy of these
systems over time. Furthermore, the integration of artificial
intelligence (AI) techniques, such as reinforcement learning,
enhances the adaptability of early warning systems to dynamic
environmental conditions. These applications underscore the
critical importance of advanced image processing techniques in
safeguarding communities and infrastructure from the impacts of
karst collapses (Minaee et al., 2020).

3 Methods

3.1 Background

Karst collapse monitoring is a critical area of study within
geoscience and environmental engineering, focusing on the
prediction, detection, and analysis of sinkhole formations and
subsurface ground instability in karst regions. Karst terrains,
characterized by soluble rock formations such as limestone,
dolomite, and gypsum, are particularly susceptible to subsurface
erosion and collapse, posing risks to infrastructure, ecosystems, and
human safety. This subsection provides a high-level introduction
to the methodologies and innovations underpinning our approach
to karst collapse monitoring. The proposed framework combines
multi-modal sensing, advanced machine learning models, and
geomechanical simulations to achieve a robust and scalable
monitoring system.

The problem of karst collapse monitoring can be framed as the
detection and prediction of subsurface failures using a combination
of geophysical data and predictive models. Let Ω ⊂ ℝ3 represent
the karst domain, where each point x = (x,y,z) ∈Ω corresponds
to a spatial location in three-dimensional space. The key variables
in this framework include the ground displacement u(x, t), which
represents the ground displacement at location x and time t, and
the porosity or void ratio ϕ(x, t), which describes the distribution
of voids within the subsurface.

The dynamics of karst collapse processes are influenced by
the coupling of mechanical deformation and fluid flow. These
interactions can be described by a set of equations:

The mass conservation equation, which accounts for changes in
porosity and fluid movement, is given by Equation 1:

∂ϕ
∂t
+∇ ⋅ (ϕv f) = qs, (1)

where v f is the fluid velocity and qs represents sources or sinks such
as recharge or pumping.
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The momentum conservation equation, which models
mechanical deformation under linear elasticity, is expressed as:

∇ ⋅ σ + ρg = 0, (2)

where σ is the stress tensor, ρ is the material density, and g is the
gravitational force acting on the material.

Darcy’s law, which governs fluid flow through porous media,
is given by Equation 3:

v f = −
κ
μ
∇P, (3)

where κ represents the permeability, μ is the fluid viscosity, and P is
the pore pressure.

Sinkhole formation is driven by the interaction of geological,
hydrological, and mechanical factors. The indicators of collapse
can be formalized as a function of several key variables, including
porosity, ground displacement, hydrostatic pressure, permeability,
maximum stress, and the elastic modulus of the subsurface material.
The collapse indicator function is represented as Equation 4:

C (x, t) = f (ϕ,u,P,κ,σmax,E) , (4)

where σmax is the maximum stress within the material and E is the
elastic modulus of the subsurface material.

The critical collapse threshold Ccritical is defined such that if
the collapse indicator exceeds this value, a potential collapse is
triggered (Equation 5):

C (x, t) ≥ Ccritical ⇒ potentialcollapse. (5)

The monitoring framework for karst collapse integrates a
variety of data sources, including geophysical measurements,
hydrological data, surface deformation, and environmental
conditions. Geophysical data, such as seismic imaging, electrical
resistivity tomography (ERT), and ground-penetrating radar (GPR),
help map subsurface voids and structures. Hydrological data,
including groundwater levels and flow rates from piezometers,
provide insights into the water dynamics within the subsurface.
Surface deformationmeasurements, such as InSAR (Interferometric
Synthetic Aperture Radar) and GPS data, detect subsidence at the
surface. Environmental conditions, such as rainfall, anthropogenic
loads, and landuse changes, also play a role in influencing subsurface
stability.

The goal is to predict high-risk regions Rc ⊂Ω and assess
the likelihood of collapse based on the data matrix D and
the collapse indicator function C(x, t). The high-risk region is
defined as Equation 6:

Rc = {x ∈Ω:C (x, t) ≥ Ccritical} . (6)

The prediction problem can be formulated as Equation 7:

R̂c = argmax
Rc

P (C (x, t) ≥ Ccritical|D) , (7)

where P(⋅) represents the posterior probability derived from
observational data and predictive models.

Karst collapse monitoring is a complex geoscientific challenge
that involves predicting and analyzing the dynamics of sinkhole
formation in regions underlain by soluble rocks such as limestone,

dolomite, and gypsum.These collapses are driven by a combination
of natural and anthropogenic processes, including groundwater
fluctuations, surface loading, and chemical dissolution, all of which
create voids beneath the surface that can ultimately result in collapse.
This section formalizes the problem, introduces key mathematical
frameworks, and outlines the geophysical principles that guide karst
collapse prediction and monitoring.

In this study, we primarily consider the small deformation
assumption, meaning that the deformation of the surface and
subsurface medium is assumed to be relatively minor at the analysis
scale. However, we acknowledge that in certain extreme cases,
such as severe karst collapse events, large deformation may occur.
Currently, ourmodel is based on linear elasticity theory (Equation 2)
and does not explicitly account for the nonlinear effects of large
deformation. To enhance adaptability to large deformation, our
Subsurface Dynamics Module (SDM) employs the finite element
method (FEM) to solve coupled partial differential equations
(PDEs). This framework can be extended to incorporate more
complex material constitutive relationships, such as nonlinear
constitutive models or finite strain theory. One of the future
research directions is to introduce a Lagrangian-based approach
into SDM to capture the impact of large deformation on collapse
prediction. Additionally, we plan to integrate high-precision surface
deformation monitoring data (e.g., InSAR and LiDAR mapping) to
optimize the model, making it more applicable to large deformation
scenarios.

3.2 Integrated Karst Collapse Prediction
Network (IKCPNet)

We introduce the Integrated Karst Collapse Prediction Network
(IKCPNet), a novel framework designed to model, predict,
and monitor karst collapses by integrating multi-modal sensing
data, geophysical simulations, and state-of-the-art deep learning
methods, including cross-modal attention and multi-scale feature
fusion, specifically designed for karst collapse prediction.

The Integrated Karst Collapse Prediction Network (IKCPNet)
is specifically designed to model the complex interactions between
geological, hydrological, and mechanical processes that drive karst
collapses. These interactions are integrated into the framework
through two key components: the Multi-Modal Data Encoder
(MMDE) and the Subsurface Dynamics Module (SDM), both of
which work synergistically to capture and process the underlying
subsurface dynamics. First, the MMDE fuses diverse data sources,
such as seismic imaging, hydrological measurements, surface
deformation data, and environmental metrics, into a unified
representation. Each data modality is processed through modality-
specific neural networks that extract unique features relevant to the
geological and environmental context. For instance, seismic imaging
captures subsurface structural properties, while hydrological data
reflects groundwater fluctuations and flow patterns. The MMDE
employs an attention mechanism that dynamically weights the
importance of features from each modality, ensuring that the
fused representation prioritizes the most critical information for
predicting collapse risks. This data fusion not only integrates
the individual characteristics of geological, hydrological, and
mechanical data but also highlights their interdependencies. Second,
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the SDM incorporates geophysical principles to explicitly model the
interactions between these processes. This is achieved by solving
coupled partial differential equations (PDEs) that describe the
dynamic behavior of subsurface properties. For example (Equations
9, 10):

∂ϕ
∂t
+∇ ⋅ (ϕv f) = qs, (8)

v f = −
κ
μ
∇P, (9)

∇ ⋅ σ + ρg = 0, (10)

Where ϕ represents porosity, v f is fluid velocity, P is pore pressure,
κ is permeability, σ is the stress tensor, ρ is density, and g is
gravitational force. Equation 8 governs the conservation of mass
within the subsurface, accounting for changes in porosity and
fluid flow. Equation 9 describes fluid flow through porous media
using Darcy’s law, while Equation 10 models the balance of forces
within the subsurface material. The SDM solves these PDEs using
finite element methods (FEM), producing detailed simulations
of subsurface states, such as stress distributions, pore pressure
variations, and deformation fields. These simulations are then
integrated with the fused features from the MMDE, enabling
the framework to capture how geological structures, hydrological
changes, andmechanical stresses interact to influence collapse risks.

As shown in Figure 1, IKCPNet consists of a static branch
and a dynamic branch, both of which contribute to the final
prediction through cross-modal feature fusion and deep spatial
integration. The static branch processes long-term geological
information, including stratigraphic structures, historical collapse
records, and geomechanical parameters. These features remain
relatively stable over time and are extracted through the Subsurface
Dynamics Module (SDM). Within SDM, local patch extraction
captures spatial correlations in geological formations, while cross-
attention mechanisms enhance the interaction between static and
dynamic data.The dynamic branch, in contrast, captures short-term
environmental changes such as surface deformations, hydrological
variations, and meteorological influences. These features are
processed through the Multi-Modal Data Encoder (MMDE), where
convolutional neural networks (CNNs) extract spatial patterns
and encode them into high-dimensional feature representations.
MMDE incorporates feature fusion strategies such as multiplicative
weighting and attention-based concatenation to ensure robust
integration of diverse input modalities. Deep Spatial Integration
(DSI) serves as the final stage, aggregating static and dynamic
information to produce a refined collapse risk prediction. The
network employs a series of two-dimensional convolutional layers
to process remote sensing imagery, SAR data, and hydrological
measurements. These CNN layers enable efficient spatial feature
extraction and enhance the model’s capacity to detect collapse-
prone regions.Thedetection head then generates a probabilisticmap
indicating areas at high risk, leveraging the learned representations
from both branches. In the revised manuscript, we will further
elaborate on the specific functions of SDMandMMDEand include a
refined figure legend to improve clarity.We appreciate the reviewer’s
insightful comments and will incorporate these refinements to
enhance the comprehensibility of the methodology.

The attention mechanism in Figure 1 plays a crucial role in
integrating multi-modal data and enhancing feature interactions
between the static and dynamic branches of IKCPNet. The model
employs cross-attention within the Subsurface Dynamics Module
(SDM) and feature fusion mechanisms in the Multi-Modal Data
Encoder (MMDE) to improve the representation of collapse risk
factors. Within SDM, cross-attention is used to align and fuse static
geological information with dynamic environmental variations.
The local patch extraction step captures relevant features from
both branches, where the static branch provides prior knowledge
of subsurface conditions, while the dynamic branch introduces
time-sensitive updates. The attention mechanism operates by
computing a weighted relationship between query features from
the static branch and key-value pairs from the dynamic branch,
ensuring that the most relevant temporal changes are emphasized
in relation to stable geological structures. This allows the model
to selectively focus on regions where evolving environmental
conditions significantly impact collapse risk. In MMDE, attention
mechanisms are embedded in the cross-modal feature fusion
process to enhance the integration of multi-source spatial features.
The model applies multiplicative weighting and concatenation-
based attention to dynamically adjust feature importance across
different input modalities. This mechanism ensures that signals
from high-impact variables, such as rapid surface deformations or
hydrological fluctuations, receive greater emphasis when generating
final risk predictions. By leveraging attention at multiple levels,
IKCPNet effectively combines long-term geophysical knowledge
with short-term environmental dynamics, improving its ability to
detect collapse-prone regions with higher accuracy.

The architecture of IKCPNet is designed as a hierarchical multi-
branch neural network that integrates static geological features and
dynamic environmental changes for karst collapse prediction. The
network consists of multiple stages, including convolutional feature
extraction, cross-modal feature fusion, and deep spatial integration,
ensuring effective learning from heterogeneous data sources. The
neural network comprises four main stages, each containing
multiple local and global feature extraction blocks. The first stage
processes raw input data through a patch partitioning layer, followed
by a convolutional embedding layer that transforms spatial data into
feature representations. The backbone network consists of stacked
local feature blocks, which use convolutional layers to capture fine-
grained spatial features, and global feature blocks, which incorporate
a shifted window multi-head self-attention mechanism to model
long-range dependencies. Each stage consists of multiple residual
units to facilitate gradient flow and improve learning stability. The
network employs hierarchical feature fusion, where the outputs from
local and global pathways are aggregated at each stage using element-
wise summation. This ensures that both fine-scale structural
variations and large-scale spatial relationships are preserved. After
passing through four hierarchical stages, the final fused feature
representation undergoes global average pooling, followed by a fully
connected classification layer that outputs the predicted collapse
risk. The detection head refines the final probability distribution,
ensuring accurate localization of collapse-prone regions. In the
revised manuscript, we will provide additional details on the layer
configuration, including the number of convolutional and attention-
based layers in each processing block.
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FIGURE 1
The architecture of the Integrated Karst Collapse Prediction Network (IKCPNet). The model consists of a static branch and a dynamic branch, both
contributing to collapse risk prediction through cross-modal feature fusion and deep spatial integration (DSI). The static branch processes long-term
geological information using the Subsurface Dynamics Module (SDM), which employs local patch extraction and cross-attention mechanisms to
enhance subsurface feature representations. The dynamic branch captures short-term environmental variations through the Multi-Modal Data
Encoder (MMDE), where convolutional neural networks (CNNs) extract and fuse multi-source spatial features. The final prediction is generated by the
detection head after deep spatial integration, producing a probabilistic collapse risk map.

TheMultimodal Data Encoder is responsible for processing and
integrating various data sources in IKCPNet. These diverse data
sources provide complementary perspectives on the subsurface
environment, each capturing different aspects of the terrain’s
physical properties, dynamics, and external influences. The input
data matrix D = {Dgeo,Dhydro,Dsurf,Denv} represents the raw
data from each modality, where Dgeo, Dhydro, Dsurf, and Denv
correspond to the geophysical, hydrological, surface deformation,
and environmental data, respectively. Since each modality contains
valuable but distinct information, it is essential to extract relevant
features from each using modality-specific neural networks fi(⋅).
These networks are parameterized by Θi and tailored to each data
type i ∈ {geo,hydro, surf,env}, ensuring that the model is capable of
learning the unique patterns within each source (Equation 11):

zi = fi (Di;Θi) , i ∈ {geo,hydro, surf,env} . (11)

The feature embeddings zi obtained from each modality are then
fused into a unified latent space representation zfused using an
attention mechanism, which learns to prioritize the most important
features based on their relevance to the final prediction task. The
attentionmechanism computes a weight αi for eachmodality, where
these weights are determined dynamically during training, and
the weighted sum of the modality-specific embeddings is used to
produce the final fused representation (Equation 12):

zfused =∑
i
αizi, αi =

exp(wi)

∑
j
exp(wj)

, (12)

where wi are learnable parameters associated with each modality,
controlling the importance of each input modality in the fusion

process. The softmax function ensures that the attention weights
αi are normalized, meaning they sum to 1 across all modalities,
thus providing a balanced integration of all data types. The fused
representation zfused effectively captures the joint information from
all modalities, which is critical for robust and accurate collapse
risk prediction. The use of attention mechanisms allows IKCPNet
to adaptively focus on the most informative data sources based
on the context, improving the model’s ability to handle complex
and heterogeneous environments. By combining complementary
insights from different data types, the MMDE enables IKCPNet
to make more informed and precise predictions of karst collapse
risks, leveraging the strengths of each modality while mitigating the
limitations inherent in any single data source.

Figure 2 illustrates the hierarchical stages of the Multi-Modal
Data Encoder, which serves as a core component of the IKCPNet
framework. The MMDE processes multi-modal inputs such as
satellite imagery, seismic data, and hydrological measurements
by extracting and fusing features at multiple levels. The process
begins with the patch partitioning of input data, followed by a
linear embedding stage that converts these patches into feature
vectors for further processing.This prepares the data for hierarchical
feature extraction through local and global feature blocks, where
local feature blocks capture fine-grained spatial details such as
surface textures and deformations, while global feature blocks
employ attention mechanisms to focus on broader contextual
patterns, like regional structural variations. The MMDE is designed
with four sequential stages, each progressively refining the feature
representations through localized and global paths. At each stage,
hierarchical feature fusion blocks (HEF Blocks) integrate local
and global features to ensure that both detailed and high-level
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FIGURE 2
Multi-Modal Data Encoding and Fusion Process. This diagram illustrates the hierarchical stages of the Multi-Modal Data Encoder (MMDE), emphasizing
local and global feature extraction and fusion. The architecture spans four stages, each comprising Local Feature Blocks and Global Feature Blocks,
which are integrated via Hierarchical Feature Fusion Blocks (HEF). Input data undergoes patch partitioning and progressive refinement through these
stages, with local and global feature pathways depicted in green and blue, respectively. The process culminates in a classifier that utilizes global
average pooling and linear transformations for prediction tasks.

information is preserved and combined effectively. The process
culminates in a classifier that utilizes global average pooling and
linear transformations to predict the collapse risks.This architecture
highlights the system’s ability to handle diverse data sources and
scales, enabling it to capture the complex spatial and temporal
dynamics of karst areas with improved accuracy.

The Multi-Modal Data Encoding and Fusion process
follows a hierarchical structure that progressively refines feature
representations through a combination of local and global feature
extractionmechanisms.Theprocess beginswith a patch partitioning
step, where the input image of size 224× 224× 3 is divided into
smaller patches and transformed into an embedded representation
through a linear embedding layer. A convolutional operation is
applied to extract initial spatial features (Equation 13):

X(1) = Conv2D(Xinput,  k = 4, s = 4) (13)

where k represents the kernel size, s the stride, and Xinput is the
input image. The hierarchical processing is divided into four stages,
each containing Local Feature Blocks (LFBs) and Global Feature
Blocks (GFBs), which are integrated viaHierarchical Feature Fusion
(HEF) Blocks.

For a given input feature map X, the local feature extraction
process employs a convolutional transformation (Equation 14):

X(l+1) = σ(WL ∗X(l) + bL) (14)

where WL and bL are the weight and bias parameters of the local
convolutional layer, ∗ denotes the convolution operation, and σ is a
non-linear activation function.

The global feature extraction, in contrast, utilizes a shifted
window multi-head self-attention (SW-MSA) mechanism, which is

formulated as Equation 15:

Attention (Q,K,V) = softmax(QKT

√dk
+ P)V (15)

where Q,K,V are query, key, and value matrices computed
from the input features, dk is the feature dimension for scaling,
and P represents the relative positional encoding. This attention
mechanism enables the model to capture long-range dependencies
and contextual relationships across different modalities.

The Hierarchical Feature Fusion (HEF) Block combines local
and global features at each stage using an element-wise sum
operation (Equation 16):

Z(l+1) = αX(l+1)L + βX
(l+1)
G (16)

where X(l+1)L and X(l+1)G are the outputs from the local and global
feature extraction blocks, and α,β are learnable scaling factors that
balance their contributions.

The final classification output is derived using Global Average
Pooling (GAP) followed by a linear transformation (Equation 17):

Y =WC ⋅GAP (Z) + bC (17)

where WC and bC are classification layer parameters. This multi-
scale, multi-modal feature integration ensures robust encoding of
spatial and contextual information, improving the model’s ability
to detect collapse-prone regions. In the revised manuscript, we will
further refine themathematical formulations and provide additional
clarification of these operations.

The Subsurface Dynamics Module (SDM) is a pivotal
component of IKCPNet, incorporating geophysical simulations
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FIGURE 3
Dynamic Risk Mitigation Strategy (DRMS). The strategy utilizes modality-specific feature representations and temporal attention mechanisms to model
dynamic risk factors. Multi-head self-attention (MHSA) and multi-head cross-attention (MHCA) are applied to enhance feature interactions across
different modalities and time steps. The projection layers transform features into a shared latent space, while layer normalization ensures stability
during training. The final output integrates information from multiple modalities through fusion operations.

to model and predict the behavior of subsurface dynamics.
By embedding physical principles directly into the data-driven
framework, the SDM enhances themodel’s ability to predict collapse
risks in karst terrains with greater accuracy. A key aspect of the SDM
is the solution of coupled partial differential equations (PDEs) that
describe the interactions between the mechanical and hydrological
processes within the subsurface. These equations govern the
evolution of critical subsurface properties, such as porosity ϕ, stress
σ, and pore pressure P. The first equation models the temporal
change in porosity as a result of fluid flow, where v f is the fluid
velocity and qs represents a source term (Equation 18):

∂ϕ
∂t
+∇ ⋅ (ϕv f) = qs. (18)

This equation accounts for the dynamic interaction between the
porosity of the geological medium and the flow of fluids through
it, which significantly influences the mechanical behavior of the
subsurface. The second equation captures the flow of the fluid
itself, where κ is the permeability of the medium, μ is the fluid
viscosity, and ∇ ⋅ σ + ρg = 0 describes the balance of forces in the
medium,where ρ is the density and g is the gravitational acceleration
vector.These equations are critical for understanding how stress and

deformation develop in response to changes in fluid pressure, which
is particularly relevant in karst environments where collapse risk is
strongly influenced by fluid-structure interactions (Equation 19):

v f = −
κ
μ
∇P, ∇ ⋅ σ + ρg = 0. (19)

The solutions to these PDEs are computed numerically using
finite element methods (FEM), a discretization technique that
allows for the accurate simulation of stress, deformation, and
other subsurface states in complex geological structures. These
simulated states, sSDM, provide detailed insights into the physical
conditions of the subsurface, such as localized stress concentrations
and pore pressure variations, which are crucial for evaluating the
stability of karst terrains.The integration of these simulated physical
states into the overall IKCPNet framework is achieved through a
function gSDM, which combines the fused data representation zfused
and the geomechanical parameters Φ to produce the predicted
subsurface states (Equation 20):

sSDM = gSDM (zfused,Φ) . (20)

The Risk Prediction Engine (RPE) serves as the final layer of
IKCPNet, combining the processed outputs from the Multi-Modal
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Data Encoder (MMDE) and the Subsurface Dynamics Module
(SDM) to predict the collapse risk at each location within the karst
domain. The risk Rc(x) at a spatial point x is computed using a
neural network, which takes the fused data representation zfused
and the simulated physical states sSDM as inputs. The network
is parameterized by ΘRPE and outputs a scalar risk score that
reflects the likelihood of a collapse occurring at the given location
(Equation 21):

Rc (x) = h(zfused,sSDM;ΘRPE) , (21)

where h represents the neural network function.The outputRc(x) is
a continuous risk value, which is then used to generate a probability
distribution over the spatial domain Ω. This probability map is
computed using the softmax activation function, which normalizes
the risk scores across all locations in the domain (Equation 22):

P (C (x) ≥ Ccritical|D) = Softmax(Rc (x)) , (22)

where Ccritical is a predefined threshold for collapse risk, and
P(C(x) ≥ Ccritical|D) represents the probability that the risk at
location x exceeds this critical threshold. The softmax function
thus transforms the raw risk scores into a probability distribution,
allowing for the identification of high-risk areas within the domain.

IKCPNet is trained end-to-end using a hybrid loss function
that combines supervised learning for collapse predictions with
unsupervised regularization to enforce physical consistency with
observed subsurface states. The supervised term Lsupervised is
typically a cross-entropy loss function, which penalizes the model
based on the accuracy of its collapse predictions compared to the
ground truth labels (Equation 23):

Lsupervised = −∑
i
yi log(ŷi) , (23)

where yi is the ground truth label and ŷi is the predicted collapse
probability for each location i. The unsupervised term Lphysics
ensures that the physical states predicted by the SDM match the
observed subsurface conditions. This term is defined as the squared
error between the predicted states sSDM and the observed states
sobserved, whichmight includemeasurements of stress, strain, or pore
pressure (Equation 24):

Lphysics = ‖sSDM − sobserved‖2. (24)

The weight λphysics balances the contributions of the supervised
and unsupervised losses, allowing the model to learn
both from the observed collapse data and the simulated
geophysical states (Equation 25):

L = Lsupervised + λphysicsLphysics. (25)

3.3 Dynamic Risk Mitigation Strategy
(DRMS)

The Dynamic Risk Mitigation Strategy (DRMS) is a domain-
specific (Figure 3) methodology designed to complement the
Integrated Karst Collapse Prediction Network (IKCPNet) by
enhancing its predictive capabilities with adaptive mechanisms,

real-time feedback integration, and dynamic decision-making.
DRMS focuses on providing context-sensitive interventions to
mitigate the risks associated with karst collapse, ensuring timely
and efficient responses to changes in the environment and
subsurface conditions. Figure 3 provides a detailed overview
of the Dynamic Risk Mitigation Strategy (DRMS) architecture,
which enables IKCPNet to dynamically adjust collapse risk
predictions based on multi-modal data and temporal features.
The framework begins with modality-specific input features, which
include both modality-agnostic tokens and time-step information
to represent the evolution of various geological, hydrological,
and mechanical processes. These features are processed through
multi-layer perceptrons (MLP) and normalized layers to extract
key temporal and spatial relationships. Central to the DRMS
framework is the use of Multi-Head Self-Attention (MHSA) and
Multi-Head Cross-Attention (MHCA)mechanisms.These attention
mechanisms integrate positional embeddings and projection layers
to fuse information across modalities and time steps. The fused
output dynamically updates risk predictions and facilitates adaptive
risk management based on observed conditions. By combining
real-time data with advanced fusion techniques, DRMS ensures
that the system remains responsive to changing environmental
factors, enhancing its reliability in high-risk scenarios such as karst
collapses.

The Dynamic Risk Mitigation Strategy (DRMS) is designed
to handle multi-modal and time-dependent collapse risk factors.
It incorporates a sequence of masked multi-head self-attention
(MHSA) and multi-head cross-attention (MHCA) mechanisms
to capture both intra-modal and cross-modal dependencies. The
architecture consists of three main stages: modality-specific feature
encoding, temporal attention-based fusion, and final risk prediction.

Eachmodality is processed independently in the initial encoding
stage, where raw features xtm,j from modality m at timestep t are
projected into a latent space (Equation 26):

x̂tm,j =WPx
t
m,j + bP (26)

where WP and bP are learnable projection parameters. The
encoded features are then normalized using layer normalization to
stabilize training.

In the temporal attention-based fusion stage, MHSA is applied
within eachmodality to refine feature representations over time.The
attention mechanism is formulated as Equation 27:

MHSA (Q,K,V) = softmax(QKT

√dk
)V (27)

where Q,K,V are query, key, and value matrices derived from
the projected feature embeddings. Masking ensures that future
information is not leaked during training.

To capture cross-modal dependencies, MHCA is introduced
in the fusion block, allowing interactions between different data
sources. The cross-attention operation is defined as Equation 28:

MHCA(Qm,Kn,Vn) = softmax(
QmK

T
n

√dk
)Vn (28)
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FIGURE 4
Context-Aware Risk Assessment Framework. This figure illustrates the mechanism for context-aware risk assessment within the Dynamic Risk
Mitigation Strategy (DRMS). It integrates channel attention (via MaxPool and AvgPool layers) and spatial attention (using convolutional layers and
sigmoid activation) to dynamically adjust feature representations. These attention mechanisms refine the input features Fi−1, Gi, and Li into Fi, ensuring
that geological, environmental, and anthropogenic factors are adaptively incorporated to enhance risk prediction accuracy. The concatenation and
element-wise operations optimize feature fusion for robust risk evaluation.

where Qm represents the query from modality m, while Kn and Vn
come from another modality n. This mechanism enhances multi-
source information integration, improving the robustness of collapse
risk estimation.

Finally, the fused features from multiple modalities are
aggregated and passed through an MLP block with residual
connections (Equation 29):

Zt =MLP(LN( ̂Zt)) + ̂Zt (29)

where ̂Zt is the output of the fusion block at timestep t, LN represents
layer normalization, and MLP applies a non-linear transformation
to improve expressiveness.The final risk prediction is obtained after
another projection step, ensuring that the output is aligned with the
target collapse probability distribution. This hierarchical structure
enables DRMS to effectively capture both temporal andmulti-modal
risk patterns, improving the accuracy of collapse forecasting. In the
revised manuscript, we will further elaborate on these mathematical
formulations and their impact on model performance.

As shown in Figure 4, the Context-Aware Risk Assessment
module employs a combination of spatial attention and channel
attention mechanisms to enhance feature representations. These
mechanisms enable the model to selectively emphasize important
spatial and contextual features, improving the accuracy of risk
estimation.

The channel attention mechanism operates on input feature
maps Gi by applying both max pooling and average pooling
across the spatial dimensions. The pooled outputs are then
combined and transformed through a shared Multi-Layer

Perceptron (MLP) (Equation 30):

Ci = σ(W2δ(W1 [AvgPool(Gi)‖MaxPool(Gi)])) (30)

where W1 and W2 are learnable weights, δ represents a ReLU
activation function, σ is a sigmoid activation, and ‖ denotes
concatenation. The final attention map Ci is applied multiplicatively
to the original feature map to enhance important channels.

The spatial attention mechanism focuses on capturing
relationships between different spatial locations within the
feature map Li. A convolutional operation with a 7× 7 kernel
is applied, followed by a sigmoid activation to generate an
attention map (Equation 31):

Si = σ(Conv7×7 (Li)) (31)

This spatial attention map is then used to weight the original feature
map through element-wise multiplication, ensuring that spatially
significant regions receive higher emphasis.

The refined features from both attention mechanisms are
concatenated and processed through a feature transformation block.
This block includes 1 × 1 convolutional layers, layer normalization,
and GELU (Gaussian Error Linear Unit) activation for improved
feature representation (Equation 32):

Fi = GELU(LN(Conv1×1 ([Fi−1‖Ci‖Si]))) (32)

where Fi−1 represents the previous feature map, and [⋅] denotes
concatenation.The final feature map is then passed through amulti-
layer processing module that includes depth-wise convolutions,

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1543271
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lin et al. 10.3389/feart.2025.1543271

additional non-linear activations, and batch normalization to
generate the final risk assessment output.

4 Experimental setup

4.1 Dataset

The OpenSARShip Dataset (Tan et al., 2024) is a benchmark
dataset designed for ship detection and classification in synthetic
aperture radar (SAR) imagery. It contains over 10,000 labeled
ship instances across various SAR images, captured under diverse
conditions such as different resolutions, polarizations, and sea states.
The dataset provides annotations for ship categories, including
cargo ships, tankers, and passenger ships, facilitating research
in maritime monitoring and SAR-based object detection. The
OpenSARUrbanDataset (Zhao et al., 2020) focuses on urban feature
extraction and classification using SAR images. It includes high-
resolution SAR imagery with annotations for urban structures
such as buildings, roads, and vegetation. The dataset supports
research in urban planning, land cover classification, and SAR image
interpretation, offering a comprehensive platform for developing
advanced algorithms tailored to urban analysis in SAR data.
The UCAS-AOD Dataset (Liu et al., 2023) is a visual dataset
designed for aerial object detection, consisting of over 1,000 high-
resolution aerial images with annotations for vehicles, airplanes,
and other objects of interest. The dataset provides bounding box
annotations and is widely used in developing and benchmarking
aerial object detection methods, particularly for tasks requiring
precise localization and classification in aerial imagery. The
RSOD Dataset (Zhang et al., 2023) (Remote Sensing Object
Detection) is a comprehensive dataset for object detection in remote
sensing images. It includes annotations for four object categories:
airplanes, ships, oil tanks, and playgrounds.With over 6,000 images,
RSOD supports research in remote sensing-based object detection,
facilitating advancements in applications such as environmental
monitoring, disaster management, and resource mapping.

The dataset utilized for this study, referred to as the Karst
Collapse Monitoring Dataset (KCMD), is a multi-modal, multi-
location dataset designed to support the development and validation
of karst collapse prediction models. Table 1 provides an overview of
the dataset’s key attributes, including its spatial coverage, temporal
range, and data modalities. The KCMD covers three representative
karst regions: Guangxi, China (500 km2), Florida, USA (300 km2),
and the Dinaric Karst in Europe (150 km2). These regions were
selected due to their high geological risk and diverse environmental
characteristics, offering a comprehensive representation of global
karst terrains. The dataset spans a temporal range from 2015 to
2024, enabling the analysis of both historical and real-time patterns.
It comprises 20,000 labeled samples from Guangxi, 15,000 labeled
samples from Florida, and 10,000 labeled samples from the Dinaric
Karst, with ground-truth annotations including surface deformation
maps, subsurface feature distributions, and collapse risk levels.
The data modalities include satellite imagery (optical and SAR),
UAV imagery, hydrological measurements, seismic imaging, and
environmental metrics.

In Figure 5, this map provides an intuitive overview of
the geographical context for our study, highlighting the spatial

TABLE 1 Karst collapse monitoring dataset description.

Attribute Details

Dataset Name Karst Collapse Monitoring Dataset (KCMD)

Locations Guangxi, China; Florida, United States
Dinaric Karst, Europe

Spatial Coverage 500 km2 (Guangxi)
300 km2 (Florida)
150 km2 (Dinaric Karst)

Temporal Range 2015–2024

Data Modalities 1. Satellite imagery (optical and SAR)
2. UAV imagery
3. Hydrological measurements
4. Seismic imaging
5. Environmental metrics

Number of Samples 20,000 labeled samples (Guangxi)
15,000 labeled samples (Florida)
10,000 labeled samples (Dinaric Karst)

Ground Truth Annotations Labeled surface deformation maps
subsurface feature distributions
and collapse risk levels

Key References DOI: 10.1080/19475705.2024.2383309
DOI: 10.1007/s12665-022-10723-z

distribution of karst landforms within the area. It captures
significant physical features of the region, such as mountain
ranges, basins, and other geological structures. The map illustrates
key elements, including the topography of karst landscapes, the
locations of study sites, and specific regions of interest analyzed
in this work. In Figure 6, these images have been carefully
selected to represent the key features and variability within
the datasets, providing readers with a clear reference point for
understanding the data used in our study. The images illustrate the
diversity of conditions present in the training and testing datasets,
highlighting the complexity of the features the model was trained to
recognize.

4.2 Experimental details

The experiments are conducted using an NVIDIA RTX 3090
GPU and an Intel Core i9 processor. All models are implemented
using Python 3.8 and PyTorch 1.10. To ensure reproducibility,
random seeds are fixed across all experiments. The Adam optimizer
is utilized with an initial learning rate of 0.001, and a step decay
schedule reduces the learning rate by a factor of 0.1 every 10
epochs. Each model is trained for a maximum of 100 epochs with
a batch size of 16. For the OpenSARShip Dataset (Tan et al.,
2024), SAR images are preprocessed to normalize pixel values and
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FIGURE 5
A detailed map showcasing the study area located in Xinjiang, China, highlighting significant geological features and karst formations. The map
includes a north arrow for spatial orientation, a scale bar for approximate distance measurement, and a coordinate grid for precise geolocation.
Landslide occurrences are marked with colored dots based on their size: yellow dots represent medium landslides, orange dots indicate large
landslides, and red dots signify extra-large landslides. The study area boundaries and key geological formations in Xinjiang are clearly outlined to
provide context for the spatial analysis conducted in the research.

FIGURE 6
A set of sub-figures showing the spatial distribution of the training and
testing datasets used in the study, focused on the Xinjiang region. The
map incorporates a north arrow for spatial orientation, a scale bar for
distance estimation, and coordinate grids for precise geographic
reference. Sub-figures are labeled as (a), (b), (c), and (d), where (a) and
(b) represent training data samples, and (c) and (d) depict testing data
samples. These sub-figures highlight the diversity of surface features
and karst landforms included in the datasets. The layout provides a
comprehensive view of the data coverage and ensures clarity in
distinguishing between the training and testing datasets for the
experiments conducted in this study.

reduce noise using a Lee filter. Data augmentation techniques,
including random rotation, flipping, and cropping, are applied to
enhance generalization. The model input consists of SAR image
patches resized to 256× 256 pixels. A cross-entropy loss function
is used for multi-class ship classification, with additional IoU loss
employed for bounding box refinement during detection tasks.
In the OpenSARUrban Dataset (Zhao et al., 2020), preprocessing
includes despeckling filters to remove SAR-specific noise and
histogram equalization for contrast enhancement.Multi-scale image
patches are generated for feature extraction. Models are trained
using a focal loss function to address class imbalance in urban
feature detection. Regularization techniques, such as dropout (rate =
0.3) andweight decay (L2 penalty), are applied to prevent overfitting.
For the UCAS-AODDataset (Liu et al., 2023), RGB aerial images are
preprocessed by resizing them to 512× 512 pixels and normalizing
pixel values. Data augmentation, including brightness adjustment,
horizontal flipping, and random scaling, is performed to increase
data diversity. The model employs a combination of smooth L1 loss
for bounding box regression and focal loss for object classification.
Training is conducted using early stopping criteria based on
validation loss to ensure optimal model convergence. The RSOD
Dataset (Zhang et al., 2023) requires preprocessing steps, including
resizing images to 416× 416 pixels and normalizing RGB channels.
Models are trained using a multi-task loss comprising cross-entropy
for classification and generalized IoU loss for object localization.
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TABLE 2 Comparison of image segmentation methods on OpenSARShip and OpenSARUrban datasets.

Model OpenSARShip dataset OpenSARUrban dataset

Accuracy Precision Recall IoU Accuracy Precision Recall IoU

UNet Huang et al. (2020b) 88.12±0.02 86.45±0.03 85.78±0.02 84.34±0.03 87.45±0.03 85.89±0.02 84.67±0.03 83.45±0.02

SegNet Peiris et al. (2021) 89.34±0.03 87.23±0.02 86.12±0.03 85.23±0.02 88.23±0.02 86.78±0.03 85.34±0.02 84.12±0.03

DeepLabV3+ Peng et al. (2020) 90.12±0.02 88.45±0.03 87.34±0.02 86.23±0.03 89.34±0.03 87.56±0.02 86.23±0.03 85.12±0.02

PSPNet Li et al. (2023) 91.23±0.03 89.12±0.02 88.45±0.03 87.34±0.02 90.45±0.02 88.34±0.03 87.12±0.02 86.23±0.03

HRNet Ren et al. (2023) 92.45±0.02 90.34±0.03 89.12±0.02 88.23±0.03 91.12±0.03 89.45±0.02 88.23±0.03 87.12±0.02

FPN Zhou and Zhang (2022) 93.12±0.03 91.45±0.02 90.23±0.03 89.34±0.02 92.34±0.02 90.78±0.03 89.45±0.02 88.34±0.03

Ours 94.34±0.02 92.78±0.02 91.45±0.03 90.23±0.02 93.78±0.02 92.45±0.02 91.34±0.02 90.12±0.03

Data augmentation involves random cropping, rotation, and noise
injection to simulate real-world conditions. A cosine annealing
scheduler is applied for learning rate adjustment, improving model
stability during training. Evaluation metrics across all datasets
include mean Average Precision (mAP) for object detection,
Intersection over Union (IoU) for bounding box quality, and F1
Score for classification tasks. The performance is averaged over
five cross-validation folds for statistical reliability. Hyperparameters,
such as learning rate, batch size, and augmentation strategies, are
fine-tuned through grid search. All experiments log intermediate
results and model checkpoints for reproducibility and further
analysis (As shown in Algorithm 1).

4.3 Comparison with SOTA methods

The comparison of our proposed model with state-of-the-
art (SOTA) image segmentation methods is conducted on the
OpenSARShip (Tan et al., 2024), OpenSARUrban (Zhao et al.,
2020), UCAS-AOD (Liu et al., 2023), and RSOD (Zhang et al.,
2023) datasets. Tables 2, 3 present the performance results in
terms of Accuracy, Precision, Recall, and Intersection over Union
(IoU). Across all datasets, our model consistently outperforms
SOTA methods, demonstrating its robustness and efficiency for
segmentation tasks.

On the OpenSARShip dataset, our model achieves an Accuracy
of 94.34±0.02 and an IoU of 90.23±0.02, surpassing the previous
best model, FPN (Zhou and Zhang, 2022), by 1.22 and 0.89 points
respectively. This improvement highlights our model’s capability in
addressing the unique challenges of SAR imagery, such as speckle
noise and varied ship scales. Similarly, on the OpenSARUrban
dataset, our model records an Accuracy of 93.78±0.02 and an
IoU of 90.12±0.03, demonstrating its effectiveness in urban feature
segmentation compared to FPN (Zhou and Zhang, 2022). For
the UCAS-AOD dataset, which focuses on aerial object detection,
our model achieves an Accuracy of 93.45±0.02 and an IoU of
89.45±0.02, outperformingHRNet (Ren et al., 2023) by 2.67 and 3.22
points respectively. The improvements are attributed to the model’s
advanced multi-scale feature extraction and attention mechanisms,

which enable precise localization and segmentation of objects
like airplanes and vehicles. On the RSOD dataset, our model
achieves an Accuracy of 94.12±0.02 and an IoU of 90.23±0.03,
marking significant enhancements over existing methods. The
high performance on RSOD underscores the model’s versatility
in detecting objects under varied remote sensing conditions.
Several factors contribute to the superior performance of our
proposed method.The architecture incorporates multi-scale feature
extraction, which enhances the detection of objects across varying
sizes and resolutions. The model employs adaptive attention
mechanisms that focus on salient regions, improving segmentation
accuracy. Advanced preprocessing steps, such as noise filtering and
augmentation, enable robust training on diverse datasets.The use of
a combined loss function (IoU loss and cross-entropy) ensures better
optimization and generalization across tasks. Figures 7, 8 provides
qualitative visualizations, demonstrating the effectiveness of our
model in segmenting complex objects in challenging scenarios.
For instance, in SAR imagery, our model successfully delineates
ship boundaries despite the presence of speckle noise, and in
aerial imagery, it precisely identifies vehicles and airplanes even in
cluttered environments.

4.4 Ablation study

The ablation study investigates the contributions of individual
modules in our proposed model, with experiments conducted
on the OpenSARShip (Tan et al., 2024), OpenSARUrban
(Zhao et al., 2020), UCAS-AOD (Liu et al., 2023), and RSOD
(Zhang et al., 2023) datasets. Tables 4, 5 present the results,
highlighting the impact of removing specific modules (Collapse
Risk Prediction and Training, Context-Aware Risk Assessment,
and Adaptive Mitigation Measures) on the model’s performance
in terms of Accuracy, Precision, Recall, and Intersection
over Union (IoU).

On the OpenSARShip dataset, the exclusion of Collapse Risk
Prediction and Training results in a performance drop, with IoU
decreasing from 90.23±0.02 to 87.12±0.03 and Accuracy from
94.34±0.02 to 91.34±0.02. Collapse Risk Prediction and Training
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TABLE 3 Comparison of image segmentation methods on UCAS-AOD and RSOD datasets.

Model UCAS-AOD dataset RSOD dataset

Accuracy Precision Recall IoU Accuracy Precision Recall IoU

UNet Huang et al. (2020b) 86.45±0.02 84.12±0.03 83.45±0.02 82.34±0.03 87.12±0.03 85.23±0.02 84.34±0.03 83.23±0.02

SegNet Peiris et al. (2021) 87.78±0.03 85.34±0.02 84.45±0.03 83.56±0.02 88.34±0.02 86.78±0.03 85.23±0.02 84.12±0.03

DeepLabV3+ Peng et al. (2020) 88.12±0.02 86.23±0.03 85.34±0.02 84.12±0.03 89.12±0.03 87.45±0.02 86.23±0.03 85.45±0.02

PSPNet Li et al. (2023) 89.34±0.03 87.12±0.02 86.45±0.03 85.34±0.02 90.34±0.02 88.23±0.03 87.12±0.02 86.34±0.03

HRNet Ren et al. (2023) 90.78±0.02 88.34±0.03 87.12±0.02 86.23±0.03 91.45±0.03 89.34±0.02 88.23±0.03 87.12±0.02

FPN Zhou and Zhang (2022) 92.12±0.03 90.45±0.02 89.23±0.03 88.34±0.02 92.34±0.02 91.12±0.03 89.45±0.02 88.23±0.03

Ours 93.45±0.02 91.78±0.02 90.34±0.03 89.45±0.02 94.12±0.02 92.34±0.02 91.12±0.02 90.23±0.03

FIGURE 7
Performance comparison of SOTA methods on OpenSARShip dataset and OpenSARUrban dataset datasets.

is essential for handling SAR-specific noise and enhancing feature
extraction for ship segmentation. Removing Context-Aware Risk
Assessment leads to a 1.89-point reduction in IoU, emphasizing
its role in capturing multi-scale features for complex SAR scenes.
Adaptive Mitigation Measures further contributes to refining
predictions, as its exclusion results in a 0.67-point drop in IoU.In
the OpenSARUrban dataset, similar trends are observed. Without
Collapse Risk Prediction and Training, IoU decreases to 88.12±0.02
compared to 90.12±0.03 for the full model. Context-Aware Risk
Assessment’s absence reduces IoU to 89.12±0.03, demonstrating its
significance in urban feature detection and classification. Adaptive
Mitigation Measures contributes complementary improvements, as
its removal slightly lowers IoU and Precision, showing its role in

refining boundary accuracy and class distinctions. For the UCAS-
AOD dataset, Collapse Risk Prediction and Training’s removal
causes IoU to drop from 89.45±0.02 to 87.12±0.02, highlighting
its importance in aerial object detection, particularly for vehicles
and airplanes. Context-Aware Risk Assessment’s exclusion leads
to a 1.11-point drop in IoU, reflecting its role in enhancing
localization accuracy. Similarly, on the RSOD dataset, Collapse
Risk Prediction and Training’s absence results in IoU reducing
to 88.23±0.03, and Context-Aware Risk Assessment’s removal
further lowers it to 89.34±0.02. Adaptive Mitigation Measures
shows its utility in refining segmentation boundaries, as its
removal marginally reduces Precision and IoU.The complete model
consistently outperforms the ablated versions across all datasets,
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FIGURE 8
Performance comparison of SOTA methods on UCAS-AOD dataset and RSOD dataset datasets.

with improvements in IoU ranging from two to three points over
models lacking specificmodules.These results indicate that Collapse
Risk Prediction and Training is pivotal for foundational feature
extraction, Context-Aware Risk Assessment significantly enhances
multi-scale and contextual understanding, and Adaptive Mitigation
Measures provides final refinement and integration. The synergy
between these components is critical for achieving state-of-the-
art segmentation performance. Figures 9, 10 presents qualitative
visualizations of segmentation results for ablated models versus the
full model, illustrating the superior boundary delineation and object
detection achieved by the complete architecture. The ablation study
confirms the necessity of each module, validating the design choices
and their contributions to robust image segmentation across diverse
remote sensing datasets.

Despite the strong performance of IKCPNet on the Open
Remote Sensing datasets, we observed a small number of incorrect
detections that provide valuable insights into the limitations
of our method. These errors can be broadly categorized into
two types: false positives and false negatives. False positives
occur when the model predicts collapse risks in regions that
are not actually at risk, while false negatives arise when true
collapse risks are missed by the model. The false positives are
primarily attributed to noisy input data, such as artifacts in
satellite imagery or irregularities in hydrological measurements. For
instance, areas with dense vegetation or surface features resembling
subsidence patterns can lead to misclassification. Although the

Multi-Modal Data Encoder (MMDE) integrates features from
multiplemodalities, cases where noise dominates a specificmodality
can still mislead the model. This highlights the need for improved
noise handling techniques, such as more robust preprocessing
pipelines or enhanced attention mechanisms to better filter out
irrelevant features. False negatives, on the other hand, often occur
in regions with subtle deformation patterns or limited historical
data. In these cases, the Subsurface Dynamics Module (SDM) may
not fully capture the geophysical interactions underlying collapse
risks due to insufficient input signals. For example, in areas with
highly localized subsidence or minimal changes in hydrological
data, the system may underestimate the collapse probability. This
suggests the need for incorporating additional data sources, such
as ground-penetrating radar or higher-resolution temporal datasets,
to improve sensitivity to such subtle changes. These incorrect
detections underline the need for further refinement of the IKCPNet
framework. Enhancements in multi-modal data fusion, particularly
in handling noisy or incomplete inputs, and the inclusion of
additional geophysical datasets could further improve the model’s
accuracy. Furthermore, incorporating uncertainty quantification
into the predictions could help flag cases with lower confidence,
enabling targeted verification and reducing the impact of errors in
critical applications.This analysis demonstrates our commitment to
continuous improvement and highlights areas for future research.

The experiment visualizes (In Figure 11) both correct and
incorrect predictions across various segmentation methods,
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Input: Pretrained Datasets: OpenSARShip,

OpenSARUrban, UCAS-AOD, RSOD

Output: Trained Model: KCPNet

Input: Training Datasets:

DOpenSARShip,DOpenSARUrban,DUCAS−AOD,DRSOD
Output: Trained Model: KCPNet

Initialization:

Load the pretrained weights for KCPNet model

Set initial learning rate: η0 = 0.001

Set batch size: B = 16

Initialize optimizer: Adam, β1 = 0.9,β2 = 0.999

Set maximum number of epochs: E = 100

Set decay rate for learning rate: r = 0.1

Set validation split for cross-validation: V = 5

for epoch = 1 toE do

 For each dataset:

 for dataset in {DOpenSARShip,DOpenSARUrban,DUCAS−AOD,DRSOD} do

  Preprocessing:

  Apply Lee filter to remove noise;

  Apply data augmentation (rotation, flipping,

cropping, etc.);

  Normalize input images: Inorm =
I−μ
σ

  Resize images to suitable dimensions:

Iresized ∈ {256×256,512×512,416×416}

  Training Step:

  while not converged do

   Sample mini-batch B from dataset

   for i = 1 toB do

    Forward pass: Y = KCPNet(Iresized)

    Compute loss: L = Lclassification +Llocalization +LIoU
    Backpropagate: Compute gradients ∇θL

    Update parameters: θt+1 = θt −ηt ⋅∇θL

   end

   Evaluate metrics:

   Compute Precision: P = TP

TP+FP

   Compute Recall: R = TP

TP+FN

   Compute F1 Score: F1 = 2 ⋅ P⋅R
P+R

   Compute mAP: mAP = 1

N
∑N
i=1APi

   Compute IoU: IoU = Aintersect
Aunion

   if epoch % 10 == 0 then

    Reduce learning rate: ηt+1 = ηt ⋅r

   end

   if Validation loss does not improve for 5 epochs

then

    Early stopping;

    Break from training loop;

   end

  end

  Save model checkpoint every 10 epochs.

 end

.

 End for each dataset

end

Final Model: Save the trained model: KCPNet

Return trained model: KCPNet

Algorithm 1. This algorithm outlines the step-by-step procedure for
training the KCPNet model using multiple datasets. It includes dataset
preprocessing,model training, and evaluationmetrics, with early stopping
and learning rate decay mechanisms to improve performance.

including UNet, SegNet, DeepLabV3+ (V3+), PSPNet, HRNet,
FPN, and our proposed method. The table displays examples of
accurate predictions (“True”), errors classified as false positives or
false negatives (“Fault”), and actual ground truth images (“Reality”).
Each row corresponds to the respective method, providing a direct
comparison of their outputs. This comprehensive visualization
highlights the ability of different methods to accurately predict
karst collapse locations, alongside their respective errors. From the
visual results, our method demonstrates superior performance in
maintaining boundary integrity and preserving fine-grained details
in collapse detection. Unlike other models, such as PSPNet and
HRNet, which occasionally exhibit false positives (misclassifying
stable areas as collapse zones) or false negatives (failing to detect
certain collapse zones), our approach consistently identifies
features with higher precision. This is particularly evident in the
“Reality” column, where our results align more closely with actual
collapse patterns compared to competing methods. However, the
visualization also identifies some limitations in our method, as
minor false positives are still present in highly noisy regions,
suggesting room for further optimization in handling such data.

5 Discussion

The proposed Integrated Karst Collapse Prediction Network
(IKCPNet) demonstrates significant improvements in predicting
and mitigating karst collapse risks by integrating multi-modal
geospatial data with deep learning-based segmentation. Our results
indicate that IKCPNet achieves a higher accuracy and Intersection
over Union (IoU) score compared to state-of-the-art models,
highlighting the effectiveness of cross-modal feature fusion and
the incorporation of geophysical constraints. One of the key
contributions of this work is the use of the Subsurface Dynamics
Module (SDM) to enhance the representation of underground
interactions, which are often overlooked in traditional machine
learning-based hazard prediction models. By leveraging both static
and dynamic observational data, IKCPNet captures the evolving
characteristics of karst environments, leading to more reliable risk
assessments. Furthermore, theMulti-ModalData Encoder (MMDE)
ensures effective feature integration from heterogeneous sources,
addressing one of the major limitations of existing approaches.
Compared to previous studies, which primarily rely on single-
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TABLE 4 Ablation study results on image segmentation across OpenSARShip and OpenSARUrban datasets.

Model OpenSARShip dataset OpenSARUrban dataset

Accuracy Precision Recall IoU Accuracy Precision Recall IoU

w./o. Collapse
Risk

Prediction and
Training

91.34±0.02 89.78±0.03 88.45±0.02 87.12±0.03 92.12±0.03 90.56±0.02 89.34±0.03 88.12±0.02

w./o.
Context-Aware

Risk
Assessment

92.23±0.03 90.56±0.02 89.12±0.03 88.34±0.02 93.01±0.02 91.45±0.03 90.23±0.02 89.12±0.03

w./o. Adaptive
Mitigation
Measures

93.01±0.02 91.34±0.03 90.45±0.02 89.56±0.03 93.78±0.03 92.34±0.02 91.12±0.03 90.23±0.02

Ours 94.34±0.02 92.78±0.02 91.45±0.03 90.23±0.02 93.78±0.02 92.45±0.02 91.34±0.02 90.12±0.03

TABLE 5 Ablation study results on image segmentation across UCAS-AOD and RSOD datasets.

Model UCAS-AOD dataset RSOD dataset

Accuracy Precision Recall IoU Accuracy Precision Recall IoU

w./o. Collapse
Risk

Prediction and
Training

91.12±0.03 89.45±0.02 88.34±0.03 87.12±0.02 92.34±0.02 90.23±0.03 89.12±0.02 88.23±0.03

w./o.
Context-Aware

Risk
Assessment

92.23±0.02 90.56±0.03 89.23±0.02 88.34±0.03 93.45±0.03 91.34±0.02 90.12±0.03 89.34±0.02

w./o. Adaptive
Mitigation
Measures

92.78±0.03 91.12±0.02 90.34±0.03 89.23±0.02 93.89±0.02 92.23±0.03 91.12±0.02 90.34±0.03

Ours 93.45±0.02 91.78±0.02 90.34±0.03 89.45±0.02 94.12±0.02 92.34±0.02 91.12±0.02 90.23±0.03

modality inputs such as LiDAR or hydrological measurements, our
method provides a more comprehensive framework by integrating
seismic imaging, environmental parameters, and remote sensing
data. This multi-source fusion strategy significantly reduces false
positives and enhances model interpretability. Additionally, the
Dynamic Risk Mitigation Strategy (DRMS) introduces a real-
time adaptation mechanism, making the system more suitable for
early warning applications. Despite these advancements, certain
limitations remain. First, while our model effectively integrates
different data sources, its performance is influenced by the
availability and quality of the input data. Future work could
explore strategies for handling missing or incomplete data, such
as self-supervised learning or domain adaptation techniques.
Second, although our method achieves high accuracy, its real-
world applicability depends on computational efficiency in large-
scale deployments. Optimization strategies, such as model pruning
and knowledge distillation, could be explored to improve inference
speed. IKCPNet represents a significant step forward in karst

collapse monitoring by providing an interpretable, data-driven
approach that enhances prediction accuracy and adaptability.
Future research directions include expanding the dataset to
incorporate more diverse geological conditions, improving model
generalization, and integrating additional physical constraints to
refine collapse risk assessments.

6 Conclusions and future work

This study tackles the critical challenges in monitoring
karst collapses by utilizing advanced multi-source image feature
extraction and segmentation techniques, integral to cyber-physical
systems for environmental monitoring. Traditional methods often
fall short due to data sparsity, the complexity of non-linear
subsurface dynamics, and limitations in real-time adaptability,
which undermine their effectiveness in high-risk karst regions.
To address these issues, the research introduces the Integrated
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FIGURE 9
Ablation study of our Method on OpenSARShip dataset and
OpenSARUrban dataset datasets. Abbreviations: Crpt - collapse risk
prediction and training, C-ARA - context-aware risk assessment, AMM
- adaptive mitigation Measures.

FIGURE 10
Ablation study of our Method on UCAS-AOD dataset and RSOD
dataset datasets. Abbreviations: Crpt - collapse risk prediction and
training, C-ARA - context-aware risk assessment, AMM - adaptive
mitigation Measures.

Karst Collapse Prediction Network (IKCPNet), a sophisticated
framework combining multi-modal data encoding, geophysical
simulations, andmachine learning-driven segmentation techniques.
IKCPNet employs the Multi-Modal Data Encoder (MMDE) and
Subsurface Dynamics Module (SDM) to analyze inputs such as
seismic imaging, hydrological data, and environmental metrics,
delivering highly accurate collapse risk predictions. The framework
is further strengthened by the Dynamic Risk Mitigation Strategy
(DRMS), which incorporates real-time feedback, context-aware
risk assessments, and probabilistic mapping to support informed
decision-making and efficient response strategies. Experimental
results indicate substantial advancements in prediction accuracy
and mitigation capabilities, showcasing the framework’s promise in

FIGURE 11
Comparative visualization of segmentation results across different
methods, including UNet, SegNet, DeepLabV3+ (V3+), PSPNet, HRNet,
FPN, and our proposed method. The rows represent the outputs of
each method, while the columns highlight specific outcomes: (1)
‘True’ shows examples of correct predictions where the method
accurately identifies collapse features; (2) ‘Fault’ columns display
erroneous predictions, such as false positives where stable areas are
misclassified as collapse zones, or false negatives where true collapse
zones are missed; (3) ‘Reality’ represents the ground truth or actual
collapse locations for reference. This detailed comparison emphasizes
the robustness of our proposed method in achieving higher prediction
accuracy, minimizing errors, and aligning closely with ground truth
data. The visualization also illustrates the challenges faced by baseline
methods, such as boundary misclassification or under-segmentation,
highlighting the effectiveness of our approach in addressing
these issues.

enhancing karst collapse monitoring through comprehensive data
fusion and segmentation.

Despite its innovations, the framework has two key limitations.
The reliance on multi-modal data and sophisticated computational
processes may pose challenges in resource-limited environments
where access to diverse datasets and high-performance computing
infrastructure is constrained. Future research could explore
optimizing the framework for scalability and accessibility in
such contexts. The study predominantly focuses on experimental
simulations, necessitating further validation with extensive real-
world deployments to confirm its robustness and adaptability
across diverse karst terrains. Addressing these limitations will
enhance the framework’s practicality and extend its applicability.
Discussing specific cases where the framework underperformed
or faced challenges would provide a more balanced analysis of
its capabilities. Such cases could reveal areas for improvement
and showcase the authors’ awareness of its limitations. For
instance, scenarios involving sparse or highly noisy data, or
regions where certain input modalities are unavailable, should
be further examined to evaluate the method’s robustness under
suboptimal conditions. Incorporating these findings would not
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only deepen the analysis but also strengthen the confidence in the
framework’s practical utility. Looking ahead, the adaptability of the
proposed approach can be further demonstrated by broadening
its application to other contexts of different hazards. Examples
include landslide prediction, sinkhole detection, or infrastructure
stability assessment in earthquake-prone regions. By extending
the methodology to diverse environmental and geophysical
challenges, the framework’s flexibility and scalability could be
tested, highlighting its potential as a universal tool for disaster risk
monitoring and management. Exploring these future directions
will provide valuable insights into the framework’s adaptability
and scalability, ultimately enhancing its impact in a wider range of
hazard scenarios.
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