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Precipitation and groundwater are critical components of the hydrological
cycle. Understanding their variations and response relationship is vital for water
resource management, ecological protection, and flood risk assessment. To
explore the spatiotemporal patterns and response relationships of precipitation
and groundwater levels in the North Shandong Plain, this study analyzed data
from 2012 to 2023, including precipitation records and groundwater level
data from various aquifers. Using trend analysis, Independent Component
Analysis (ICA), and Cross Wavelet Transform (XWT), the research aimed to
identify the spatiotemporal patterns of groundwater and its lagged responses
to precipitation. The findings reveal that precipitation in the North Shandong
Plain exhibited a non-significant increasing trend from 2012 to 2023. Trend
analysis indicates that groundwater levels at 70% of monitoring points were
declining, primarily in the central and western regions, forming significant
groundwater depression cones. ICA identified three primary spatiotemporal
evolution patterns of groundwater levels in the area. The first independent
component (IC1) represents the main trend, characterized by a groundwater
level decline from 2012 to 2018, followed by a recovery trend after 2018.
Spatially, areas with high IC1 scores were concentrated in groundwater
depression cone centers, particularly in Dezhou City. By integrating XWT
analysis, the study explored the lagged response relationships between
groundwater levels and precipitation for different aquifer layers. Results indicate
distinct differences in lag times: shallow groundwater levels responded more
quickly to precipitation, with an average lag of 3.6 months, whereas deep
groundwater levels exhibited longer lag times, averaging 8 months, with
somdee points reaching up to 12 months. This study combines time series
trend analysis and blind source separation techniques to investigate the
spatiotemporal evolution patterns and response relationships of groundwater
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and precipitation. The findings provide new perspectives for regional water
cycle research.
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1 Introduction

Groundwater is an essential component of the water resource
system and interacts closely with surface water. It is widely
distributed in underground aquifers and sustains the perennial
flow of rivers through baseflow, playing a critical role in regulating
lake water levels. At the same time, the recharge process of
groundwater is closely related to precipitation (Ghanbari and Bravo,
2011; Zhang et al., 2021). As one of the primary pathways for
the transfer of water from the atmosphere to the surface, the
spatial and temporal distribution characteristics of precipitation
significantly influence groundwater recharge.The amount, intensity,
and distribution of precipitation directly affect surface runoff
and infiltration rates, thereby impacting the spatial and temporal
variations in groundwater recharge (Huang et al., 2020; Zheng
and Wang, 2021). Over the past three decades, groundwater levels
in aquifers across approximately 30% of the global land area
have declined at an accelerating rate, particularly in arid regions
with extensive agricultural land, where depletion exceeds 0.5 m
per year (Jasechko et al., 2024). Falling groundwater levels lead
to issues such as seawater intrusion (Gao and Luo, 2016), land
subsidence (Wang et al., 2024; Hu et al., 2024), and surface water
depletion (de Graaf et al., 2019). In Shandong Province, water
scarcity is a fundamental regional constraint, significantly impacting
economic and social development. The accelerating groundwater
depletion necessitates more effective regulatory and management
strategies.

Many researchers have analyzed precipitation-groundwater time
series and their responses (Sun et al., 2020; Li et al., 2024).
For example, Niu (2004) examined the spatial and temporal
evolution of precipitation in North China and tested the accuracy
of different spatial interpolation methods in typical watersheds.
Xiang et al. (2006) established a statistical model of precipitation
and groundwater depth using transfer functions and regression
analysis, revealing their relationship and temporal characteristics.
Dang et al. (2011) explored the response relationships among surface
water, groundwater, and precipitation, noting response time lags
amongwater bodies. Tatas et al. (2022) predicted future groundwater
levels by incorporating precipitation, pumping rates, and current
groundwater levels. Wang et al. (2023) applied the Mann-Kendall
(M-K) test and wavelet transform to examine groundwater response
to precipitation in the northern Qinling Mountains. Xu et al. (2021)
used GRACE satellite data and GLDAS products combined with
EEMD to analyze seasonal and long-term groundwater storage
trends in the North China Plain from June 2003 to June 2017.
Zhong et al. (2024) employed Pettitt’s test and moving T-test
with correlation coefficient methods to classify trend changes
in groundwater level subsequences, revealing the precipitation-
groundwater response characteristics within each sequence. Studies
in Shandong Province show a non-significant increasing trend in

precipitation with periodic features persistent future variability,
and differing aquifer responses to precipitation (Liu et al., 2021;
Ren et al., 2024; Yang et al., 2024). The spatiotemporal response
relationship between groundwater levels and precipitation is
complex. Although existing statistical methods can, to some extent,
identify the spatiotemporal response relationship between the two,
there are still certain limitations in understanding the patterns
of spatiotemporal variations in groundwater levels across different
aquifers and their response relationship to precipitation.

To further identify the spatiotemporal patterns and
characteristics of groundwater level changes, we introduce ICA
to decompose complex groundwater fluctuation patterns. ICA has
demonstrated unique advantages in separating overlapping surface
deformation patterns, enabling the identification of distinct modes
and their spatiotemporal features (Peng et al., 2022; Song et al., 2023;
Lai et al., 2024). Li (2020) proposed a combined denoising method
using Empirical Mode Decomposition (EMD) and ICA, validating
its effectiveness with simulated and observed data. Yin et al. (2023)
developed a time-frequency correlation analysis system combining
ICA and Wavelet Coherence (WTC) to analyze precipitation-
related independent components, highlighting the potential of ICA-
WTC in studying climate-precipitation-groundwater interaction
mechanisms.

Building upon these methods, we propose a combined approach
using ensemble time-series testing and signal separation techniques,
integrating remote sensing and ground observations. Compared to
traditional methods, this approach systematically identifies long-
term trends, variation patterns, and response relationships, enabling
more precise quantification of water cycle dynamics under varying
conditions and geographic environments, providing a scientific
basis for groundwater management. The combination of these
methods enhances analytical accuracy and offers new perspectives
for studying complex hydrological processes.

This study focuses on the North Shandong Plain, particularly
Dezhou, Binzhou, and Dongying. Using precipitation data
(2012–2023) and groundwater level data (2012–2020), we employ
M-K trend testing, ICA, and cross-wavelet transform to analyze
trends, spatial-temporal distributions, and response characteristics
of groundwater to precipitation. ICA is introduced as a blind source
signal separation method to extract different modes in groundwater
fluctuations, while WTC further investigates groundwater and
precipitation response relationships.

2 Study area overview

2.1 Regional location

The North Shandong Plain is situated in the northwest of
Shandong Province, encompassing areas of Liaocheng City, Dezhou

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1543335
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1543335

FIGURE 1
Location of monitoring wells and study area. The positions of the
typical points and the groundwater flow direction are indicated.

City, BinzhouCity, DongyingCity, and parts of JinanCity (Figure 1).
The geographical coordinates are 35°47′to 38°17′N and 115°17′to
119°18′E, covering an area of 42,000 km2. It shares borders with
Henan and Hebei provinces, and the Yellow River flows through
the region, eventually emptying into the Bohai Sea. The topography
slopes from southwest to northeast, with elevations ranging from
40 m to 0 m. The predominant landforms in the area include plains,
hills, and gullies, with relatively gentle terrain.

2.2 Meteorological conditions

Thestudy area lies in a transitional zone between arid and humid
climates, with precipitation mainly influenced by warm and humid
air currents from the southeast coastal areas.The climate is classified
as a warm temperate monsoon climate with characteristics of a
semi-arid climate. The region has abundant geothermal resources
but faces a scarcity of water resources. Precipitation exhibits
significant inter-annual and intra-annual variations, alternating
between wet and dry periods. Most of the region experiences low
annual precipitation, typically less than 650 mm. The rainy season
(June to September) contributes to 70%–80% of the total annual
precipitation, and the average annual temperature ranges from
11.9°C to 12.9°C.

2.3 Hydrogeological conditions

The North Shandong Plain primarily consists of thick
accumulations of Quaternary loose sediments. Throughout history,
the Yellow River has shifted its course multiple times, leading to the
formation of ancient riverbeds with concentrated deposits of nearly
parallel sand layers, providing favorable conditions for shallow
groundwater storage. The geological strata in the North Shandong
Plain can be categorized into three regions: the Piedmont alluvial
and floodplain area, the Yellow River floodplain area, and the delta
alluvial and marine plain area (Ji et al., 2019). Geotectonically, the
North Shandong Plain belongs to the North China Plate, North

China Depression, and, since the Cenozoic, has undergone the
influence of the Himalayan and Yanshan movements, resulting in
the development of fault structures and the formation of alternating
third-order structural units.

Based on burial conditions, groundwater is generally classified
into two main types: unconfined water and confined water. In
this study, shallow groundwater primarily refers to unconfined
water, with a burial depth of less than 60 m. It is closely
connected to the atmosphere and surface water systems. Medium
to deep groundwater primarily refers to confined water, with
a burial depth exceeding 60 m (Di et al., 2020; Wang and
Wan, 2020). Due to the presence of an overlying aquitard, its
connection to the atmosphere and surface water is relatively
weak, making it less influenced by climatic, hydrological, and
other environmental factors. Deep groundwater has a minimal
hydraulic connection with shallow groundwater because of the
aquitard and saline water layers separating them (Liu, 2001). The
lithological distribution and burial conditions of aquifers are shown
in Table 1, and hydrogeological cross-sections are presented in
Figures 2, 3. The North Shandong Plain region primarily relies
on groundwater resources for agricultural irrigation, municipal
water supply, and industrial use. In recent years, rapid economic
development and population growth have led to increased demand
for water resources. Consequently, issues related to groundwater
over-extraction, including groundwater level decline and water
quality deterioration, have become increasingly prominent.

3 Methods and materials

3.1 Data sources

The data used in this study mainly include China’s gridded
precipitation data for the years 2009–2023 from the National Earth
System Science Data Center (Peng et al., 2019). The dataset is
projected in the WGS1984 geographic coordinate system with
a spatial resolution of 1km, a temporal resolution of monthly,
and a time series from January 1901 to December 2023, with
precipitation measured in units of 0.1 mm. This dataset is generated
by downsizing China’s monthly precipitation data using the Delta
spatial downscaling scheme based on the global 0.5° climate
dataset published by CRU and the high-resolution climate dataset
published byWorldClim. It has been verified using 496 independent
meteorological observation points, ensuring its reliability. The
groundwater level data for the North Shandong Plain from 2012
to 2020 were recorded monthly, primarily sourced from the
China Groundwater Yearbook and other relevant literature. In
this study, monitoring wells with complete records from 2012 to
2020 were selected, ensuring no missing values. Based on aquifer
group classifications, monitoring wells with depths of 0–60 m are
categorized as shallow wells, while those deeper than 60 m are
classified asmedium-to-deepwells. According to statistics, the study
area contains 78 monitoring wells, including 61 shallow wells and
17 medium to deep wells (Table 2). The groundwater extraction and
supply data referenced in the text are sourced from the Shandong
Provincial Water Resources Bulletin, as shown in Tables 3, 4. The
technical roadmap for the study is illustrated in Figure 4.
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TABLE 1 Lithological distribution.

Aquifer group division Lithology Groundwater recharge type Burial depth/m

Shallow groundwater Ⅰ Fine sand - silt Strong infiltration recharge 23.7–65.6

Deep groundwater

Ⅱ Fine sand - silt Weak infiltration recharge 123.7–175.6

Ⅲ Fine sand - medium fine sand Runoff seepage recharge - exploitation 291–393

Ⅳ Medium fine sand - medium coarse sand Slow runoff seepage recharge - exploitation 378.6–482.9

3.2 Mann-Kendall test

The M-K test, proposed by Mann and Kendall, is a non-
parametric method used for trend analysis in time series data. This
method does not assume a specific distribution for the samples and
it is robust against a few outliers, making it widely applicable to the
trend analysis of non-normally distributed data. For a time series X
with n samples, the rank sequence is constructed as Equation 1:

sk =
k

∑
i=1

ri ri =
{
{
{

1 xi > xj
0 else

j = 1,2,…, i (1)

The rank sequence sk represents the cumulative count of
instances where the value at time i is greater than the value at time j.
Under the assumption of random independence in the time series,
the statistic is defined as Equation 2:

UFk =
sk −E(sk)

√Var(sk)
k = 1,2,…,n (2)

UF1 = 0, E (sk), Var (sk) represent the mean and variance of the
cumulative count sk.

UFi follows a standard normal distribution and is a sequence of
statistical measures calculated in the order of the time series x as x1,
x2,…, xn.

The standardized test statistic Z is calculated using the
following Equation 3:

Z =

{{{{{{{{{
{{{{{{{{{
{

s − 1

√Var(s)
 s > 0

0  s = 0
s + 1

√Var(s)
 s < 0

(3)

In a two-sided trend test, for a given confidence level
(significance level) α, if |Z| ≥ Z1−α/2, the null hypothesis H0 is
rejected. That is, at the confidence level α, there is a significant
upward or downward trend in the time series data. A positive value
of Z indicates an upward trend, while a negative value indicates a
decreasing trend. The absolute value of Z is greater than or equal
to 1.65, 1.96, and 2.58 corresponding to passing significance tests at
90%, 95%, and 99% confidence levels, respectively.

In this study, precipitation data and groundwater level data from
different monitoring wells were used as time series inputs X. The
final output consisted of the test statistic Z-values, which were used
to evaluate the trend of each time series based on the magnitude

of the Z-values. A confidence level of 1-α = 0.99 is chosen. Upon
consulting the standard normal distribution table, if the absolute
value of Z is greater than or equal to 2.58, it passes the significance
test at a 99% confidence level. If Z is positive, it is considered that
the time series exhibits a significant upward trend. Conversely, if Z
is negative, it is considered that the time series shows a significant
downward trend. If the absolute value of Z is less than 2.58, the
changing trend in the time series is deemed not significant.

3.3 Independent component analysis

ICA is a blind source separation method that can extract
independent components from an input matrix of mixed time
series signals (Song et al., 2023). To find a transformationmatrix that
maximizes the independence of the components, a target function is
defined to measure their independence. Common target functions
include maximizing higher-order statistics, such as Gaussianity,
non-Gaussianity, and entropy. By optimizing this target function,
a suitable unmixing matrix W can be found. ICA is widely
used in fields such as signal processing, electroencephalogram
(EEG) analysis, and stock market forecasting. Common algorithms
for ICA implementation include the Infomax algorithm and the
FastICA algorithm. This study employs the FastICA algorithm,
which estimates independent components based on the fixed-point
iteration theory. The algorithm separates independent components
by finding the direction with maximum non-Gaussianity, often
measured using negative entropy. FastICA is characterized by high
computational efficiency, fast convergence speed, and insensitivity
to initial values. It can quickly and accurately extract independent
components in most cases, making it one of the most widely used
ICA algorithms. It is flexible and applicable to data of different
dimensions and types. In this study, Principal Component Analysis
(PCA) is used as a data preprocessing method to calculate the
variance contribution ratio of components in the mixed signal
matrix. The input for PCA is the groundwater level observation
matrix X. PCA identifies the number of components that capture the
majority of source signal characteristics, which then determines the
number of independent components retained for subsequent ICA.

Assume the original observation matrix X is an n∗t matrix,
where n represents the data points and t represents the observation
time points. The source signal matrix is denoted as S, with its
components assumed to be mutually independent. Each column of
S represents the spatial contribution of an independent component.
The mixing matrix A describes how the source signals are
linearly combined to generate the observed signals. The model is
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FIGURE 2
Hydrogeological profile of Dezhou (Modified from Hu et al., 2024).

expressed as Equation 4:

X = AS (4)

Before extracting independent components, the mixed signal
undergoes preprocessing, including centering and whitening.
Centering involves subtracting the mean from each data point,
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FIGURE 3
Hydrogeological profile of Binzhou-Boxing (Modified from Di et al., 2020).

TABLE 2 Data sources.

Data Time series Quantities Resolution

Precipitation 2012–2023 144 1km, month

Shallow wells 2012–2020 61 month

Mid-deep wells 2012–2020 17 month

TABLE 3 The water recharge volume from 2017 to 2020 (in 100 million
m3), sourced from the Shandong Province Water Resources Bulletin.

2017 2018 2019 2020

Dezhou 19.93 20.09 21.54 19.72

Binzhou 15.95 17.14 20.28 16.69

Dongying 10.27 10.45 15.73 14.73

resulting in a centered matrix Xcentered, ensuring a zero mean for
each feature. Whitening removes correlations between dimensions
and normalizes them to unit variance. The whitening matrix Z is
obtained by calculating the eigenvalues of the covariance matrix of
the centered matrix.

Covariance Matrix Calculation: Compute the covariance matrix
for the centered data (Equation 5):

C = 1
n− 1

XcenteredX
T
centered (5)

Eigenvalue Decomposition: Perform eigenvalue decomposition
on the covariance matrix to obtain eigenvalues and
eigenvectors (Equation 6):

TABLE 4 The groundwater extraction volume for selected years (in 100
million m3), sourced from the Shandong Province Water
Resources Bulletin.

2010 2013 2015

Dezhou 1.34 0.97 0.60

Binzhou 0.26 0.14 0.16

Dongying 0.13 0.24 0.20

C = EΛET (6)

E is the matrix of eigenvectors, and Λ is a diagonal matrix
containing the eigenvalues.

Whitening Transformation: The whitening matrix Z is
computed as (Equation 7):

Z = D−
1
2 ETXcentered (7)

D is a diagonal matrix, and its diagonal elements are the inverse
square roots of the eigenvalues in Λ.

ICA Iterative Optimization: Initialize the weight matrix W
randomly. In each iteration, update each weight vector to maximize
non-Gaussianity. After each iteration, orthogonalize the weight
matrix W to maintain the independence of the components.

Convergence Criterion: Check if the change in the weight
matrix W is below a predefined threshold to determine whether the
algorithm has converged.

Independent Component Calculation: Once the algorithm
converges, use the final weight matrix W to compute the
independent components (Equation 8):

S =WZ (8)
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FIGURE 4
Research framework.

FIGURE 5
FastICA flow chart.

ICA decomposition is applied to the original mixed signals,
separating them into several independent source signals while
maximizing the statistical independence of each component.
Independent component analysis can effectively extract the features
of the original input signals (Peng, 2023). In this study, X represents
the input matrix of groundwater level time series observations,
the mixing matrix A represents the temporal variations of the
components, and each column in S corresponds to an independent
component, representing a distinct pattern of groundwater level
variation. The FastICA process is shown in Figure 5.

3.4 Cross Wavelet Transform

Cross Wavelet Transform is a signal processing method
based on wavelet transform. It involves crossing two wavelet
functions to obtain a set of new wavelet functions. These
new wavelet functions possess better time-frequency localization

properties, enabling a more accurate description of the signal’s
time-frequency characteristics. Cross Wavelet Transform combines
wavelet transform with cross-spectral analysis, revealing the
temporal and frequency relationships between two time series. The
principle involves decomposing the signal into wavelet coefficients
at multiple scales and frequencies, then cross-analyzing these
coefficients to obtain new wavelet coefficients. Finally, the inverse
transform is applied to obtain the signal after Cross Wavelet
Transform (Grinsted et al., 2004).

The cross-wavelet transform of two time series xn and yn is
defined as follows: The wavelet coefficient matrix WX of time series
xn and the complex conjugate matrix WY

∗
of the cross-wavelet

coefficient matrix WY of time series yn are multiplied element-wise
to obtain the cross-wavelet coefficientmatrixWXY for the time series
xn and yn, expressed as Equation 9:

WXY =WXWY∗ (9)

The cross-wavelet coherence spectrum is defined as |WXY|,
where PXk and PYk are defined as the background power spectra
of xn andyn respectively. The theoretical distribution formula
for the cross-wavelet power between the two time series
is given as Equation 10:

D(
|WX

n (s)WY∗
n (s)|

σXσY
< p) =

Zv(p)
v
√PX

k P
Y
k (10)

In the formula: σX and σY are the standard deviations of the time
series xn and yn respectively. When the background power spectra
are real-valued wavelets, v = 1; for complex-valued wavelets, v = 2.
Zv(p) represents the confidence level for a probability p.

For each time point m, the phase angle am of the cross-wavelet
transform can be obtained by calculating the phase angle of the
corresponding element in WXY (Equation 11):

am = arg(X,Y) = arg(WXY (m)) (11)

Arg denotes the operation of extracting the phase angle of a
complex number.
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The calculation methods used in this study primarily reference
Grinsted et al. (2004) and Qi et al. (2015). In cross-wavelet analysis,
the common oscillation period represents the shared variation cycle
between two time series. If two time series exhibit a significant
correlation over a given time interval, a specific phase relationship
in their variations can be observed. This phase relationship is used
to calculate the lag characteristics of one time series relative to the
other. In this study, precipitation time series values corresponding
to groundwater monitoring locations were extracted from grid
data. The input time series x and y represent precipitation and
groundwater level time series at the corresponding monitoring
points, respectively.Thephase angle obtained from the cross-wavelet
transform indicates the lagging phase of groundwater level changes
relative to precipitation changes. Multiplying this phase lag by their
common oscillation period yields the lag time of groundwater level
responses to precipitation changes (Yu and Lin, 2015).

4 Results and discussion

4.1 Spatiotemporal characteristics of
precipitation in the North Shandong Plain

4.1.1 Spatiotemporal distribution of precipitation
The monthly precipitation raster data for the North Shandong

Plain were extracted by clipping from 1 km precipitation raster
source data. The annual average precipitation spatial distribution
was obtained by calculating the mean values of multiple grid cells.
The average value of the entire grid was used to represent monthly
precipitation, allowing for the observation of temporal variations.
From 2012 to 2023, the annual precipitation in the North Shandong
Plain showed relatively small interannual variation, with some years
identified as wet years (precipitation significantly above the multi-
year average) and others as dry years (precipitation significantly
below the multi-year average). Intra-annual precipitation was
unevenly distributed, with a pattern of rainy summers and dry
winters. Notably, precipitation was abundant in 2013, 2021, and
2022, reaching approximately 300 mm in July, while 2014 and 2015
experienced markedly lower precipitation, with the lowest annual
precipitation recorded at only 495 mm (Figure 6).

The spatial distribution of average monthly precipitation across
the North Shandong Plain exhibited a general increase from the
northwest inland to the southeast coastal regions. As shown in
Figure 6, the 650 mm isohyet serves as a boundary, with most
of the northwest receiving significantly less precipitation than the
southeast. In the northwestern part of Dezhou City, the long-
term average annual precipitation was less than 550 mm. In the
southeastern region, the annual average precipitation generally
exceeds 650 mm. In some areas on the northern foothills of
Mount Tai, it even surpasses 800 mm. These regions, located
on the windward slope of Mount Tai’s northern side, receive
abundant precipitation due to the uplift of warm and moist
air currents (Figure 7).

4.1.2 Trends in precipitation change
The monthly grid mean is calculated as the input for

precipitation trend analysis. Based on the results of the M-K test for
precipitation, the Z-score of the time series falls within the range of

FIGURE 6
The temporal variation of precipitation from 2012 to 2023.

FIGURE 7
The spatial distribution of annual average precipitation in the North
Shandong Plain from 2012 to 2023, with purple lines representing
precipitation isolines at 50 mm intervals.

±2.58, indicating that precipitation changes over time remain stable
at the 99% confidence level. In Figure 8, the red line represents
the UF statistic, the blue line represents the UB statistic, and the
yellow dashed line indicates the 0.01 significance level. If the UF
and UB statistics significantly exceed the 0.01 significance level,
the corresponding time series is considered to have passed the 99%
confidence level test, exhibiting a significant trend. Conversely, if
the fluctuation range remains within the significance threshold,
the time series does not exhibit a significant trend. When UF
>0 and lies above the positive significance level, it indicates a
significant increasing trend.WhenUF<0 and lies below the negative
significance level, it indicates a significant decreasing trend. If the
UF and UB curves intersect, the intersection point represents the
abrupt change point in the time series. As shown in Figure 8, the
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FIGURE 8
Precipitation M-K test result, UF statistics provided in Equation 2.

UF statistic for precipitation changes in the study area remains
greater than 0 but below the positive significance level.This similarly
indicates a slight upward trend in precipitation from 2012 to 2023.
However, this increasing trend is not significant and does not pass
the significance test.

4.2 Spatiotemporal variation
characteristics of groundwater levels in the
North Shandong Plain

4.2.1 Spatiotemporal distribution of groundwater
Shallow groundwater is directly recharged by vertical infiltration

from precipitation, irrigation return flow, and lateral seepage
from rivers and canals. It is the primary source of water for
agriculture and rural domestic use in the region. In most areas,
the shallow groundwater levels remained stable from 2012 to
2020, with relatively small fluctuations. A minor peak typically
occurred between August and September each year, followed by
a decline, with an average water level variation of 4.8 m. In
Decheng District, point 5 exhibited stable water levels in earlier
years, but between 2015 and 2018, frequent fluctuations were
observed due to increased precipitation, leading to several small
peaks (Figure 9). In the groundwater depression cone area of
southern Guangrao County, monitoring point 60 in Sujia Village,
Lique Town, experienced frequent oscillations. The well depth,
ranging from 40 to 80 m, penetrated Quaternary strata (Ji et al.,
2019). This region is characterized by a water-rich loose rock
aquifer with large pore spaces, leading to significant water level
declines and subsequent rebounds. Before 2006, the water level
dropped significantly; after 2006, with increased precipitation and
reduced groundwater extraction, recharge, and discharge reached
a balance (Liu et al., 2021).

Deep groundwater extraction primarily occurs in urban centers
and densely populated areas, with industrial use being dominant.
Over years of intensive pumping, regional deep groundwater
depression cones formed in the Decheng District of Dezhou,

FIGURE 9
The groundwater level variations at typical monitoring points: Points 5
and 60 are shallow monitoring wells located in Decheng District of
Dezhou City and Guangrao County of Dongying City, respectively;
Points 4 and 8 are deep monitoring wells located in Lingcheng District
and Qihe County of Dezhou City, respectively. The locations of these
points are marked in Figure 1.

Bincheng District of Binzhou, Boxing County, and Guangrao
County of Dongying. The maximum water table depth reached
137.83 m in Dezhou’s depression cone center and 111.19 m
in Binzhou’s center. Most deep groundwater levels exhibited a
continuous decline, with an average variation of 18.3 m. The
maximum drop of 36 m was observed at monitoring point 8 in Qihe
County, Dezhou, where the well depth reached 321 m. From 2012
to early 2017, the water level declined steadily at a slow rate, then
rapidly rose to a peak in February 2019 before resuming a linear
descent. By early 2020, the water level stabilized. Various regulatory
measures led to some recovery in deep groundwater levels starting
in 2015. Monitoring point 4 in Lingcheng District showed stable
water levels initially, followed by continuous rises starting in 2017
due to increased recharge (Table 3). The spatial distribution of the
monitoring points is shown in Figure 1.

4.2.2 Groundwater level trends
M-K test was conducted on 61 shallow groundwater monitoring

data. The results show that 19 monitoring wells had positive
Z-scores, indicating an upward trend in water levels, with 12
of these points having Z-scores greater than 2.58, passing the
significance test, suggesting significant groundwater level increases.
The remaining seven points had Z-scores between 0 and 2.58,
indicating stable or not significantly rising water levels. Areas with
significant groundwater level increases were mainly concentrated
in the southern regions of Dongying and Binzhou cities, while in
Dezhou, only monitoring well 22 showed an increasing trend. This
well is located near the Tu Hai River, far from the groundwater
depression funnel center, allowing shallow groundwater to be
replenished more promptly, which is why its water level change
differs significantly from other monitoring wells in Dezhou. At the
99% confidence level, 42 other groundwater wells showed significant
decreasing trends in water levels, with most concentrated near the
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FIGURE 10
Spatial distribution of groundwater level change trends. (A) Represents
the spatial distribution of shallow groundwater levels, and (B)
represents the spatial distribution of deep groundwater level
change trends.

groundwater depression funnel in the northwest of Dezhou, and the
remaining distributed in the central and eastern parts of the North
Shandong Plain. From southwest to northeast, the North Shandong
Plain transitions from the foothill alluvial and floodplain to the
delta alluvial and marine sedimentary plain. As seen in Figure 10,
the groundwater levels in the central and western foothill plain
area showed an overall decreasing trend from 2012 to 2020. Since
the 1960s, with the increasing groundwater extraction, regional
deep groundwater over-exploitation funnels formed in Dezhou and
Binzhou, altering the natural groundwater flow field and leading to
a convergence toward the funnel center. In the eastern part of the
Yellow River alluvial plain and delta alluvial plain, especially in areas
likeGuangraoCounty andBoxingCounty, far from the groundwater
depression funnel, shallow water levels remain stable, with some
showing clear increasing trends.

A trend test was conducted on 17 sets of deep groundwater
monitoring data, showing that five monitoring wells had Z-scores
greater than 0, all located in Dezhou, with 3 of these showing
a significant upward trend. There are fewer deep groundwater
monitoring points in Binzhou and Dongying, and the trend test
results indicate that from 2012 to 2020, deep groundwater levels
generally showed a downward trend. In total, about 70% of the
monitoring wells showed a decreasing trend. According to Table 4,
the groundwater extraction volume has decreased overall, but
certain years have shown rebounds. Therefore, it remains necessary
to continue implementing strict groundwater extraction control and
restriction measures while increasing recharge efforts.

FIGURE 11
Variance contribution of principal components of groundwater level.

4.2.3 Decomposition of groundwater level
temporal evolution characteristics based on ICA

The entire groundwater level time series is used as the
original observation matrix X. PCA is applied to calculate
the variance contribution rates, revealing that the cumulative
variance contribution of the first three components accounts
for 82.08% (Figure 11). ICA is then performed to decompose the
data into temporal variation patterns and the spatial distribution
represented by the mixing matrix. The first three independent
components are retained to analyze the spatiotemporal evolution
characteristics.

The results of the ICA decomposition (Figure 12) reveal
three main patterns of groundwater level evolution. Based on
the temporal variation and spatial distribution, IC1 shows a
continuous declining trend before 2018, followed by a significant
rebound after 2018. IC2 exhibits a periodic fluctuation pattern
with two consecutive cycles occurring between 2013–2015 and
2016–2018. IC3 highlights the variation of specific points, where
the groundwater level remained stable from 2012 to 2018, rapidly
increased in 2018, and peaked in 2020, consistent with the
characteristics of deep monitoring point 8. In terms of spatial
distribution, IC1 has the highest scores in Dezhou City, Huimin
County, and Guangrao County, with most of these points located
near the centers of groundwater depression cones. IC2 has high
scores in the northwest (DechengDistrict) and southeast (Guangrao
County), while IC3 is concentrated in the northwest region of the
North Shandong Plain. Among the three patterns, IC1 accounts
for over 60% of the signal contribution, indicating that the
dominant trend of groundwater levels in the North Shandong
Plain from 2012 to 2018 was a decline, consistent with the results
of the M-K trend test. The significant rebound observed after
2018 can be attributed to the increased water supply in the
region from 2017 to 2019 (Table 3) and reduced dependence on
groundwater for water supply, which promoted the recovery of
groundwater levels.

4.3 Response characteristics of
groundwater levels to precipitation
changes in the North Shandong Plain

Using cross-wavelet transform, the cross-wavelet coherence
maps of precipitation and groundwater level changes are obtained.
In the maps, yellow and blue represent the peaks and troughs
of energy density, respectively, and the color depth indicates the
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FIGURE 12
Temporal variations and spatial distribution of IC1, IC2, and IC3: (A) depicts the temporal variations of the three independent components, while (B–D)
respectively illustrate the spatial distribution of the three independent components.

relative changes in energy density. The black thick solid line-
closed region passed the 95% confidence interval red noise test,
indicating a significant resonance period. The black thin solid
line below the cone-shaped region is the Cone of Influence
(COI) area, representing the region where edge effects are more
pronounced.Thedirection of the arrows in the plot reflects the phase
relationship between precipitation and monitored water levels.
Arrows pointing from left to right indicate in-phase correlation,
while arrows pointing from right to left indicate anti-phase
correlation. A downward vertical direction signifies a 1/4 period
advance in precipitationwavelet transform, while an upward vertical
direction indicates a 3/4 period advance or a 1/4 period lag in
precipitation (Kong, 2022).

For shallow groundwater level changes (Figure 13; Table 5), the
resonance period between precipitation and groundwater at the
monitoring points is approximately 12 months. The groundwater
level response lag to precipitation is shortest in Binzhou, averaging
about 2 months. In Dezhou, the average lag is approximately 4

months, while in Dongying, the response lag is the longest, reaching
up to 6 months. The average lag time for shallow groundwater is
approximately 3.6 months. However, significant resonance between
precipitation and groundwater levels does not persist throughout
the entire time series. In Dezhou, significant resonance occurs
from 2015 to 2018; in Binzhou, it spans from 2017 to 2019;
while in Dongying, the monitoring point at Guangrao County
(point 60) shows continuous significant resonance from 2012 to
2020. Because shallow wells are closer to surface water bodies,
they can quickly receive precipitation recharge when precipitation
reaches the surface. Consequently, shallow groundwater levels are
more directly influenced by precipitation, resulting in shorter
lag times.

For deep groundwater level changes (Figure 14; Table 6), the
groundwater lags behind precipitation for a longer period, with an
average lag time of 8 months. Point 9 in Dezhou shows a relatively
rapid response, with a lag time of 3 months. The lag times at
other points range from 5 to 6 months, with the maximum lag

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1543335
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1543335

FIGURE 13
Cross coherence plot between shallow monitoring well groundwater level and precipitation.

TABLE 5 Cross-phase and lag time of shallow groundwater to precipitation.

ID Resonance period/m Location Significant period Cross phase/rad Lag time/m

3

12

Dezhou

2012–2013, 2016–2018 1.62 3

4 2012, 2015–2017 2.50 5

5 2012–2014, 2015–2018 2.02 4

12 2012 1.81 4

25

Binzhou

2012–2019 1.16 2

26 2012–2013, 2017–2019 0.86 2

27 2017–2019 0.91 2

60
Dongying

2012–2020 2.82 5

61 2012–2017 3.21 6
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FIGURE 14
Cross coherence plot between mid-deep monitoring well groundwater level and precipitation.

TABLE 6 Cross-phase and lag time of mid-deep monitoring wells to precipitation.

ID Resonance period/m Location Significant period Cross phase/rad Lag time/m

5

12
Dezhou

2012–2020 5.51 11

8 2016–2020 2.75 5

9 2012–2013, 2016–2020 1.78 3

11 2012–2016, 2017–2018 6.04 12

12 2014–2020 5.61 11

17 Dongying 2014–2020 3.00 6

reaching 11–12 months. Deep groundwater has a longer renewal
cycle due to the presence of an aquitard separating it from shallow
groundwater and the surface, resulting in a prolonged or even
negligible response to precipitation. Monitoring points with a
lag time of 12 months are mainly located in the groundwater
depression cone area in western Dezhou. In such cases, even with
precipitation recharge, the water level deficit caused by excessive
pumpingmust be replenished before any groundwater level recovery
occurs, further extending the lag time of groundwater response to
precipitation changes (Guan et al., 2023).

5 Conclusion

This study combines non-parametric testing, blind source signal
separation, and cross-wavelet transform methods to analyze the

spatiotemporal variations of precipitation and groundwater levels,
and their response relationship in the North Shandong Plain.
The ICA-XWT method contributes to a deeper understanding
of groundwater variation characteristics and its response to
precipitation. The main conclusions are as follows.

1) From 2012 to 2023, precipitation in the North Shandong
Plain remained stable with a slight increase, displaying a
spatial distribution decreasing from southwest to northeast.
According to the M-K trend test, about 70% of the shallow and
deep groundwater levels were declining, mainly concentrated
in the northwest groundwater drop funnel of Dezhou and
central areas. Excessive groundwater extraction is the primary
factor influencing the decline in groundwater levels.

2) Based on the independent component analysis method, three
primary groundwater level evolution patterns were identified.
IC1 represents a long-term declining trend, with a continuous
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decrease before 2018 followed by a significant recovery. IC2
exhibits periodic fluctuations, while IC3 reflects groundwater
level changes at specific points. Spatially, IC1 has the highest
scores, predominantly located in the centers of groundwater
depression cones, with Dezhou showing high scores across
all three components. IC1 contributes over 60% among the
three patterns, indicating that the groundwater level in the
North Shandong Plain primarily declined between 2012 and
2018, consistent with the M-K trend test results. The recovery
of water levels after 2018 was attributed to increased water
supply and reduced groundwater usage in the region between
2017 and 2019.

3) The lag time between groundwater levels and precipitation
varies between shallow and deep groundwater. For shallow
groundwater, the lag times increase sequentially across
Binzhou, Dongying, and Dezhou, at 2, 4, and 6 months,
respectively, with an average lag time of 3.6 months, indicating
a faster response to precipitation recharge. The average
lag time for deep groundwater levels is 8 months, with a
maximum of up to 12 months, with the latter primarily
occurring in the groundwater depression cone in western
Dezhou. Considering both shallow and deep groundwater
systems, although artificial groundwater recharge has been
implemented, the deficit caused by past excessive extraction
has not yet been fully replenished. Continued restrictions
on groundwater extraction and enhanced recharge efforts are
necessary to ensure a gradual recovery of groundwater levels.
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