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This study predicted daily-scale drought for the Fenhe River (FHR) Basin
and applied the explainable artificial intelligence (XAI) method to the model’s
prediction results. Daily-scale drought prediction can provide more timely
and detailed drought information, while deep learning interpretable methods
can help understand the impact of different predictors on droughts and
improve the credibility of the model. The standardized antecedent precipitation
evapotranspiration index (SAPEI) was selected as an index for evaluating drought
conditions. Five classical deep learning prediction models, namely, long short-
term memory (LSTM), gated recurrent unit (GRU), bidirectional long short-term
memory (biLSTM) networks, transformer (TFR), and informer (IFR), were applied
in the experiment, and the performance of each model was comprehensively
evaluated. The results of the test set show that all models make effective
predictions of droughts in the FHR Basin, with a Pearson correlation coefficient
(R) higher than 0.75. BiLSTM performs better in short-term prediction, while
TFR and IFR are better at long-term prediction. The results of the deep learning
interpretablemodel show that, aside from the strong influence of the SAPEI itself
in the prediction process, the mean temperature (TM) has the greatest influence
among the auxiliary predictors, followed by precipitation (PRE) and relative
humidity (RHU), with potential evapotranspiration (PET) being the weakest. Our
work emphasizes the importance of timely warnings of drought and the role of
XAI in the development of artificial intelligence.
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1 Introduction

Drought is a complex climate phenomenon affected by a variety of climate factors and
aggravated by climate change; the frequent occurrence of drought seriously threatens the
global ecological environment (Guo et al., 2019; Lawal et al., 2021; Wan et al., 2023). China
is one of the countriesmost seriously affected by drought, with drought-prone areas covering
more than 50% of its territory (Song et al., 2015). In recent years, China has continuously
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suffered from drought, which has affected the ecological
environment and human activities in varying degrees. The losses
to China’s agricultural economy due to drought have reached tens
of billions of RMB (Jia et al., 2018; Wang and Ma, 2023). Therefore,
how to effectively prevent drought and reduce its losses remains an
urgent problem that must be solved.

Due to the complexity of drought climate features, it is difficult to
use a standardized definition of drought. This has results in a variety
of evaluation indexes being used to assess the severity of drought,
with different drought indexes emphasizing different aspects (Hao
and Singh, 2015). Among the most widely used indexes are the
Palmer Drought Severity Index (PDSI), developed byWayne Palmer
in 1965, and the self-calibrating Palmer Drought Severity Index
(scPDSI), which has since been improved (Palmer, 1965;Wells et al.,
2004). The standardized precipitation evapotranspiration index
(SPEI) has been proposed in recent years to take into account
the potential evapotranspiration effect and has been proven to be
applicable to most areas in China in the subsequent relevant studies
(Vicente-Serrano et al., 2010; Wang and Chen, 2014). However,
most of the previous drought indexes were based on the monthly
time scale, which could not predict the sudden climate change in
time. Thus, short-term drought forecasting was still challenging
(Zhang et al., 2022). The standardized antecedent precipitation
evapotranspiration index (SAPEI) (Li et al., 2020) solves this
problemby comprehensively considering the impact of precipitation
and potential evapotranspiration, thus providing effective help for
timely drought warning.

Traditional methods of drought prediction, such as time-series
analysis and linear regression, have been used in earlier studies
(Mishra and Singh, 2010); the physical empirical model also plays
a good role in drought prediction (Li et al., 2022). It is worth
noting that such methods provide a relatively accurate analysis of
the physical mechanism of drought, but their prediction accuracy
is relatively low (Prodhan et al., 2022). With the rapid development
of computer technology, machine learning methods are also being
widely used in drought prediction (Xu et al., 2023; Prodhan et al.,
2022; Kan et al., 2023). Long short-term memory (LSTM) has been
proven to be an effective tool for drought prediction (Abbes et al.,
2023), and it can be combined with multiple sources of data,
such as soil moisture and runoff, to predict drought directly or
indirectly, which significantly improves the accuracy of drought
prediction (Wang et al., 2023).

Compared with traditional methods, machine learning
frequently achieves higher accuracy across various research
domains; however, the interpretability of these models tends
to be relatively limited (Fang et al., 2022; Lewis et al., 2021;
Song et al., 2017; Zhang B. et al., 2023). Shapley additive explanation
(SHAP) values are widely used in machine learning, which can
effectively analyze the contribution of different input features in
the prediction process and provide an interpretable analysis of
the model’s prediction (Aas et al., 2021; Lamane et al., 2025).
Expected gradients is an attribution method that analyzes the
importance of features and improves the performance of the model
in the task (Erion et al., 2021). The method has been applied to
hydrology, demonstrating the interpretability of deep learning and
analyzing the model’s contribution to the prediction of precipitation
and temperature in the process of flooding (Jiang et al., 2022).
Ham et al. used convolutional neural networks to make long-term

predictions of El Niño/Southern Oscillation (ENSO) events and
optimized the model later (Ham et al., 2019; Ham et al., 2021).
Meanwhile, this study also used the class activation mapping
(CAM) method to analyze the contribution degree of data from
different regions to the prediction of Nino3.4 and further explained
how the model can make correct prediction results (Ham et al.,
2019; Ham et al., 2021). The gradient-weighted class activation
mapping (Grad-CAM) method is improved on the basis of the
previous class activation map so that it can adapt to different types
of neural networks (Selvaraju et al., 2017).

Drought is a highly destructive natural disaster, and prediction
at the monthly scale or longer cannot respond timely to the short-
term climate changes that endanger social, economic, and ecological
environments. Our research focused on the prediction of drought at
a daily scale, which could help monitor and provide more accurate
warnings of short-term drought events than long-term drought
prediction, thereby reducing losses caused by disasters such as flash
droughts (Yuan et al., 2023). We trained five deep learning models
(LSTM, gated recurrent unit (GRU), bidirectional long short-term
memory (biLSTM) networks, transformer (TFR), and informer
(IFR)) (Graves et al., 2005; Zhou et al., 2021; Cho et al., 2014) to
predict drought in the Fenhe River (FHR) Basin on a daily scale
and analyzed the advantages of the self-attention mechanism. This
type of comprehensive examination has rarely been documented in
previous research. Different from existing methods, our innovation
is to apply SHAP to the results of daily-scale multivariate drought
prediction in order to analyze the contribution of different variables
in the predicting process. In the long term, explainable artificial
intelligence (XAI) holds significant research value for the sustainable
development of artificial intelligence.

2 Materials and methods

2.1 Study area

The FHR is an important tributary of the Yellow River, located
in Shanxi Province, China, and flows through Taiyuan, Jinzhong,
and other cities. It is the place where the main population gathers
in Shanxi Province. Shanxi is a province that faces severe water
shortage in China, with a high incidence of severe drought in
spring and summer (Sun et al., 2013). As the largest river in Shanxi
Province, the FHRBasin covers a quarter of thewhole province, with
developed industry, concentrated agriculture, and rapid economic
development. However, the shortage of water resources in the FHR
Basin, decreasing annual precipitation, and its uneven distribution
make droughts very likely to occur.

This study used a variety of deep learning models to predict
the drought climate with a 10-day lead time in the FHR
Basin (35°20′N–39°N, 110°30′E–113°32′E) and evaluated the
performance of different models in the prediction process. Figure 1
shows the geographical distribution of the study area.

2.2 Data

CN05 is a dataset developed based on 751 meteorological
observation stations in China (Xu et al., 2009). The meteorological
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FIGURE 1
Study area of the FHR Basin, which is located in Shanxi Province. The blue line represents the river, and the shaded part is the basin.

TABLE 1 CN05.1 data and derived variables.

Variable Unit

Precipitation (PRE) mm

Relative humidity (RHU) --

Wind velocity m/s

Mean temperature (TM) °C

Maximum temperature °C

Minimum temperature °C

Sunshine duration h

Potential evapotranspiration (PET) mm

Vapor pressure deficit (VPD) kPa

SAPEI --

data used in this experiment are all from the CN05.1 grid dataset,
which is produced with reference to the CN05 data and interpolated
from more than 2,400 meteorological observation stations in China
(Wu and Gao, 2013). The data range from 1961 to 2020, with
a spatial resolution of 0.25° × 0.25°. The variables of potential
evapotranspiration (PET), vapor pressure deficit (VPD), and the
SAPEI were derived from this dataset. All the variables use a daily
temporal resolution. Table 1 lists the data used in the study.

In the experiment, we set the period from 1961 to 2000 as the
training set, 2000 to 2010 as the validation set, and 2011 to 2020
as the test set. We set the duration of the training data to 30 days
and the prediction time to 10 days, i.e., 40 days for a sample period.
Before the training, we normalized the data from 0 to 1 using the
max–min method to speed up the convergence of the model. The
calculation is as follows (Equation 1):

X∗t =
Xt −X

min

Xmax −Xmin , (1)

where Xt is the grid value of the day t at a certain latitude and
longitude, Xmin is the minimum value of the corresponding latitude
and longitude time series, and Xmax is the maximum value of the
corresponding latitude and longitude time series.

2.3 Methodology

2.3.1 SAPEI classification
The SAPEI was used to evaluate the drought degree in the FHR

Basin.This index calculation requires PRE and PET data.We choose
the Penman–Monteith method to calculate PET, which takes into
account various climatic factors such as temperature and humidity
and has more physical significance than other methods (Allen et al.,
1998; Dai, 2011). The calculation formula of the SAPEI is as follows
(Equations 2, 3):

D =
N

∑
n=0

an(PRE −PET)n. (2)

aN = c. (3)
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TABLE 2 Drought severity grades of the SAPEI (Yang et al., 2025).

Threshold value of the SAPEI Grade name

SAPEI>2.0 Extreme wet

1.5 <SAPEI ≤2.0 Severe wet

1.0 <SAPEI ≤1.5 Moderate wet

0.5 <SAPEI ≤1.0 Mild wet

−0.5 <SAPEI ≤0.5 Normal

−1.0 <SAPEI ≤ −0.5 Mild drought

−1.5 <SAPEI ≤ −1.0 Moderate drought

−2.0 <SAPEI ≤ −1.5 Severe drought

SAPEI ≤ −2.0 Extreme drought

In the formula, D represents the daily difference between PRE
and PET, a denotes the attenuation constant, N is the number of
days ahead, and c denotes the fraction of contribution from the last
day of precipitation. Based on previous research, a = 0.98 and c =
13%, resulting in N = 100 (Li et al., 2020; Zhou et al., 2025).

F(x) = [1+( α
x − γ
)
β
]
−1
, (4)

SAPEI = w −
c0 + c1w + c2w2

1+ d1w + d2w2 + d3w3 . (5)

According to the log-logistic distribution, the probability
distribution function of the D series is calculated using Equation 4.
α, β, and γ are the scale, shape, and origin parameters, respectively.
If p ≤ 0.5, p = 1-F(x), and w = √−2 ln(P), the value of the
SAPEI is calculated according to Equation 5. If p > 0.5, p is
replaced by 1-p, and the sign of the SAPEI is reversed. The
constants are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308 (Vicente-
Serrano et al., 2010; Wang et al., 2021).

The SAPEI was divided into nine grades according to the
severity of drought, namely, extreme wet, severe wet, moderate
wet, mild wet, normal, mild drought, moderate drought, severe
drought, and extreme drought (Chen et al., 2019; Miah et al., 2017),
as shown in Table 2. The study classified the predictions of the
models according to drought grades and assessed the predictive
performance of the different grades.

2.3.2 Models
In this study, we first predict the drought situation in the FHR

Basin with a 10-day lead time using five different deep learning
models, which are based on the traditional recurrent neural network
(RNN) model (Sherstinsky, 2020) and neural network models
utilizing the self-attention mechanism. In the traditional model, we
choose LSTM, GRU, and biLSTM models, while the neural network
based on the self-attention mechanism (Vaswani et al., 2017) uses
TFR and IFR models.

RNNs are often used to deal with time-series problems. This
concept was proposed by Elman, and the network model used in
this study is the LSTM model that evolved from it (Elman, 1990;
Hochreiter and Schmidhuber, 1997). This model has a wide range of
applications in time-series prediction, such as streamflow prediction
and PM2.5 prediction (Sabzipour et al., 2023; Lin et al., 2024). In the
long time-series prediction, the current information is influenced
not only by the previous state but also by future information.
The biLSTM solves this problem well since it can better capture
bidirectional time-series information, and it is widely used in natural
language processing and time-series prediction (Kang et al., 2020).

TFR is a sequential model based on attention mechanisms.
Different from the traditional RNN, TFR only uses the self-
attention mechanism to process the input and output sequences,
so it can be calculated in parallel, which greatly improves the
computational efficiency. The self-attention mechanism calculates
the relationship of each element in the input sequence with all
other elements to determinet he corresponding importance of each
element. IFR is optimized on the basis of TFR, which effectively
reduces the complexity of the TFR model and greatly improves the
computational speed of a long time-series (Zhou et al., 2021).

The LSTM model consists of an input layer, an LSTM layer, a
fully connected layer, and an output layer. The core architecture of
LSTM mainly consists of the forget, input, and output gates. For
a time series, the forget gate determines the degree of influence
of historical information on the current and future states, that is,
the amount of information retained in long-term memory. The
input gate determines the information that can be added, while the
output gate is responsible for the final output information. BiLSTM
is an extension of LSTM. By introducing a bidirectional structure,
it can handle both forward and reverse information of time series
simultaneously. GRU has been improved on the basis of LSTM by
merging the forget and input gates in LSTM into update gates, in
which the number of parameters in the model is reduced and the
calculation is simpler.

Self-attention-based TFR and IFR are composed of an encoder
and a decoder. The encoder processes the time series using multi-
head attention, which is calculated independently for each attention
head, and then passes the output through a feed-forward neural
network. The decoder uses masked multi-head attention to prevent
access to future information while generating the prediction for the
current time step. Then, the output layer is connected by a feed-
forward neural network to obtain the prediction sequence. It is
worth noting that the IFR model introduces ProbSparse attention
to greatly reduce the computational complexity of the attention
mechanism.Weused theAdamoptimizer, and the number of epochs
was set to 100 during training. The batch size of the experiment was
set to 32, and the learning rate was 1e-4. The number of heads in
multi-head self-attention was set to 8.

2.3.3 Evaluation metrics
In this study, themean square error (MSE) was used as the index

of the loss function of the model. The mean absolute error (MAE)
and Pearson correlation coefficient (R) were also selected to evaluate
the performance of themodel.MSE andMAEwere used to represent
the gap between the predicted and true values; the smaller the value
is, the more accurate the prediction is. R is used to describe the
degree of agreement between the predicted and true time series, and
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a higher value indicates the better prediction performance of the
model. The calculation formula of the evaluation index is as follows
(Equations 6–9):

MSE(y,y′) =
∑n

i=1
(yi − y

′
i )

2

n
, (6)

MAE(y,y′) = 1
n

n

∑
i=1
|yi − y

′
i |, (7)

R(y,y′) =
Cov(y,y′)

√Var[y]Var[y′]
, (8)

BAIS(y,y′) =
∑n

i=1
(yi − y

′
i )

n
. (9)

Here, yi indicates the SAPEI value at the ith day, y′i indicates the
predicted value, Var[y]andVar[y′] denote the variance of the real
result and the predicted result, respectively, and Cov(y,y′) is their
covariance.

2.3.4 Interpretability methods
Deep learning models have been widely used in the field of

prediction, but in many cases, these are regarded as unexplained
black boxes. Thus, understanding how models make accurate
predictions is particularly important (Ribeiro et al., 2016). In this
study, the SHAP method was used to analyze the contribution
degree of different predictors in drought prediction and explore the
influence of the predictors on the prediction results under different
climatic conditions. SHAP is, therefore, a post-interpretation
method. In the SHAP model, each feature is a contribution to the
dependent variable, while in drought prediction, different predictors
will have an impact on drought (Lundberg and Lee, 2017). SHAP
builds the model by calculating the marginal contribution of
the features to the model output, and the calculation formula is
as follows (Equation 10):

Φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[f S⋃{i}(xS⋃{i}) − f S(xS)], (10)

where F is the sum of all feature sets; in order to calculate the
influence of a feature, fS⋃{i} is the training model with the presence
of the feature i, fS is the training model with the feature suppressed,
and xS is the input feature value in the set S.

3 Result

3.1 10-day prediction result

We use MSE to calculate the loss of the model. For different
deep learning models, the number of training epochs is uniformly
fixed at 100 generations, and the training loss of each model tends
to be stable after approximately 30 training cycles. This indicates
that the model effectively captures the features within the data,
completes the training process, and achieves relatively accurate
predictions on the training data. The training situation of the
model is shown in Figure 2, where the horizontal axis represents
the number of complete passes of the training dataset through the
learning algorithm and the vertical axis represents the training loss
value. As shown in Figure 2, the convergence time of GRU, LSTM,
and biLSTM is slightly longer than that of TFR and IFR. In addition,

FIGURE 2
Loss function curves for different models on the training set.

the training loss values of TFR and IFR are lower than those of GRU,
LSTM, and biLSTM, but their training also takes longer. The loss
value of each model finally stabilized at approximately 0.01.

Figure 3 shows the comparison of prediction results from
different deep learning models in the test set. When the prediction
length is 1 day, we call it PL1, and so on. The MAE values between
the predicted and true values of each model increase significantly
with an increase in the prediction length. The MAE values of GRU
and LSTM are significantly higher than those of biLSTM, TFR, and
IFR, indicating that the latter three models perform better than the
former two models in drought prediction. In addition, the MAE
of the biLSTM model gradually becomes higher than that of TFR
and IFR. The increase in the prediction length highlights the long-
term forecasting ability of TFR and IFR compared to biLSTM. By
calculating the standard deviation for the samples in the test set,
we observe that as the prediction length increases, the standard
deviation also gradually increases, indicating that the prediction
results become relatively unstable. This is reflected in the expanding
shaded area in the figure.

To further verify the performance of the model, we calculated
the R and MSE values between the predicted and true values of the
test set for different prediction lengths (as shown in Table 3). Higher
R values and lower MSE values indicate more accurate predictions,
and the optimal results are bolded in the table. It can be observed that
all models predict an R value higher than 0.75 in a 10-day lead time.
In the same way, according to the findings demonstrated by MSE,
biLSTM has better prediction accuracy than the remaining models
in the short term, but as the prediction length increases, the TFR and
IFR models have better prediction performance than the biLSTM
model. As the prediction length increases, the MSE of the model’s
predicted and true values gradually increases, and the prediction
results gradually deteriorate. Overall, the prediction results of all five
deep learning models show a high level of confidence.

The FHR experienced severe drought and wetting processes in
2011, 2013, and 2019, so we chose these 3 years to check the model’s
predictions for the 1-day lead time. The prediction of extreme
events provides a better indication of the model’s performance
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FIGURE 3
MAE of different models from 1- to 10-day predictions. The shaded area indicates the standard deviation.

TABLE 3 Correlation of models at different prediction lengths.

Model LSTM GRU biLSTM TFR IFR

Metric MSE R MSE R MSE R MSE R MSE R

Prediction length (days)

PL1 0.0673 0.9529 0.0612 0.9602 0.0147 0.9888 0.0220 0.9840 0.0211 0.9838

PL2 0.0859 0.9364 0.0806 0.9427 0.0327 0.9743 0.0393 0.9710 0.0385 0.9701

PL3 0.1061 0.9183 0.0995 0.9249 0.0545 0.9571 0.0581 0.9552 0.0606 0.9523

PL4 0.1265 0.8999 0.1216 0.9048 0.0754 0.9404 0.0785 0.9385 0.0816 0.9353

PL5 0.1464 0.8816 0.1410 0.8867 0.0992 0.9220 0.0992 0.9217 0.1001 0.9196

PL6 0.1663 0.8633 0.1588 0.8697 0.1198 0.9051 0.1203 0.9043 0.1220 0.9002

PL7 0.1854 0.8454 0.1782 0.8514 0.1432 0.8866 0.1408 0.8868 0.1414 0.8839

PL8 0.2039 0.8279 0.1984 0.8324 0.1652 0.8684 0.1603 0.8694 0.1605 0.8674

PL9 0.2216 0.8109 0.2151 0.8161 0.1859 0.8509 0.1801 0.8522 0.1801 0.8491

PL10 0.2383 0.7947 0.2315 0.8000 0.2075 0.8330 0.1986 0.8354 0.1968 0.8340

Bold values represent the optimal result.

(Camps-Valls et al., 2025). Figure 4 reflects the prediction of drought
for the 1-day lead time by three network models in different years.
The lines in different colors in the figure indicate different deep
learning models, with black representing the SAPEI value. In the
first half of the year, the FHR Basin experienced varying degrees of
drought, with severe drought conditions particularly in the spring.
In the summer of 2013, the area becamewet. For thesemore extreme
events, all five models provided relatively accurate predictions, with
the green and purple lines aligning more closely with the black line
(true value), further confirming the superior performance of the
TFR and IFR models. In the spring of 2019, the SAPEI index of the
FHR Basin fluctuated greatly, and there was a transition from severe
drought to severe humidity in a short period of time. The model
also made an accurate prediction for this obvious fluctuation in the
short term.

Figure 5 reflects the forecast situation of different drought
grades. The severity of drought is different, and the prediction
difficulty of the model is also different. The extremely small sample
content increases the pressure on the training of the model, which
also leads to a decrease in the prediction accuracy. Different deep
learning models were used to predict the results for the first day
of analysis. It should be noted that the SAPEI was divided into
nine grades according to relevant studies; however, the samples
of the test set did not contain extreme drought values, so only
the remaining eight levels were analyzed. It can be observed from
the figure that with the aggravation of drought and humidity, the
prediction deviation of each model also increases significantly. For
humid conditions, the predicted value of the model is often lower
than the true value, while for drought conditions, the predicted value
of the model is often higher than the true value, which means that
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FIGURE 4
Actual SAPEI values and 1-day predictions of different models in 2011, 2013, and 2019. The black line indicates actual SAPEI values, and the other
colored lines indicate 1-day predictions.

FIGURE 5
One-day prediction biases of each SAPEI grade with different models.

the model generally underestimates the humid conditions in the
FHR Basin but overestimates the drought conditions in this region.
The figure also shows that the prediction deviation of biLSTM, TFR,
and IFR in different drought grades is significantly smaller than that

of the other two models. However, biLSTM has poor predictions
for extreme wet conditions, which indicates the superiority of the
TFR and IFR models based on the self-attention mechanism in
prediction. This is also consistent with the previous analysis.
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FIGURE 6
Contributions of predictors in different historical periods; (a–c) 1 day, 15 days, and 30 days away from the forecast target, respectively, and (d)
cumulative importance in 30 days.

FIGURE 7
SHAP value of the predictors 1 day before the predicted target; dots
indicate dates in the test set. The position of the points on the x-axis
indicates the influence of the features on the model, with blue
indicating high eigenvalues and yellow indicating low eigenvalues.

3.2 Interpretability of 1-day model
predictions

Based on the classical LSTM model, this paper further uses the
SHAP method to analyze the effects of each variable in predicting
the next day. In this process, variables with similar mechanisms
were appropriately screened, and the variables used were SAPEI and
four auxiliary predictors, namely, temperature (TM), precipitation
(PRE), relative humidity (RHU), and potential evapotranspiration
(PET). The study used the historical SAPEI value as a predictor to
ensure that the experiment was rigorous.

We analyzed the contributions of historical input predictors. In
the 1-day prediction (PL1), we also set the sliding window length to
30, so the SHAP method can show the change in the importance of
different predictors in the predicting process over the past 30 days.
Figures 6a–c show the ranking of the importance of predictors 1-
day, 15-day, and 30-day away from the PL1, respectively. The longer

the time away from the PL1, the lower the model output value. In
different time periods, the importance of predictive factors will vary,
but the SAPEI is always the most influential variable. The model
most easily captures the change characteristics of the prediction
target itself. On the day before PL1, PRE was the most influential
variable among the four auxiliary predictors, followed by RHU and
PET. With the change in time, the importance of PRE began to
decline, while the importance of TM increases significantly. It can
be observed that the PRE will affect the drought situation in time,
while the TM change in the time period far from the PL1 has a
more important impact on the drought. These two changes will
comprehensively affect the drought degree (Del-Toro-Guerrero and
Kretzschmar, 2020).Wang et al. also showed that PREplays a leading
role in drought occurrence in the Yellow River Basin (Wang et al.,
2022). The figure also shows that PET has little influence on drought
compared to RHU and PRE. Figure 6d shows the total influence of
various variables on PL1 in the past 30 days. Excluding the SAPEI
itself, TM is the most influential variable on drought, followed by
PRE and RHU, and PET is the weakest.

Figure 7 shows the influence of each variable in the prediction
process on the day before PL1 of all samples in the test set. When
the SHAP value is positive, it will have a positive impact on the
prediction result, and the prediction result will be consistentwith the
change of the predictor; otherwise, it will have a negative impact, and
the change of direction of both will be opposite. The change in color
is the change in the value of the predictor itself. It can be observed
from the figure that the SAPEI has the strongest influence, which is
consistent with previous analysis. With an increase in SHAP values
displayed by PRE and RHU, the color of the scatter points gradually
deepens, and their values also increase, which is consistent with the
physical mechanism. When PRE and RHU increase, the degree of
wetting will increase, and the SAPEI will also increase; however, the
situation of PET and TM shown in the figure is opposite, i.e., both
of them will have a negative impact on the prediction target, and the
increase in their own value will aggravate the drought degree and
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FIGURE 8
Change of the predictor and its contribution value; the color indicates the SAPEI value. (a–d) represent the four predictors TM, PRE, RHU and PET
respectively.

reduce the SAPEI value. The samples with high values are mainly
concentrated in the negative region of the SHAP.

In Figure 8, the study analyzed the changes in the importance of
all samples in the test set of four auxiliary predictors with their own
values. (a)–(d) indicate the total influence of 30 days in history, and
the change in color indicates the SAPEI value. As shown in Figure 8a,
both high and low temperatures have a great impact on drought.
From the distribution of SHAP values, extreme events exist in
different seasons. Low TM will lead to a high SHAP value, while
high TM corresponds to a low SHAP value, which is mainly caused
by the negative influence of TM on the drought index. (b) and
(c) correspond to PRE and RHU, respectively. The SHAP value
gradually increases as both increase, and the positive impact on the
prediction results also gradually increases. High RHU also increases
the degree of moistness, which is reflected in the increase in the
SAPEI value. This is also consistent with previous analysis. The
opposite is true for PET; i.e., when PET increases, it causes drought,
and the SAPEI value decreases. Overall, the SHAP method more
accurately analyzes the role played by different predictors in the
prediction process, thus improving the interpretability principles
behind the model while making predictions.

Figure 9 shows the impact of four extreme events on the LSTM
model predictions, with two periods of severe wetness and two
periods of severe drought chosen as cases for this study. The
independent analysis of wet and dry conditions during different
periods aims to explain how each meteorological factor affects the
prediction results during those times. The two wet periods occurred
in the summers of 2013 and 2016, while the drought time periods

were mainly concentrated in the springs of 2013 and 2019. The
selected sample values forwet periods or droughtswere all consistent
with a SAPEI value above 1.5 or below −1.5. The figure reflects
the total impact of the samples selected for different meteorological
factors, where the base value represents the average contribution
of all the samples in the test set, and the average contribution
of the total samples tends to be 0 due to the large number of
samples and the positive and negative impacts on the prediction
results. f (x) indicates the weighted contribution of each variable of
the selected samples. During the wet period, the blue bar pushes
up the contribution of the predicted samples, while the yellow
bar decreases the contribution of the predicted samples, and the
wider bar indicates the higher contribution, which shows that the
SAPEI itself is an important factor influencing the prediction results.
Consistent with previous analyses, wet periods had higher PRE and
RHU values and SAPEI values greater than 1.5, making the overall
impact of the sample positive, while during dry periods, SAPEI
values were less than −1.5 and there was relatively less PRE, which
reduced the model output.

4 Discussion

4.1 Advantages of the self-attention

TFR is an emerging deep learning model in recent years that
has been widely used in the field of prediction, often outperforming
previous deep learning methods (Cui et al., 2023; Yang et al.,
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FIGURE 9
Individual force plots for different drought and wet periods. The base value indicates the average contribution value of the test set data, and f(x) is the
contribution value of a certain dry or wet period. Yellow and blue indicate features that push contribution values up and down, respectively.

2023). Our experimental results also indicate that the TFR and
IFR models perform better overall. The self-attention in the TFR
model can effectively capture the features in the long sequence data,
and the LSTM model effectively mitigates the gradient explosion
and gradient vanishing problems compared with the traditional
recurrent neural network, but its sequential computation still
leads to the problem of missing information in the ultra-long
sequence data. The self-attention in TFR solves such problems
well through the computational principle of parallel operations,
but it is highly dependent on a large amount of training data,
which also implies higher training costs (Wei et al., 2023). This
experiment provides nearly 20,000 training samples to fully utilize
the model performance of TFR, which further improves the
prediction accuracy.

4.2 Limitations of XAI in this study

This study demonstrates the outstanding performance of
deep learning models for drought prediction and assessment.
However, balancing the predictive performance of a model with its
interpretability is relatively difficult, which requires a combination
of effective tools (Jiang et al., 2022). A better understanding of
the mechanism behind the model can further improve the model’s
performance (Gunning and Aha, 2019).

Predicting extreme events is often difficult, and understanding
the impact of meteorological elements during an extreme event
has significant research implications. In this study, we used the
XAI methods. The SHAP model can analyze the importance of
different predictors in the drought prediction process and the
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different impacts produced by each predictor. However, there are
some limitations to this method in the current study, with low
computational efficiency being the most obvious. The time required
for the SHAP analysis of the predictors is much longer than model
training, and the method requires the model to carry out several
iterations (van Zyl et al., 2024). In addition, the SHAP model has
some limitations in identifying the importance of the predictors,
and SAPEI, as themost important variable in the prediction process,
accounts for a great proportion of the model’s output, which affects
the output of the remaining auxiliary factors to a certain extent and
weakens the differences between the factors.

In the historical 30-day predicting cycle, the importance scores
of the variables become progressively lower as time increases, and
themodel is unable to accurately determine the positive andnegative
feedback effects of the different predictors. The variation in the
eigenvalues of each sample with the model output 1-day ahead in
Figure 7 is more regular than the total impact shown in Figure 8.

4.3 Importance of short-term drought
prediction and future research directions

In this study, a daily drought prediction system was made for
the FHR Basin. Unlike the monthly scale long-term prediction,
daily drought prediction belongs to the short- and medium-
term prediction of drought, which can effectively solve the
problem of sudden drought prediction. We cannot ignore the
damage caused by short-term droughts. For example, flash
droughts can rapidly reduce soil moisture, thereby severely
affecting the agricultural economy (Zhang et al., 2023b). Accurate
daily forecasting allows the relevant authorities to formulate
countermeasures in advance, effectively reducing the damage caused
by such disasters.

This experiment mainly focuses on natural factors when
considering the factors affecting droughts, which is where our
research can be further improved, and the impact of human
activities on climate change should not be ignored (Zhang et al.,
2023c). Population change and land use type transformation
will affect climate change, and in the subsequent research,
comprehensive consideration of natural and anthropogenic factors
can further clarify the causes of drought, effectively formulate
drought mitigation strategies, and improve the accuracy of drought
prediction.

5 Conclusion

In this study, we used five different deep learning models,
namely, LSTM, GRU, biLSTM, TFR, and IFR, for daily drought
prediction in the FHR Basin and evaluated the prediction accuracies
and stabilities of the different models under different prediction
lengths. In addition, for the classical LSTM model, we re-trained the
model to control the prediction length to 1 day and applied deep
learning interpretable techniques based on the prediction results
to analyze the importance of different predictors in the drought
prediction process and how each predictor affects the prediction
results. The following conclusions can be drawn from this study:

(1) All five deep learning models performed well in the drought
prediction process, and the prediction accuracy decreased
with an increase in the prediction duration. The experimental
results show that the model performance of biLSTM, TFR,
and IFR is significantly better than that of the other two
deep learning methods. The TFR and IFR models are more
advantageous in long-term prediction. The reason for this
result is mainly because the self-attention module in the TFR
and IFRmodels can effectively extract the sample features, thus
improving the prediction accuracy of the models. Overall, all
five methods provided a more accurate prediction of drought
in the FHR Basin in the 10-day lead time.

(2) The SHAP model analyzes the impact of predicting the SAPEI
values for the next day with different predictors for 30 days of
history, and the experimental results show that the output value
of the model decreases with an increase in the length of time
from the PL1; in addition, the importance of the predictors
changes at different times in the 30 days of history. Among
the five different predictors, the SAPEI consistently makes a
major contribution, and PRE decreases in importance as the
length of time from the PL1 increases, while the importance
of TM increases significantly. Combining the total impacts of
the 30-day history, TM has a higher impact on the predicted
outcomes than PRE and RHU, and PET has the weakest impact
on the outcomes.

(3) The experimental results show that different predictors will
have different impacts on the prediction results, with the most
pronounced performance 1 day prior to the PL1. PRE and
RHU will have a positive effect on the predicted values, and
the eigenvalues will become larger as the SHAP value increases.
The opposite effect is produced by PET andTM;when PET and
TM are increased, it will lead to drought, and the SAPEI values
will decrease, which will have a negative effect on the predicted
results. Combining the historical 30-day model outputs and
analyzing the extreme cases lead to the conclusion that the
effects of the four auxiliary predictors ondrought are consistent
with the actual physical mechanisms, with PRE and RHU
positively affecting SAPEI values and PET and TM negatively
affecting them.
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