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Accurate rate of penetration (ROP) prediction is important for optimizing drilling
parameters, selecting drilling tools, improving drilling efficiency, and reducing
operation cost. The study area is deep lacustrine shale oil in Mahu, with alkaline
lacustrine sediment and strong non-homogeneity, the spatial variation of ROP
is fast and cannot be accurately predicted. The selection of drilling parameters
and drilling tools are not targeted, especially there is a good correspondence
between ROP and the formation resistivity by statistics. In the paper, a new
method for well-seismic joint data-driven resistivity-based prediction of 3D
spatial ROP based on geologic factors is presented. The advantage of this
method is that the geological factors are invariant, and when the engineering
factors change and the technological progress is upgraded, only the ROP of
the formation needs to be recalibrated with new representative wells. Existing
research on ROP prediction mainly focuses on 1D spatial, physical-driven,
data-driven, fusion of drilling and logging information, multiple regression,
and AI algorithm. The method described in the paper is a new, original, and
advanced method. It can be used for accurate prediction of 3D spatial ROP.
The specific idea is as follows: Classify the formation hard-to-drill grade based
on the unsupervised neural network (UNN) for logging resistivity, construct
the resistivity classification template, determine the ROP of each hard-to-drill
stratigraphy from the ROP of the drilled wells, obtain the 3D spatial resistivity
model by using the well-seismic joint data-driven method, classify the resistivity
model into hard-to-drill grades and assign the ROP. The geological background
of shale oil in Fengcheng formation is summarized, and the current status and
difficulties of drilling engineering in the study area are summarized. The method
principle and implementation steps are described in detail from five aspects: the
relationship between resistivity and ROP, the technical process of predicting 3D
spatial ROP, stratigraphy classification based on logging resistivity and calibration
of ROP, 3D seismic data processing and facies-controlled resistivity attribute
modeling, and prediction of 3D spatial ROP, and an application example of the
development well is given. As verified by the example, the predicted ROP of this
method is basically consistent with the actual ROP, which effectively guides the
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selection of drill bits, personalized drill bit design, and optimization of drilling
parameters.

KEYWORDS

well-seismic joint, data-driven, resistivity, prediction, 3D spatial, rate of penetration,
shale

1 Introduction

Drillability is the ability of a rock to resist fragmentation by a drill
bit (Gan et al., 2021), commonly represented by indicators sunch as
rate of penetration (ROP) (Khosravimanesh et al., 2024; Zeng et al.,
2023; Qi et al., 2019), drilling rate index (DRI) (Shahani et al.,
2024; Kamran, 2021; Khandelwal and Armaghani, 2015), drillability
grade (Kd) (Cheng et al., 2024; Li et al., 2021; Geng et al., 2014).
The drillability of rocks can be theoretically determined by a
laboratory physical simulation device. An experimental standard
rock sample is made from the core of engineering coring, and
the drilling process is simulated by using a microbit, applying a
certain weight on bit (WOB) and rotary speed to the microbit,
and recording the drilling time at a drilling depth of 2–3 mm to
calculate the drillability grade (Feng and Wang, 2022; Kong et al.,
2022). Due to the limitation of the number of engineering coring
and the difficulty of the experimental environment to simulate the
temperature and pressure at the bottom of the well, the drillability
grade determined by the drillability experiments are 1Ddiscrete data
with low accuracy. To overcome this problem, many scholars have
applied statistical models (Chen et al., 2020) and machine learning
models (Mahmoud and Elkatatny, 2023) to compute continuous 1D
formation drillability models, and combined with seismic data to
realize 3D formation drillability modeling (Qi et al., 2019).

ROP indicates the footage per unit time, which most intuitively
and figuratively reflects the drilling operation time and cost (Qi et al.,
2019). In the field of petroleum drilling, accurate prediction of
ROP is of great significance for optimizing drilling parameters,
selecting tools and equipment, improving drilling efficiency, and
reducing operating costs (Eskandarian et al., 2017), especially
during the period of global oil price downturn. The factors that
affect ROP include geological and engineering factors. Among
them, engineering factors can be categorized into controllable and
uncontrollable factors (Tookallo and Sohbatzadeh, 2023; Sabah et al.,
2019). Controllable drilling factors are WOB, RPM, torque (T),
standpipe pressure (SPP), etc., and uncontrollable drilling factors are
bit size, drilling fluid physicochemical properties, etc. Controllable
factors do not affect each other, while uncontrollable factors affect
each other (Soares and Gray, 2019). Therefore, ROP prediction can
be studied fromboth geological and engineering factors in two ideas.

Many scholars have conducted research on 1D ROP prediction.
Hegde et al. (2017) compared physics driven and data-driven
modeling methods for ROP and proposed a confidence interval
method for predicting ROP for drilling decisions. Ashrafi et al.
(2019) believed that eight parameters, including drilling pressure,
drill bit speed, pump flow rate, pump pressure, pore pressure,
gamma rays, density logging, and shear wave velocity, have the
greatest impact on ROP. They constructed eight hybrid artificial
neural networks, including genetic algorithm (GA), particle swarm
optimization algorithm (PSO), biogeography-based optimization

algorithm (BBO), etc. The hybrid artificial neural network showed
higher efficiency and reliability. Hashemizadeh et al. (2022) inputted
11 parameters into nine machine learning models and found
that random forest (RF) and artificial neural network (ANN)
had high accuracy in predicting ROP. Ji et al. (2023) proposed a
Long Short Term Memory Neural Network (LSTM) method that
improved the accuracy of predicting ROP. Oyedere and Gray (2020)
represented ROP as a function of weight on bit (WOB), flow rate,
rotational speed (RPM), and uniaxial compressive strength (UCS),
and established classification models using five different machine
learning algorithms: logistic regression, linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), support vector
machine (SVM), and random forest (RT). Ebrahimabadi and Afradi
(2024) applied three artificial intelligence algorithmswhich are Grey
Wolf Optimization (GWO), Particle Swarm Optimization (PSO),
and Grasshoperl Optimization (GOA), to predict ROP. Research has
shown that all of themcanproduce goodprediction results, butGOA
is more accurate. Wang et al. (2024) proposed a ROP prediction
method based on PCA informer. Compared with recurrent neural
networks (RNN) and long short-term memory neural networks
(LSTM), this method has significant advantages and provides
a new solution for improving drilling speed. Osman et al.
(2021) comprehensively considered drilling machinery parameters,
wellbore cleaning parameters, and formation properties, and used
the Random Forest (RF) algorithm to predict the ROP of horizontal
wells in carbonate rock formations. Al AbdulJabbar et al. (2022)
used artificial neural networks (ANN) to learn drilling machinery
parameters and predict ROP in gas bearing sandstone formations.

Many scholars have conducted research on 3D spatial ROP
prediction. Geng et al. (2014) expressed drillability grade in
terms of velocity and density, obtained 3D velocity bodies
through seismic inversion with logging constraints, and realized
3D spatial drillability prediction by calculating drillability grade
with the velocity bodies. Qi et al. (2015) predicted 3D spatial
petrophysical attributes through pre-stack seismic inversion, and
used multivariate linear regression (MLR) to optimize three main
attributes related to ROP, and use artificial neural network (ANN)
and alternating conditional expectation (ACE) algorithms to predict
3D spatial ROP, respectively. Song (2018) used data fitting regression
method, based on logging data, which were combined with the
core experimental data to establish the relationship between the
rock mechanical parameters and logging data, using the multiple
well data to construct a 3D spatial drillability grade model of
the study area using the idea of attribute modeling. Qietal (2019)
extracted 3D seismic attributes and geomechanical attributes of
1,036 km2, combined with data from 51 horizontal wells, and used
proximal support vectors (PSVM) to relate ROP to seismic attributes
and geomechanical attributes, and predicted the non-homogeneous
ROP of mississippian limestone reservoirs. Gan et al. (2021) used
fuzzy c-means clustering algorithm to determine the patterns of
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formations, and established the drillability grade models of various
formation patterns separately by random forest (RF) algorithm, and
finally combined them into a 3D spatial drillability grade model.

The study area is deep lacustrine shale oil in Mahu, with
alkaline lacustrine sediment and strong non-homogeneity, and the
ROP of the formation statistically has a good correspondence with
the resistivity of the formation. In order to reveal the drillability
distribution law of the formation in the study area, and to guide the
drilling design, work tool preference, drill bit personalized design,
and drilling parameter optimization, a 3D spatial of ROP prediction
study is carried out. In the paper, based on the unsupervised
neural network (UNN), we classify the logging resistivity to divide
the formation hard-to-drill grade, construct resistivity classification
template, determine the ROP of each hard-to-drill grade from the
ROP of the already drilled wells, get the 3D spatial resistivity model
by adopting the combined data-driven method of well-seismic, and
then classify the resistivity model into hard-to-drill grades based on
the classification template, and assign ROP. In the paper, the ROP in
3D spatial is predicted from the geological factors.

The paper is organized as follows. The second part summarizes
the geological background of the Fengcheng Formation shale oil
structural features, sedimentary features, lithological features, and
so on. The third part describes the current status and difficulties of
drilling engineering in the study area, including rate of penetration
characteristics, drilling duration, bit wear characteristics, and core
testing. The fourth part details the 3D spatial rate of penetration
prediction method, including the statistical relationship between
formation resistivity and ROP, well data cleaning, unsupervised
neural network (UNN) classification of formation hard-to-drill
class, construction of classification templates, ROP calibration,
seismic data preprocessing, preparation of structural horizon,
well and seismic joint data-driven resistivity modeling, and ROP
modeling.The fifth part details the drilling engineering applications
of rate of penetration modeling. The sixth part is discussion. The
seventh part summarizes the full paper.

2 Geologic background of shale oil in
fengcheng formation

The Mahu Sag is located in the northwestern margin of
the Junggar Basin, with an area of about 5,000 km2 (Liu et al.,
2020), surrounded by secondary tectonic units such as the Quartz
Beach High, the Yingxi Sag, the Xiayan High, the Dabasong
High, the Zhongguai High, the Kebai Fracture Zone, and the
Wuxia Fracture Zone (Yu et al., 2022), which is an important
hydrocarbon generating Sag in the basin (Zhi et al., 2019). It is
an important hydrocarbon Sag in the basin (Zhi et al., 2019).
Four sets of hydrocarbon source rocks are developed in the
Mahu Sag, namely, the Carboniferous, Lower Permian Jiamuhe
Formation, Lower Permian Fengcheng Formation, and Middle
Permian Lower Urho Formation (Li et al., 2020). The hydrocarbon
source rocks of the Fengcheng Formation are the oldest alkaline
lacustrine hydrocarbon source rocks in the world discovered so
far, with thicknesses ranging from 50 to 250 m, with a maximum
thickness of more than 400 m, rich in bacterial and algal matrices,
with high organic matter abundance, predominantly of type II1,
and with a strong hydrocarbon generating capacity and a long

duration (Qu et al., 2019). The Fengcheng Formation is a fan-
delta-alkaline lacustrine sedimentary system (Wang et al., 2022),
developing a large suite of lacustrine mud shale and mica deposits,
characterized by alkaline lacustrine basin, fine-grained deposition,
integrated source and reservoir, and strong non-homogeneity, and
industrial breakthroughs of shale oil have already been achieved
(Huang et al., 2022; Zhi et al., 2021).

The Fengcheng Formation is buried at a depth of 4,000–8,000 m,
and it is divided into lower Fengcheng Formation (P1f1), middle
Fengcheng Formation (P1f2), and upper Fengcheng Formation
(P1f3) from the bottom upward. P1f1 is mainly a volcaniclastic rock,
and P1f2 and P1f3 are dominated by dark fine-grained sediments,
with the development of cloudy siltstone, silty sandy dolomite,
mud-crystalline dolomite, and cloudy mudstone, etc.; among them,
P1f2 is the heyday period of the development of alkaline lacustrine
(Wang et al., 2023). P1f2 is the heyday of alkaline lacustrine
development, and alkali minerals such as silica-boronatite and
carbonatite-calcite are developed (Wang et al., 2023). The reservoir
of Fengcheng Formation is dense, with porosity ranging from 0.10%
to 13.60%, with an average of 4.61%, and permeability ranging from
0.010 to 13.800 mD, with an average of 0.134 mD, which is a typical
characteristic of shale oil reservoirs (Yu et al., 2022).

3 Current status and difficulties of
drilling engineering in the study area

The study area is located in the northern part of Mahu Sag,
and the shale oil of Fengcheng Formation of the Permian System
of Mabei Fan. Fengcheng Formation shows the characteristics of
overall oil-bearing and local enrichment, with 135 million tons of
whole control reserves and 100 million tons of proved reserves
basically implemented, which is the main block for future scale
efficiency development. P1f3 is mainly dark gray muddy dolomite,
sandwiched with dark gray cloudy mudstone and silty mudstone.
P1f2 is mainly dark gray thinly bedded muddy dolomite and cloudy
mudstone interbedded with creamy siltstone. From top to bottom,
the strata encountered in the drilling are the Tugulu Formation,
the Toutunhe Formation, the Xishanyao Formation, the Sangonghe
Formation, the Badaowan Formation, the Baijiantan Formation,
the Karamay Formation, the Baikouquan Formation, the Urho
Formation, the Xiazijie Formation, and the Fengcheng Formation.

In 2024, six pilot test wells were deployed, with the destination
layer P1f2 C9, C10, C12 sweet spot, TVD of 4,853–5,206 m. Third
spud of the well structure: In the first spud, using Φ444.5 mm drill
bit to drill to a depth of 500 m, lowering into Φ339.7 mm surface
casing, cementing water mud is returned to the surface to seal
the surface loose and easy to collapse formation; In the second
spud, Φ311.2 mm drill bit is used to drill to the bottom of Xiazijie
Formation to stabilize the stratigraphy, Φ244.5 mm technical casing
is lowered, cementing mud is returned to the ground, and the well
section at the top of Xiazijie Formation and above which is prone to
collapse is sealed; Φ215.9 mm drill bit is used to drill to the final
target point B, Ф139.7 mm oil casing is lowered, and cementing
mud is returned to the ground. Drilling fluids: In the first spud,
K1tg, Bentonite-CMC drilling fluid system; In the second spud,
K2tg, potassium-calcium-based polymer drilling fluid system; In the
third spud, K3tg, potassium-calcium-based organic salt drilling and
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FIGURE 1
Photograph of drill bit exiting the well [(A, D) are hollowed, (B, C) are
ring fluted. The PDC drill bit has 100% newness into the well and 20%
newness out of the well, and it is severely worn out, with ring fluted or
hollowing as the major part of the drill bit.].

completion fluid system. The formation pressure coefficient of the
Tugulu Group (K1tg) to Baikouquan Formation (T1b) is 1.00–1.10
sg.The formation pressure coefficient of the Baikouquan Formation
(T1b) to the Urho Formation (P2w) is 1.10–1.25 sg, and the density
of the drilling fluid is 1.20–1.40 g/cm3. The formation pressure
coefficient of the Fengcheng Formation is 1.31–1.79 sg, and the
drilling fluid density is 1.80–2.00 g/cm3. For inclined section, PDC
drill bit + Rotary Steering; for horizontal section, PDC drill bit +
medium-high speed and high-torque screw, the drill bit is mainly
5-blade and 6-blade, the drilling parameters of the three In the
first spud-well sections are shown in Table 1. Completion method:
Cemented shot-hole completion.

The three wells 5,101, 5,102 and 5,103 encountered ultra-high
resistivity (>1,000), the number of trips drilled in the third spud was
16–27, the average footage of trips drilled was 106.9–112.7 m, the
average ROP was 1.99–2.51 m/h, and the third spud had a working
period of 69.2–98 day;The resistivity of 5,126, 5,127 and 5,128 wells
is within normal range, the number of trips drilling is 7-9, the
average footage of trips drilling is 230.9–301.6 m, the average ROP is
3.96–5.07 m/h, and the duration of trips drilling is 31–47.3 day; the
detailed data are shown in Table 2; the furthest distance between the
wellheads is only 4,200 m (5,126 wells and 5,103 wells). Comparison
can be found that the three wells drilled with ultra-high resistivity
formation have low ROP, many trips and long duration, which have
obvious negative correlation with resistivity. The PDC drill bit has
100% newness into the well and 20% newness out of the well, and it
is severely worn out, with ring fluted or hollowing as the major part
of the drill bit, as shown in Figure 1. It can be seen that the spatial
difference in the drillability of the formation in the study area is very
large, showing strong non-homogeneity. T
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FIGURE 2
Stress-strain curve of the core of Fengcheng Formation (Overburden
pressure: 0 MPa, 45 MPa, 60 MPa, 75 MPa, 90 MPa. The mechanical
properties of the rock have been tested, and the compressive strength
of the rock under normal pressure is 250 MPa, and that of the rock
under the overburden pressure of 90 MPa is 600 MPa).

The 5,103 wells of Fengcheng Formation have been cored with
a length of 6 m and MD 5119–5,125 m (TVD 5028–5,030 m),
which is equivalent to the bottom hole pressure of about 90 MPa.
The mechanical properties of the rock have been tested, and the
compressive strength of the rock under normal pressure is 250 MPa,
and that of the rock under the overburden pressure of 90 MPa is
600 MPa as shown in Figure 2. The drillability test is carried out by
using a micro PDC drill bit, and the drillability grade is determined
to be > 10. Overall, with the background of grain-layered mud
powder crystal dolomite, the siliceous grain layer, calcite stripe layer,
and silica-boronatite layer are unevenly distributed, and part of
the grain layer have the characteristics of bending and folding and
deformation.The grain layer has pure powder crystal dolomite layer,
pure siliceous layer, and mixed siliceous and cloudy grain layer,
calcite banded layer is often accompanied with siliceous aggregates,
and silica sodium borate is mostly banded layer, and individual
crystals scattered in cloudy siliceous grain layer are also seen. The
thin section photo of the Fengcheng Formation core is shown
in Figure 3.

Difficulties in shale oil drilling in Fengcheng Formation are
as follows: (1) deep burial (>5,000 m), hard and dense, high
formation pressure, gas intrusion occurs from time to time, and
high drilling fluid density are needed to ensure well control safety,
result in high perimeter pressure that brings great challenges
to drilling engineering; (2) The compressive strength of rocks
is extremely high (comparable to granite), with poor drillability,
low ROP, multiple trips, severe wear of PDC drill bits, strong
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FIGURE 3
Photograph of thin section of core of Fengcheng Formation [(A) is muddy chalky crystalline dolomite grains, 5,119.54 m; (B) is siliceous lamination,
5,119.54 m; (C) is cloudily and siliceously mixed grain layers, 5,123.60 m; (D) is sodium silicon boron stone layer, 5,120.41 m; (E) is siliceous calcite
associated banded layer, 5,119.96 m; (F) is dispersion of sodium silicon boronite crystals, 5,123.6 m; (G) is silicon-bearing mud and silica mud powder
crystal dolomite, 5,119.96 m; (H) is siliciclastic mud with silica salts, powdered crystalline dolomite, 5,121.11 m].

heterogeneity of the formation, and large spatial differences
in drillability.

4 3D spatial ROP prediction methods

In this section, the relationship between resistivity and ROP, the
technical process of predicting 3D spatial ROP, the classification

of stratigraphy based on logging resistivity and the calibration
of ROP, the 3D seismic data processing and modeling of facies-
controlled resistivity attributes, and the prediction of 3D spatial
ROP are explained in detail in five aspects, namely, the principle
and implementation steps of the methodology of the combined
well-seismic data-driven resistivity-based 3D spatial ROPprediction
based on resistivity. This is a multidisciplinary study that includes
geology, geophysical exploration, logging, and drilling. Geological
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FIGURE 4
Average ROP of trip drilling in the third spud versus average resistivity
of trip drilling crossplot (In logarithmic coordinates, the average ROP
of trip drilling and the average resistivity of trip drilling strata have a
good negative correlation, i.e., the higher of the resistivity and the
lower of the ROP, with a correlation coefficient of 0.638.).

and geophysical engineers provide structural interpretation and
seismic data, logging engineers provide resistivity data, and drilling
engineers provide ROP.

4.1 The relationship between resistivity and
ROP

The resistivity data sources are conventional logging and logging
with drilling, deep lateral resistivity mainly reflects the formation
resistivity, shallow lateral resistivity mainly reflects the intrusive
zone resistivity, the paper mainly uses deep lateral resistivity data.
Considering that there are many factors affecting the ROP, and
resistivity is only a phenomenon of geological factors. In order to
investigate the intrinsic relationship between formation resistivity
and ROP, the fitted relationship between trip average ROP and trip
average formation resistivity is statistically determined for the third
spud of six pilot test wells. These six wells were drilled with similar
engineering parameters and their effects are ignored for statistical
purposes. A total of 78 trips are drilled in the third spud of six
wells, excluding the inefficient trips (<30 m) with short footage
and the coring trips totaling 13 trips, and the effective sample
data totaled 65. The average ROP of the trips and the average
resistivity of the formation in the trips are analyzed by means
of corssplot diagrams, as shown in Figure 4. It can be seen that
in logarithmic coordinates, the average ROP of trip drilling and
the average resistivity of trip drilling strata have a good negative
correlation, i.e., the higher of the resistivity and the lower of
the ROP, with a correlation coefficient of 0.638. This relationship,
which confirms the feasibility of the prediction of the ROP
from the resistivity, lays a theoretical foundation for the research
of this paper.

FIGURE 5
Flowchart of the technique to drive resistivity-based prediction of 3D
spatial ROP by well-seismic joint (Blue box: well data (logging, drilling)
processing flow; red box: 3D seismic data processing and seismic
phased resistivity attribute modeling flow; green box: predicting 3D
spatial ROP).

4.2 Technical process for predicting ROP in
3D spatial

Well-seismic joint refers to the full utilization of 1D vertical
features of well data and 3D spatial features of seismic data in
3D resistivity attribute modeling and 3D ROP prediction. Data-
driven means starting from the phenomenal relationship between
data rather than the mechanism. Resistivity-based prediction of 3D
spatial ROP requires the joint use of 3D resistivity attribute models,
logging resistivity classification plates, and drilled well ROP.

The technical process of well seismic joint data-driven
resistivity-based prediction of 3D spatial ROP (Figure 5) is divided
into three parts: (1) well data processing, including logging
resistivity data cleaning, unsupervised neural network (UNN)
clustering analysis, resistivity classification templates, and drilling
ROP calibration; (2) seismic data processing, including structural
horizon interpretation, seismic data cleaning, and well seismic
joint facies-controlled resistivity attribute modeling; (3) 3D ROP
prediction.

4.3 Classification of formations based on
log resistivity and calibration of ROP

Cluster analysis is a statistical analysis technique that aims to find
the intrinsic structure of the data and classify the data into different
classes, which are divided into supervised and unsupervised
clustering. Commonunsupervised cluster analysismethods include:
K-means, hierarchical clustering, spectral clustering, maximum
expectation clustering of Gaussian mixture model (GMM), etc.
(Deng et al., 2024). The commonly used unsupervised neural
networks (UNN) in the field of geology are (Zhang et al., 2020;
Bai et al., 2018; Tao et al., 2022): Hopfield network (HN), Radial
Basis Function Network (RBF), Self-Organizing Mapping Network
(SOMNN), Deep Belief Network (DBN), Convolutional Neural
Network (CNN). According to the previous analysis, there is a
nonlinear relationship between resistivity and ROP, and it is not
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possible to use resistivity to directly describe the absolute value of
ROP. In the paper, an indirect analysis is used to relate resistivity
to ROP. First, an unsupervised neural network (UNN) is used
to categorize the logging resistivity and classify the stratigraphic
drillability class. Then, the ROP of the drilled wells was used to
calibrate the ROP corresponding to each grade of formation.

Usually, the collected logging resistivity data carry spikes and
high-frequency fluctuations, which are not conducive to data
categorization. Therefore, before clustering analysis, it is necessary
to perform data cleaning, mainly to remove spikes and median
filtering, and retain the low-frequency trend of the data. Figure 6
shows the comparison between the resistivity data of three wells
5,101, 5,102 and 5,103 before and after cleaning, the isolated spikes
are effectively removed, and the low-frequency characteristics of the
data are more prominent. Figure 7 shows the use of unsupervised
neural network (UNN) to classify the stratigraphy based on logging
resistivity, the input logging resistivity is data cleaned, and the
classification parameters are repeatedly adjusted according to the
classification results until the 5,101, 5,102, and 5,103 high-resistivity
well sections are effectively distinguished. The strata were classified
into five categories resistivity from low to high: sky blue, green,
orange, red, purple. By creating a cross plot between resistivity and
classification values, the classification threshold can be obtained.
The formation can be calibrated using the already drilled ROP and
divided into four levels: Easy-to-drill formation (sky blue: resistivity
≤20 Ω m, green: 20 < resistivity ≤52 Ω m), ROP>4 m/h; First hard-
to-drill formation (orange: 52 < resistivity ≤123 Ω m), ROP =
3.5 m/h; Secondary hard-to-drill formation (red: 123 < resistivity
≤373 Ω m), ROP = 2.5 m/h; Third hard-to-drill formation (purple:
resistivity >373 Ω m), ROP = 1.5 m/h, as shown in Figure 8.

4.4 3D seismic data processing and
facies-controlled resistivity attribute
modeling

Well-seismic joint facies-controlled resistivity attribute
modeling requires log resistivity, seismic data, and structural
horizon data. Well log resistivity with data cleaned resistivity,
structural horizon data derived from seismic data interpretation,
seismic data cleaning mainly has de-noising, fracture enhancement,
expanding frequency, etc., and seismic amplitude is used as the
facies-controlled data. Structural horizon and logging resistivity, as
shown in Figure 9. The main process of well seismic joint facies-
controlled resistivity attribute modeling is as follows: (1) Structural
modeling based on structural horizon, and if faults are developed,
the fault data need to be added; (2) Logging resistivity coarsening
and data analysis, given samples, and determining the geostatistical
parameters; (3) Seismic amplitude facies-controlled sequential
Gaussian simulation resistivity property modeling. 3D resistivity
property modeling, as shown in Figure 10.

4.5 3D spatial ROP prediction

Based on the resistivity classification thresholds obtained from
well data analysis, the 3D resistivity attribute model is classified
to obtain a formation drillability classification model. The model

represents the classification results under the geological factors,
which are unchanged with time and technological development.
When applying the drillability grading model to predict the ROP,
it is necessary to refer to the representative and latest ROP in
the work area to calibrate and assign the corresponding ROP
to different formations. Referring to six pilot test wells in the
research area, the predicted ROP is: Easy-to-drill formations
(sky blue and green), ROP >4 m/h; First hard-to-drill formation
(orange), ROP is 3.5 m/h; Secondary hard-to-drill formation (red),
ROP is 2.5 m/h; Third hard-to-drill formation (purple), ROP is
1.5 m/h. The predicted 3D ROP model is shown in Figure 11.
This prediction result only represents the ROP when it is close to
the drilling engineering parameters of the reference well. When
drilling engineering parameters are strengthened, the actual ROP
will increase compared to the predicted result.

5 Drilling engineering applications of
ROP model

The fourth part of the article details how to realize the well
seismic joint data drive and how to realize the 3D spatial ROP
prediction based on resistivity, giving the specific technical process
and modeling method. During the study period of the paper, a
new development well 206H was drilled in the workover area, and
the drillability and ROP of the three open sections were predicted
before drilling using themethod of the paper, as shown in Figure 12.
For comparison purposes, Table 3 was developed. Table 3 details
the engineering parameters such as WOB, RPM, displacement, PP,
and drilling tool combinations for the triple-open section, as well
as the actual drilling ROP, predicted formation drillability, and
predicted ROP. Trip drilling TZ3, TZ4, TZ5, drill type, drilling tool
combination, drilling parameters and other engineering factors are
basically the same; trip drilling TZ6 is turbine + pregnant set; trip
drilling TZ7, TZ8, TZ9, TZ10, drilling tool combination, drilling
parameters and other basically the same, the drill bit is different; trip
drilling TZ11, TZ12, drilling parameters of the enhanced test, WOB
of 120–200 kN, RPM of 30–50, the drill bit of trip drilling TZ12 is
the enhanced version of TZ11.

Trip drilling TZ3: 5-blade 16 mm tooth PDC, drill bit,
footage 253 m, actual ROP, is 3.67 m/h; pre-drilling prediction of
stratigraphy is mainly hard-to-drill in the first level, with part of the
easy-to-drill and hard-to-drill in the second level, predicted ROP, is
3.5 m/h, basically in line with the actual ROP.

Trip drillling TZ4: 5-blade 16 mm tooth PDC, drill bit, footage
31 m, actual ROP, is 2.07 m/h, tripping out due to abnormal pump
pressure; prediction of the formation before drilling is second hard-
to-drill, predicted ROP, is 2.5 m/h, the actual ROP, is on the low side.
Trip drilling TZ5: 5-blade 16 mm tooth PDC, drill bit, footage 46 m,
actual ROP, is 1.59 m/h, tripping out due to low ROP; prediction of
stratigraphy before drilling is second hard-to-drill, predicted ROP,
is 2.5 m/h, actual ROP, is lower than expected.

The footage and ROP of TZ4 and TZ5 were lower than expected,
and the bit wear was light, which indicated that the 5-blade 16 mm
tooth PDC bit was difficult to be applied to the secondary hard-to-
drill stratigraphy. After discussion, it was decided to use “turbine
+ pregnant” drilling tool combination for trip drilling TZ6. Trip
drilling TZ6: footage 373 m, actual ROP is 1.95 m/h, footage, ROP
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FIGURE 6
Logging resistivity data cleaning [(A) is raw, (B) is de-spiking and median filtering, the isolated spikes are effectively removed, and the low-frequency
characteristics of the data are more prominent.].

performance is better; pre-drilling prediction of the stratigraphy
for the second hard-to-drill, with part of the third hard-to-drill,
predicted ROP is 2.0 m/h and basically same to the actual.

Trip drill TZ7: 6-blade 19 mm-tooth PDC bit, footage 170 m,
actual ROP 2.21 m/h; pre-drilling prediction of the formation is
second hard-to-drill, predicted ROP is 2.5 m/h, the actual ROP is
low. Trip drill TZ8: 5-blade 19 mm-tooth PDC bit, footage 155 m,
actual ROP is 2.21 m/h; pre-drilling prediction of the formation
is third hard-to-drill, prediction of the ROP is 1.5 m/h, 5-blade
19 mm-tooth PDC bit shows good aggressiveness. Trip drilling TZ9:
7-blade 16 mm tooth PDC bit, footage 53 m, ROP is 1.51 m/h;
pre-drilling prediction of the stratigraphy is third hard-to-drill,
predicted ROP 1.5 m/h. Same as third hard-to-drill formation, the
footage of 7-blade 16 mm tooth PDC bit of trip drilling TZ9 is not
as good as 5-blade 19 mm tooth PDC bit of trip drilling TZ8. Trip
drilling TZ10: 5-blade 19 mm tooth PDC bit, footage 130 m, actual
ROP is 1.78 m/h; pre-drilling prediction of the stratigraphy for the
third and second hard-to-drill, predicted ROP is 2 m/h, and the
actual is basically the same.

Trip TZ11: 5-blade 19 mm tooth PDC bit, footage 149 m, actual
ROP is 3.39 m/h; pre-drilling prediction: the stratigraphy is second
hard-to-drill, predicted ROP is 2.5 m/h. Trip TZ12: 5-blade 19 mm
tooth reinforced PDC bit, footage 111 m, actual ROP is 4.63 m/h;
pre-drilling prediction: the stratigraphy is second hard-to-drill, ROP
is 2.5 m/h. Trying to increaseWOB, these two trips have significantly
increased the ROP. Before drilling, the formation was predicted to

be second hard-to-drill, and the predicted ROP was 2.5 m/h. After
trying to increase the WOB, the ROP of these two drilling trips
increased significantly.The reinforced drill bit of TZ12 in the drilling
trip with large WOB increased the ROP significantly.

Overall, the ROP predicted by the method of the paper based on
resistivity from the geological factors is basically consistent with the
actual ROP, which fluctuates greatly due to the difference of the drill
bits and the change of drilling parameters. The results of large WOB
test show that large WOB is favorable to drilling speed.

In view of the hard, dense and strongly non-homogeneous
nature of the Fengcheng Formation in the study area, combined
with the drillability modeling and ROP prediction in the paper,
six types of PDC drill bits, including “strong attack in the straight
section, special for slanting and rotary guidance, and differentiated
super wear-resistant and anti-impact in the horizontal section”,
are designed to support the drilling speed of the Mabei shale oil
well. Drilling speed up. PDC drill bit for straight section: single
row of 5-blade, shallow internal taper, 800 μm deep de-cobaltized
plane tooth. PDC bit for inclined Section: 5-blade double row,
balanced convex ridge tooth (800–1,000 μm deep de-cobaltized),
usedwith rotary guide. PDCdrill for steady inclined Section: 6 blade
double rows, heart conical tooth to prevent hollowing, balanced
convex ridge tooth to improve impact resistance; six flanks double
rows, conical prism tooth to prevent hollowing, high performance
convex ridge tooth to improve impact resistance. As shown in
Figure 13.
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FIGURE 7
Classification of formations based on logging resistivity using unsupervised neural network (UNN).

FIGURE 8
Resistivity Classification Plate and Stratigraphic Drillability levels
(Easy-to-drill formation (sky blue: resistivity ≤20 Ω m, green: 20 <
resistivity ≤52 Ω m), ROP>4 m/h; First hard-to-drill formation (orange:
52 < resistivity ≤123 Ω m), ROP = 3.5 m/h; Secondary hard-to-drill
formation (red: 123 < resistivity ≤373 Ω m), ROP = 2.5 m/h; Third
hard-to-drill formation (purple: resistivity >373 Ω m), ROP = 1.5 m/h).

FIGURE 9
Structural horizon and logging resistivity (This is basic data for
structural modeling and resistivity property modeling.).

FIGURE 10
3D resistivity property modeling (This is a model by seismic amplitude
facies-controlled sequential Gaussian simulation resistivity property
modeling.).

FIGURE 11
3D ROP model (The predicted ROP is: Easy-to-drill formations (sky
blue and green), ROP >4 m/h; First hard-to-drill formation (orange),
ROP is 3.5 m/h; Secondary hard-to-drill formation (red), ROP is
2.5 m/h; Third hard-to-drill formation (purple), ROP is 1.5 m/h).

6 Discussion

Existing research on ROP prediction mainly focuses on
1D spatial, physical-driven (Hegde et al., 2017), data-driven
(Hegde et al., 2017), fusion of drilling and logging information
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FIGURE 12
ROP Model for Well 206H (Predicted ROP: color model; actual ROP:
black numbers. The ROP predicted by the method of the paper based
on resistivity from the geological factors is basically consistent with
the actual ROP.).

(Ashrafi et al., 2019; Oyedere and Gray, 2020; Osman et al., 2021),
multiple regression (Oyedere and Gray, 2020), and AI algorithm
(Ashrafi et al., 2019; Oyedere and Gray, 2020; Osman et al., 2021;
Hashemizadeh et al., 2022; Al-AbdulJabbar et al., 2022; Ji et al., 2023;
Ebrahimabadi and Afradi, 2024; Wang et al., 2024). The 1D ROP
model cannot accurately represent the changes in 3D spatial. The
drillability grade determined by the drillability experiments is 1D
discrete data with low accuracy. The 3D drillability grade model
needs to be calibrated with core drillability grade (Geng et al., 2014).
The existing 3D drillability prediction methods mainly focus on
predicting drillability grade (Geng et al., 2014; Song, 2018; Gan et al.,
2021), there are relatively few studies that directly predict ROP
(Qi et al., 2015; Qi et al., 2019). There are many factors that affect
ROP, and mainly the factors are geology and engineering aspects.
The ROP values vary with engineering factors and technological
levels, and the ROP cannot be unified and standardized among
multiple wells. Geological factors are constant, and predicting ROP
from geological factors has the advantage of adapting to changes
with constancy. In the paper, a new method for well-seismic joint
data-driven resistivity-based prediction of 3D spatial ROP based
on geologic factors is presented. When the engineering factors
change and the technological progress is upgraded, only the ROP
of the formation needs to be recalibrated with new representative
wells. This is a new, original, and advanced method. By integrate
drilling, logging, and seismic information, we can be used accurately
predicted 3D spatial ROP. It has an important guiding role in
relevant research in areas. The shortcoming of this method is the
irregular calibration of ROP.

7 Conclusion

The deep lacustrine shale of Mahu is characterized by
alkaline lacustrine sediment and strong non-homogeneity. The
Fengcheng Formation is characterized by overall oil content and
local enrichment. According to statistics, the ROP has a good
correspondence with the resistivity of the formation. In the paper,
a new method of well-seismic joint data-driven resistivity-based
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FIGURE 13
Individualized drill design plan for the Fengcheng Formation in the
study area [(A): Straight well section, 5-blade wing single row, shallow
inner cone, 800 μm deep de-cobalt plane teeth; (B): Inclined section,
5-blade wing double row, with rotary guide, balanced convex ridge
teeth (ultra-deep de-cobaltation of 800–1000 μm); (C): Stabilized
inclined section, 6-blade wing double row, heart conical teeth to
prevent hollowing out, balanced convex ridge teeth to enhance
impact resistance; (D): Stabilized inclined section, 6-blade wing
double row, conical prismatic teeth to prevent hollowing out, high
performance convex ridge teeth to enhance impact resistance.
High-performance convex spine teeth to improve impact resistance.].

prediction of ROP in 3D spatial is proposed, which is a geological
factor-based, well-seismic joint, data-driven, 3D spatial prediction
method. The principle and realization steps of the method are
elaborated in detail, and an application example of developing wells
is given, which achieves good application results. The method is
innovative and universal. The conclusions are as follows.

(1) After statistical analysis, the average ROP of trip drilling
and the average resistivity of trip drilling strata have a good
negative correlation, which satisfies the linear relationship in
logarithmic coordinates with a correlation coefficient of 0.638.
It confirms the feasibility of predicting the ROP from the
resistivity, and lays a theoretical foundation for data-driven
prediction of resistivity.

(2) Thewell-seismic joint makes full use of the 1D vertical features
of well data and 3D spatial features of seismic data, and the
well-seismic joint data drive realizes the accurate prediction
of 3D spatial ROP from the phenomenological relationship
between formation resistivity and ROP.

(3) The advantage of resistivity-based predicted ROP is that the
geological factors are invariant, and when engineering factors
change and technological advances are upgraded, it is only
necessary to re-calibrate the ROP of the formation with a new
representative well. The predicted ROP is basically the same as

the actual drilling ROP, which effectively guides bit selection,
personalized bit design, and drilling parameter optimization.
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