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Assessing the lethal resistance levels of buildings during earthquakes is crucial
for reducing disaster losses and human casualties. This study proposes a
novel model that integrates an improved genetic algorithm (IGA) with an
optimized backpropagation neural network (OBPNN) to address data imbalance
in classifying building types for lethal resistance levels assessment. The
Synthetic Minority Class Oversampling Technique was applied to balance class
distributions in the training set by oversampling minority classes. To address
overfitting, L2 regularization was combined with a genetic algorithm to optimize
the backpropagation neural network (BPNN)'s weights and biases, enhancing
global search capability and classification accuracy. Momentum parameters and
the Adam optimizer were incorporated to smooth gradient updates, prevent
oscillations during training, and accelerate convergence. Additionally, domain
adaptation techniques were employed to improve test set performance through
feature adaptation, enhancing the model’s robustness under varying data
distributions and its generalization ability. The experimental results show that
the proposed improvedmodel achieves excellent performance in classifying the
level of lethal resistance levels of buildings, with an accuracy of 97% and an AUC
value of 1, which indicates that the model’s generalization and discriminative
abilities are more excellent.

KEYWORDS

genetic algorithm, Back Propagation, Synthetic minority class oversampling Technique,
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1 Introduction

Assessing the seismic capacity and level of lethal risk of buildings is essential tominimize
disaster-related losses and casualties. Accurate categorization of building types and their
vulnerability to seismic events is vital in designing effective mitigation strategies. Feng
et al. assessed the seismic resilience of urban neighborhoods through the spatial factors of
the community (Feng et al., 2007). Ellingwood et al. assessed the building vulnerability of
steel frames with welded connections through probability-based uncertainty in response
to future building seismic strengthening (Ellingwood, 2001). Yang et al. calculated the
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damage state of buildings under the influence of 7-degree and
8-degree earthquakes according to the capability spectrum
method, based on which they carried out urban seismic planning
by classifying urban buildings into four categories, namely,
reinforced concrete, masonry, steel frames, and wood structures,
and then obtained the probability of the various damage states
of the buildings and the seismic damage indices by using the
capability spectrum method (Yang et al., 2010). Betti analyzed
Romanesque masonry churches by using quasistatic methods to
evaluate seismic loads to assess their structural behavior and their
seismic vulnerability in their actual state of protection (Betti and
Vignoli, 2008). Adhikari performs seismic vulnerability and risk
assessment of school infrastructure in a region by identifying and
categorizing these structures into a varying number of structure
types characterized by vulnerability profiles and describing the
representative index structures of the different types for detailed
vulnerability quantification (Adhikari et al., 2023). Alothman
compares the vulnerability analysis of buildings of different heights
exposed to ground motions with different characteristics, three
different seismic packages are used to study the seismic performance
assessment of frame buildings, and the finite element software Open
Sees is used to assess the seismic performance of three multistory
RC buildings (Alothman et al., 2023). Li incorporates a Gaussian
regression algorithm to propose a nonlinear regression model that
can be used to assess the seismic vulnerability of regional hospital
and school buildings (Li et al., 2024). Fan (2014) combined with
the latest research progress of machine learning algorithms, and
proposed a single building seismic damage assessment method
based on improved genetic algorithm optimized BP neural network.
Taking Sichuan as an example, an assessment model is established
by optimizing the BP neural network through the improved genetic
algorithm, and the damage levels of different structural types of
single buildings in the region are outputted to assess the damage
of single buildings under the combined effect of various seismic
influencing factors, so as to evaluate the seismic damage of single
buildings.

Evaluating the risk of buildings under seismic effects mainly
relies on statistical methods. However, with the rapid development
of information technology, machine learning methods have shown
great efficiency and accuracy in dealing with complex nonlinear
problems due to their strong adaptive ability and fault tolerance. In
recent years, numerous researchers have realized the great potential
of machine learning algorithms and their derived methods in
the field of disaster assessment, such as earthquakes, and have
conducted related studies (Bergen et al., 2019; Reichstein et al.,
2019). Although these studies have achieved significant results in
advancing the field of earthquake hazard assessment, they tend to
focus on the application of standard machine learning algorithms
and fail to adequately address key issues such as data imbalance,
overfitting, and insufficient model generalization capabilities. Yu
et al. developed a three-layer BPNN earthquake disaster casualty
prediction model for earthquake disaster casualty assessment
(Yu et al., 2005). Yang, Wu et al. Establishment of BPNN for fast
prediction of post earthquake casualties (Yang et al., 2009; Wu et al.,
2017). Beyza has developed an artificial intelligence based loss
assessment algorithm that can accurately and quickly differentiate
between structural and non-structural damage (Gultekin and
Dogan, 2024). Chen et al. screened 42 historical earthquake cases

and constructed a particle swarm optimization extreme learning
machine earthquake fatality prediction model by performing
principal component analysis on earthquake related impact
indicators (Chen et al., 2024). Kim constructed a simulated dataset
using a probabilistic deep neural network model, which replaces
the widely used nonlinear static procedure, to improve the accuracy
of individual structural response prediction for pre-earthquake
loss assessment for assessing regional losses (Kim et al., 2020).
Li analyzed the influencing factors of building seismic capacity,
determined the basic causal events of the assessment objectives
based on the broken tree analysis (FTA), classified and summarized
the basic causal events in the FTA model, and constructed the
judgment system for building seismic capacity. The weight of each
index factor in the system was calculated using the Gini index and
the importance of the index was analyzed (Li et al., 2023). However,
when dealing with earthquake related data, it is challenging to
achieve high accuracy in such assessments due to the inherent
category imbalance in real world data, where samples of severely
vulnerable buildings are typically small (Nie et al., 2021). This
imbalance can significantly hinder the performance of traditional
machine learning models, which tend to be biased towards the
majority of categories, resulting in suboptimal predictions for the
few categories that are critical for disaster risk management.

Although the aforementioned studies have made remarkable
progress in the field of seismic hazard assessment, either focusing
on the optimization of the model structure, or on the prediction of
specific loss types, or on the analysis of influencing factors, few of
them have been able to comprehensively address the key issues of
data imbalance, model overfitting, and limited generalization ability.
Thesemethodsmentioned above facemany challenges when dealing
with large datasets and high-dimensional inputs.

Traditional statistical methods tend to have high computational
complexity when dealing with large datasets and have difficulty
capturing complex relationships and patterns in the data. In
addition, when the inputs are high dimensional, traditionalmethods
can suffer from “dimensionality catastrophe”, which can lead to a
dramatic performance degradation. In contrast, machine-learning-
based approaches show significant advantages in dealing with
such problems.

Specifically, machine learning algorithms, especially deep
learning algorithms, have powerful feature extraction and pattern
recognition capabilities. They are able to automatically extract
useful features from high-dimensional input data and capture
nonlinear relationships in the data through complex network
structures. This allows machine learning algorithms to maintain
high accuracy and efficiency when dealing with large datasets and
high-dimensional inputs.

Therefore, to address the above issues, the contribution of this
study is as follows:

In this study, an innovative hybridmodel is proposed to solve the
problems of unbalanced dataset, overfitting, and insufficient model
generalization ability in the assessment of building seismic damage
by using representative villages in 18 townships, including Calamus
Township, Daying Township, Xin’an Township, and Jinji Township,
in Anhui Province, as the study area. The model combines genetic
algorithm (Holland, 1992; Kramer and Kramer, 2017; Reeves,
2010; Coello, 2000) and OBPNN (Ding et al., 2011; Jin et al.,
2000; Li et al., 2012; Chen et al., 2023) to improve classification
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TABLE 1 Anti lethal resistance levels for various types of buildings.

Type of building structure Lethal
resistance level

intervalsBuilding type Secondary classification Adjustment factors

Steel construction Building age, quality 0.95–0.85

Framework
Fa Building age, structural columns

0.9–0.75
Fb Building age, structural columns

Wood frame with pierced combinations
CDa Age of construction, quality of columns

0.8–0.65
CDb Age of construction, quality of columns

Brick hybrid structure

Ba Structural columns, ring beams, cast-in-place roofs 0.75–0.6

0.75–0.4

Bb Structural columns, ring beams, prefabricated roof
panels

0.6–0.55

Bc No structural columns, ring beams, prefabricated roofs 0.55–0.45

Bd No structural columns, no ring beams, prefabricated
slab roofs

0.45–0.4

Masonry
Ma Wall type, bond, foundation, roof, age

0.4–0.1
Mb Wall type, bond, foundation, roof, age

Civil engineering Wall type, bond, foundation, roof, age 0.2–0

accuracy and robustness. Genetic algorithms are used to optimize
the parameters of the BPNN to avoid falling into local optimal
solutions and to improve the global search capability.This combined
approach is able to search the parameter spacemore efficiently when
dealing with large datasets, thus finding better model parameters.
In addition, to address the problem of unbalanced datasets, we
employ the SMOTE technique (Wang et al., 2021; Jeatrakul et al.,
2010; Jiang et al., 2016). This technique makes the dataset more
balanced in terms of categories by synthesizing minority class
samples, which improves the prediction accuracy of the model for
minority class samples. We also introduced L2 regularization to
reduce the risk of overfitting (Yang and Ma, 2017; Lv and Shen,
2015; Shi et al., 2024). L2 regularization improves the generalization
ability of the model by penalizing the sum of squares of the model
parameters so that the model will not be overly complex during
the training process. Meanwhile, the integration of momentum
parameters and Adam optimizer accelerates themodel convergence.
In addition, the introduction of domain adaptation technology
enhances the generalization ability of the model (Fan et al.,
2021; Liang et al., 2019; Weiss et al., 2016; Wang and Deng,
2018), which provides a powerful tool for seismic risk assessment
and helps to improve the disaster prevention and resilience of
urban planning.

Therefore, this machine learning-based approach effectively
solves the problems that are difficult to be solved by traditional
methods through automatic feature extraction, complex pattern
recognition, parameter optimization, and dataset balancing
when dealing with large datasets and high-dimensional
inputs. This makes machine learning algorithms have a

broad application prospect in the field of earthquake hazard
assessment.

2 Analysis and quantification of
factors influencing the level of lethal
resistance levels in each building

2.1 Determination of anti lethal level
factors for each building

When a building encounters an earthquake, its lethal resistance
levels are determined by a variety of factors. The so-called lethal
level is the comprehensive possibility or level of various factors
that may cause the death of people after an earthquake in a
certain area. The best indicator to describe lethal is the mortality
rate caused by the earthquake. The results of various death
factors caused by each earthquake are comprehensively reflected
in the mortality rate of the disaster area, especially the mortality
rate by intensity (Xia et al., 2020). In this paper, considering
the comprehensive reasons such as field investigation and lethal
resistance levels calculation, based on the field investigation
Table 1, we extracted the factors affecting the lethal resistance
levels of each type of building according to the adjusting factors
in the lethal resistance levels of various types of buildings as
shown in the table, including the type of building and roof,
structural columns, trap beams, maximum column spacing, and
the maximum span of the beams, Maximum floor height, mean
value, building age and other eight influencing factors as the
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TABLE 2 Grading of lethal resistance levels.

NO. Level Anti lethal
resistance levels

Lethal resistance
level intervals

1 A 0% 0%–10%

2 B 10% 10%–15%

3 C 20% 15%–25%

4 D 30% 25%–35%

5 E 40% 35%–45%

6 F 50% 45%–55%

7 G 60% 55%–65%

8 H 70% 65%–75%

9 I 80% 75%–85%

10 J 90% 85%–95%

11 K 100% 95%–100%

input indexes of the model in this paper. And the buildings are
classified according to the lethal resistance levels classification
shown in the Table 2.

There are 579,057 buildings in the entire dataset and the lethal
resistance levels were categorized into 11 classes of A-K. The lethal
resistance levels of the buildings are categorized and calculated with
the following methods and formulas:

(1) Calculation of lethal resistance levels at the administrative
village (neighborhood committee) level: according to the
actual situation of the research sites.

AL =
n

∑
i=1

Pi ∗ Li (1)

where AL (Anti-lethal) is the lethal resistance levels at the research
site, Pi is the proportion of buildings in category i, and Li is the lethal
resistance levels (coefficient) for buildings in category i.

(2) Calculation of the lethal resistance levels at the township
(street) level: Calculation by combining the lethal resistance
levels of the research sites.

ALtown = ALtownship ∗ α+ (ALcountry1 ∗ γ+ALcountry2 ∗ δ) ∗ β (2)

Where ALtown is the lethal resistance levels of the township as
a whole, ALtownship is the lethal resistance levels of the research site
where the township is located, ALcountry1 andALcountry2 are the lethal
resistance levels of the rural research sites of the township, α is the
proportion of the population of the township to the population of
the entire township, β is the proportion of the rural population
to the population of the entire township, and α + β = 1, γ is
the proportion of the population of the rural site 1, and δ is the
proportion of the population of the rural site 2, and γ + δ = 1.

TABLE 3 Quantitative criteria for impact factors.

Impact factor Type of impact
factor

Retrieve a value

Building and roof type

Steel mixed cast in place 1

Steel mixed
prefabricated

2

Structural columns

Floor 2

Elevator corners 1

Columns at the corners
of external walls

0

No structural columns −1

Ring beam

Layers of closed ring
girders

2

Partially closed ring
beam

1

No structural columns 0

Maximum column
spacing

-- Values according to
actual column spacing

Maximum span of
beam

-- Value according to the
actual span

Maximum floor height -- Taken according to the
actual floor height

Mean value -- Average value
according to the

relevant impact factor
of the same type of

building

Building age -- Values according to the
actual building age

Lethal resistance levels

E 5

F 6

G 7

H 8

I 9

J 10

γ is the proportion of population in rural research site 1, δ is
the proportion of population in rural research site 2, γ + δ = 1
(Xia et al., 2020).

2.2 Quantification of anti lethal level
factors for each building

The BPNN algorithm can only deal with numerical
data, and the above influencing factors used to assess
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FIGURE 1
Regional map of anhui province, China.

the lethality rating are mostly textual data, so this paper
synthesizes the relationship between the lethality rating and
various types of buildings in Table 1 and quantifies the
influencing factors through the quantitative criteria given in
Table 3.

After clarifying the above-influencing factors and their
quantification criteria, it should be pointed out that although
“lethal resistance levels” (with a value ranging from 5 to 10,
where 9 represents one of the higher lethal resistance levels)
are used as an important index for assessing the structural
performance of buildings in this paper, it is not a direct objective
of this paper per se. In fact, the core research objective of this
paper is to explore and quantify the effects of different building
structural features (e.g., building and roof cover types, structural
column configurations, ring beam conditions, etc.) on the lethal
resistance levels and how these influencing factors combine to
contribute to the overall building resistance performance. By
deeply analyzing the association between these influencing factors
and the lethal resistance levels, we aim to propose strategies and
recommendations for improving the structural design of buildings
to enhance their disaster resistance. Therefore, the value of 9 (i.e.,
the higher level in the lethal resistance levels scale) is used more
as an assessment benchmark and outcome variable in this study
to verify and quantify the validity of our proposed hypotheses
and models.

3 Modeling of lethal resistance levels
in buildings

3.1 Data preparation

This study is based in Anhui Province, China, and the
study area map is shown in Figure 1 From the disaster data
investigated and counted by the Anhui Provincial Seismological
Bureau, representative data on building structure types of villages
and townships in 18 townships in Anhui Province of China, such
as Calamus Township, Daying Township, Xin’an Township, and
Jinji Township, are collected and collated, and from them, eight
influencing factors and seismic-resistant level data are screened out
to form the sample data set of this paper, which is used to construct
seismic-resistant level for various types of buildings, and part of the
sample data are as shown in Table 4. The lethality ratings in the
dataset are classified by professional evaluators based on the results
of field evaluations at the building sites and by the lethality rating
methodology for buildings commonly used in China.

3.2 Data preprocessing

Aiming at the problem of limited and unbalanced data sources
in seismic hazard risk assessment, this paper adopts a dual strategy
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TABLE 5 Sample dataset equalization.

Representative
villages and

towns

Original data
volume

SMOTE
optimization

Calamus Township 1,235 1,235

Daying Township 249 1,198

Xin’an Township 1,457 1,457

Jinji Township 859 1,309

Wangren Township 293 1,226

Zhangou Township 352 1,172

Yongxing Township 278 1,175

to optimize the model: applying the SMOTE technique to increase
a few categories of samples in the training set to balance the
data distribution, and at the same time, utilizing the domain
adaptive technique in the testing set (through the MMD loss
function) to achieve adaptive matching of the feature distributions,
so as to effectively enhance the model’s generalization ability and
prediction accuracy.

3.2.1 Sample equalization
In this paper, based on the characteristics of the data source,

data enhancement techniques are added to the model, using the
SMOTE technique with Feature Adaptation in order to realize the
problem of unbalanced class samples in the dataset. In this study, the
representative villages and towns are used as examples to optimize
the original unbalanced data, and the results after equalization by
the SMOTE technique are shown in Table 5.

3.2.1.1 SMOTE technique for training set equalization
The SMOTE algorithm generates new samples based on the

k nearest neighbors of the minority class samples (commonly
k = 5) to ensure the diversity and representativeness of the
new samples. By this method, the proportion of samples in
the training set is balanced, and the discrimination ability
of the classification model on minority classes is significantly
improved.

3.2.1.2 Feature Adaptation technique for test set domain
adaptation

MMD loss optimizes the model by calculating the difference
between the source and target domain features and using this
difference as part of the loss. During training, the model tries to
reduce the difference in distribution between the source and target
domains to achieve better feature adaptation.

3.2.2 Sample normalization
Due to the different dimensions of the attributes of different

influencing factors, there is an order of magnitude difference, which
may affect the accuracy of the model output results. For this reason,
this paper adopts the data extreme value method to normalize
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FIGURE 2
Topology of BPNN.

the attributes of each influencing factor and transform them into
dimensionless pure values.

3.2.3 Data set segmentation
In this paper, the dataset is divided into a training set and a

test set by randomly disrupting it in the ratio of 8:2 to ensure the
generalization ability of the model. Specifically, the split_data_set
function first receives the feature set (data_set) and label set (target_
set), as well as the division ratio (rate) and whether to disrupt (ifsuf)
as parameters. The function randomly disrupts the index of the
dataset through the random_number method, thus eliminating the
potential effect of data order on the model. Then, the training and
test sets are divided according to the given division ratio, where the
size of the training set is 1-rate times the size of the whole dataset
and the size of the test set is rate times. In this way, the data set is
divided randomly and representatively, providing amore reasonable
database for model training and testing.

3.3 BPNN model structure design and
optimization

3.3.1 Introduction to BPNN
BPNN is a classical feed-forward artificial neural network,

which consists of input, hidden, and output layers. It adjusts the
weights in the network through the backpropagation algorithm to
optimize the prediction performance. BPNN are widely used in
the fields of pattern recognition, data classification, and function
approximation, with powerful adaptive and nonlinear fitting
capabilities.

3.3.2 BPNN model structure design
In the study of this paper, a BPNN is used to evaluate the lethality

resistance level of buildings. The network consists of three main
parts: the input layer, the hidden layer, and the output layer. The
topology of the BPNN is the specific network structure design, and
topology is shown in Figure 2.

3.3.2.1 Input layer
The number of neurons in the input layer corresponds to the

factors related to the lethal resistance level of the building, and a
total of eight input nodes are set up, which are: eight factors related
to the lethal resistance level of the building, such as building and
roof cover type, structural columns, ring beams, maximum column
spacing, maximum beam span, maximum storey height, maximum
column spacing, the mean value of the maximum span of the
beams and the maximum storey height, and the age of the building.
These factors are used as inputs to the network for predicting the
damage level of the building. The mathematical expressions are
given below:

X = [x1,x2,x3,x4,x5,x6,x7,x8] (3)

where x1,x2,x3,x4,x5,x6,x7,x8 represent the eight input factors
described above.

3.3.2.2 Hidden Layer
The number of nodes in the hidden layer was tuned through

repeated experiments and finalized to 17 neurons. Each hidden layer
neuron is computed by weighting and activation functions to get
the output of that layer. The output of the hidden layer can be
expressed as:

H = [h1,h2,…,h17] (4)
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where hj(j = 1,2,…,17) is the neuron output of the hidden layer.

3.3.2.3 Output Layer
The number of neurons in the output layer corresponds to the

number of states of the building’s damage level, which is set to 5
output nodes, representing the 5 damage levels of the building. The
nodes of the output layer represent the predicted damage levels of the
building, which can be represented by the following mathematical
expression:

Y = [y1,y2,y3, ,y4,y5] (5)

Where yj(i = 1,2,…,5) denotes the corresponding level of
lethality resistance of the building, and the activation value of each
output node reflects the probability or confidence that the building
belongs to that level of damage.

In this structure, the connection weight between the input layer
and the hidden layer is Wij, the connection weight between the
hidden layer and the output layer isVij, and ReLU( ) is the activation
function between the input layer and the hidden layer, which can
effectively alleviate the problem of gradient vanishing and enhance
the nonlinear representation ability of the network.

ReLU(x) =max(0,x) (6)

And the hidden function between the hidden layer and the input
layer is LogSo ftmax( ). nn.LogSoftmax (dim = 1) denotes a softmax
operation on the second dimension (i.e., the output dimension), and
then takes its logarithm with the expression:

LogSo ftmax(xi) = log(
exp(xi)

Σj exp(xj)
) (7)

This activation function is used in this model to compute
the probability distribution more consistently and avoid numerical
overflow when performing the cross entropy loss function.The final
output reflects the prediction of the building damage level, and the
network optimizes the weights by backpropagation algorithm to
improve the accuracy of the prediction.

3.3.3 OBPNN model
The design and selection of the optimizer directly affect the

training efficiency and convergence speed of the neural network.
In this paper, in order to make the training process of BPNN more
stable and efficient, this paper adds the optimizerwithmomentum to
the original BPNN, which accelerates the convergence and reduces
the gradient oscillations by introducing the historical gradient
information; and through the Adam optimizer, the learning rate of
each parameter is adjusted adaptively, which further improves the
training efficiency and convergence. In addition, L2 regularization
is achieved by setting the weight_decay parameter in the optimizer.
For a basic loss function and the weight parameters of themodel, the
loss function with L2 regularization can be expressed as:

Ltotal = L+
λ
2
‖μ‖22 (8)

where Ltotal is the total loss function with a regularization term;
L is the original classification loss; ‖μ‖22 is the square of the L2
paradigm of the model weight λ, i.e., the sum of squares of all
weight parameters; and λ is the regularization coefficient, which
corresponds to the weight_decay parameter.

3.4 GA-OBPNN model design

3.4.1 Introduction to genetic algorithm
GA is a global optimization algorithm that simulates the process

of biological evolution and optimizes a population of candidate
solutionsthroughoperationssuchasselection,crossover,andmutation
to approximate the global optimal solution. It is widely used in
solving complex problems with powerful search and optimization
capabilities. However, traditional genetic algorithms have limitations
in theoptimizationprocess, suchasfixedcrossoverandmutationrates,
slow convergence, easy to fall into local optimums, lack of domain
knowledge guidance and a single way of fitness assessment.

3.4.2 GA-OBPNN model structure design
In traditional BPNN, the weight parameters are usually randomly

initialized,whichmaycause thenetwork toeasily fall into localoptima,
especially innon-convexcomplex loss surfaces. Inaddition, traditional
BPNN relies only on gradient descent for weight updating, which is
slow to train and sensitive to initial weights. Therefore, to address the
shortcomings in the traditional BPNN, as well as the shortcomings of
the traditional genetic algorithm mentioned above, in this paper, the
genetic algorithm is used to optimize the weights before the training
of the BPNN model, so that the network starts to be trained under
a more optimal initial value of the weights, which effectively avoids
local optimums and accelerates the convergence of the model, and
thus improves the model’s performance and the training effect. The
specific improvements are as follows:

In this paper, by dynamically adjusting the crossover rate
and variation rate, the parameter search space is increased, and
the diversity of weight search is improved. It focuses on local
optimization in the later stage, thus improving the convergence
speed and global search ability. The formulas are:

3.4.2.1 Crossover operation:

child1 = φ ∙ parent1i + (1−φ) ∙ parent2i (9)

Where φ denotes the crossover rate, ranging between [min_
crossover, max_crossover].

3.4.2.2 Mutation operations:

mutatedgene = gⅇne+ω ∙ randomnoise (10)

Where ω is the mutation rate, ranging between [min_mutation,
max_mutation].

In this paper, the cross entropy loss of BPNN is introduced
as an evaluation index in the evaluation of fitness, which makes
the fitness of each individual in each generation reflect the
effect of optimization more accurately, which in turn enhances
the optimization efficiency and accuracy and accelerates the
convergence of the algorithm. Specifically, the adaptation score of
each individual is calculated by the following formula:

Fitnⅇss(ω) = 1
Loss(ω) + ε

(11)

where Loss(ω) is the cross entropy loss of that set of weights on the
training set.
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FIGURE 3
Flowchart of GA-OBPNN.

In this paper, the genetic algorithm is designed to optimize the
weight initialization of the neural network, making the optimization
results more suitable for neural network training. In addition, the
introduction of MMD loss is also designed for the specific needs of
neural networks. In this paper, MMD loss is introduced to further
improve the generalization effect of the model by dynamically
adjusting the mutation rate, which reduces the risk of falling into
the local optimum.

TheMMD loss is used to constrain the distributional differences
between the source and target domains with the following formula:

MMD(S ,T ) = 1
n2S

nS
∑
i3J
k(xSi ,x

S
j ) +

1
n2T

nT
∑
i3J
k(xTi ,x

T
j )

− 2
nS ∙ nT

nS
∑
i

nT
∑
j
k(xSi ,x

T
j )

(12)

Where, k is aGaussian kernel function, which is used to calculate
the distribution difference between the source domain (S) and the
target domain (T ).

After improving the traditional genetic algorithm to optimize
the BPNN and further optimizing the neural network, its basic
flowchart is shown in Figure 3.

The genetic algorithm searches for suitable network weights by
simulating an evolutionary process to bring the model closer to the
global optimum before the BPNN is trained. The genetic algorithm
first generates a number of individuals in the initialized population,
each representing a set of candidate solutions for the neural network
weights. By defining a fitness function, the algorithm evaluates the
performance of each individual, i.e., the performance of that set of
weights on the training data. Then, through selection, crossover,
andmutation operations, the genetic algorithmoptimizes theweight
distribution generation by generation. Individuals with high fitness
are preferred, crossover operations fuse the weight information of
different individuals, andmutation operations introduce diversity to
prevent the algorithm from falling into a local optimum.

Eventually, through several iterations, the genetic algorithm
outputs a set of optimized weights that are used in the
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FIGURE 4
BPNN model loss rate, accuracy curve.

initial setup of the neural network to accelerate convergence
and improve the generalization performance of the model
in subsequent training. This combination of IGA and BPNN
shows strong advantages in high dimensional nonlinear
optimization problems, avoids the blindness of random
initialization, and enhances the robustness and prediction ability of
the model.

4 Results

In order to verify the model reliability, this paper compares
the evaluation results of the BPNN Model, OBPNN Model, GA-
OBPNNModel, and IGACombinedOBPNNModel on a test set and
evaluates the performance of the different models using the results
of Accuracy, Loss Ratio, AUC (Area Under the Curve) (ROCCurve)
and Confusion Matrix.

4.1 Accuracy, loss ratio

Accuracy and loss are important metrics for evaluating the
results of a neural network model, and the lower the quasi-loss
rate, the better the model’s performance. It is complementary to
the accuracy rate and can be calculated by a simple formula. The
expressions for accuracy and loss rate are:

Accuracy = TP+TN
TP+TN+ FP+ FN

(13)

Loss = FP+ FN
TP+TN+ FP+ FN

(14)

Where TP (True Positive) is the true positive, the number
of samples in which the positive class was correctly predicted as
positive; FP (False Positive) is the false positive: the number of
samples in which the negative class was incorrectly predicted as

positive; TN (True Negative) is the true negative: the number of
samples in which the negative class was correctly predicted as
negative; FN (False Negative) False Negative: the number of samples
in which the positive class was incorrectly predicted to be negative.

The performance of the four model test sets in terms of accuracy
and loss rate is shown below:

Gradual increase of training accuracy: if the training accuracy
gradually increases with epoch and eventually stabilizes, it indicates
that the model gradually reaches the best learning effect on the
training set.

Gradual increase in test accuracy: If the test accuracy gradually
increases with training and eventually reaches a high and stable
value, this indicates that the model performs well on the test
set, which means that the model not only learns well on the
training set, but also shows high accuracy on the unseen data
(test set).

As can be seen in Figure 4, when training with the BPNNmodel,
the loss rate of both the training and test sets decreases rapidly at
the beginning of the training period, and the accuracy increases
rapidly, indicating that the model successfully learns the features of
the data and gradually fits the training data. However, as the training
progresses, after about 100 epochs, the loss rate of the test set starts
to increase, while the accuracy stabilizes and does not continue to
increase.Meanwhile, the loss rate of the training set is still decreasing
with some fluctuations, while the accuracy continues to increase
slowly. This situation indicates that the model is overfitting in the
late stage of training, i.e., the model is overfitting the training set,
but its generalization ability to the test set is decreasing, resulting in
a failure to improve the performance of the test set further. Figure 5
illustrates the training results of the OBPNNmodel. Compared with
the BPNN model, the loss rates of both the training and test sets
of the OBPNN show a gradual decrease, which indicates that the
model alleviates the overfitting problem in the training of the BPNN
to a certain extent. In addition, the accuracy performance of the
training and test sets is more stable and the overall level is higher
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FIGURE 5
OBPNN model loss rate, accuracy curve.

FIGURE 6
Loss rate, accuracy curve of GA-OBPNN model.

than that of BPNN, indicating that the optimized model is more
efficient in learning data features. In Figure 6, the training results
using the GA-OBPNN model further demonstrate the effectiveness
of the optimization. The loss rate of both the training and test
sets of this model is decreasing, and the accuracy of the test
set is stable above 80%. This shows the effectiveness of the GA
algorithm in weight optimization, which improves the convergence
speed of the model and enhances the generalization ability
to some extent.

Figure 7 shows the training results of the IGA-OBPNN model.
From the figure, it can be seen that the accuracy of the
model is greatly improved in both the training and test sets,
where the accuracy of the test set reaches 97%, which is even

higher than the accuracy of the training set. This indicates
that IGA-OBPNN has stronger generalization ability, i.e., the
model not only fits the training data well, but also achieves
excellent performance on the test data. In addition, compared
with GA-OBPNN, IGA further optimizes the model parameters,
which makes the training process more stable and effectively
avoids the local optimum problem that is prone to occur in
the traditional BPNN training process. In summary, compared
with the traditional BPNN model, OBPNN and its improved
version effectively alleviate the overfitting problem and improve
the generalization ability of the model. Among them, GA-OBPNN
achieves better results in optimizing the weights, while IGA-
OBPNN further improves the convergence stability and accuracy
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FIGURE 7
IGA combined with OBPNN model loss rate, accuracy curve.

with the best performance. This indicates that the improved
model is able to ensure the training performance with stronger
generalization ability.

4.2 AUC (ROC curve)

AUC, which is commonly used to describe the area under
the ROC curve, is also known as ROC-AUC. The ROC (Receiver
Operating Characteristic) curve is a graphical tool that describes the
classification effect of a model.

The ROC curve plots all possible classification thresholds as
points on a graph, with the False Positive Rate (FPR) as the
horizontal coordinate and the True Positive Rate (TPR) as the
vertical coordinate. Rate, TPR). For an ideal classifier, theROCcurve
will be as close to the upper left corner as possible, i.e., the True
Positive Rate is high and the False Positive Rate is low.

The AUC, on the other hand, is the area under the ROC curve,
with a value range between 0.5 and 1.The closer amodel’s AUCvalue
is to 1, the better its classification performance.

As can be seen from the comparison results in Figure 8, it
can be seen that in the ROC curves of the BPNN and the GA-
OBPNN, the recall (Recall) of each category is significantly lower
than that of the remaining two models due to the lack of data
enhancement of the training data. In particular, in the combined
model of IGA and OBPNN, the AUC value is 1, which indicates
that the discriminative ability of the model is enhanced and the
classification task is more reliable.

4.3 Confusion Matrix

Confusion matrix is a visualization tool for evaluating the
performance of classification models. It is usually represented
as a two-dimensional table where the rows represent the actual
categories (true labels) and the columns represent the categories

predicted by the model. The number in each cell represents the
number of samples under the corresponding combination of actual
and predicted categories.

The results in Figure 9 show that the performance of the BPNN
model has some limitations. Specifically, 1 sample in the category 0
sample was misclassified to category 1. In addition, 3 real samples
in the class 2 sample were misclassified to class 3, and 4 samples
in class 4 were also misclassified to class 5. These misclassifications
indicate that the BPNN model has some difficulties in dealing
with categories with similar features and is prone to make wrong
judgments between two similar categories. OBPNN model has
improved its classification performance, but there are still some
misclassification cases. In category 0, there is likewise 1 sample
misclassified as category 1; and in category 1, there is also 1 sample
misclassified as category 0. In addition, 2 samples in category 4
were misclassified to category 5. Although the optimized model
performs better in some aspects, there is still a need to continue
to work on handling similar class features. GA-OBPNN model
further reduced the number of misclassifications. There was still
one sample misclassified as class 1 in class 0, but the number of
misclassifications in class 4 has been reduced to one misclassified as
class 5. This shows that GA optimization plays a role in improving
the model’s ability to distinguish features from similar classes. IGA
combined with optimized BPNN model has achieved significant
improvement in classification performance. In this model, only one
sample in category 1 was misclassified as category 0, which is a
significant reduction in the misclassification rate compared to other
models.This indicates that the IGA-optimizedmodel performsmore
accurately on most of the categories, and in particular, it shows a
stronger ability in distinguishing similar category features.

This indicates that the IGA combined with optimized BPNN
model performs more accurately on most of the categories,
especially showing a stronger ability in distinguishing similar
category features.This ismainly due to the global and efficient nature
of the IGA algorithm in searching for the optimal solution, which
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FIGURE 8
ROC curve. (A) BPNN model, (B) OBPNN model, (C) GA-OBPNN model, (D) IGA combined with OBPNN model.

enables the BPNN model to better learn the complex features and
laws in the data, thus improving the accuracy of classification.

5 Conclusion

This study focuses on proposing a model that combines
an improved genetic algorithm with an optimized BP neural
network for assessing the lethal resistance levels of various
types of buildings. The main contributions and conclusions
are as follows:

1. Significant performance improvement: the data imbalance
problem is effectively solved by oversampling the training set

with a few classes of samples using the SMOTE technique.
Combined with the L2 regularization technique reduces the
risk of overfitting, which makes the model’s performance on
the test set more stable. The experimental results show that
the model achieves significant performance improvement in
the multi-class classification task, with an accuracy of 97% and
an AUC value of 1, which indicates that the model has strong
generalization and discriminative abilities.

2. Effective classification of classes: the weights and bias of the
BP neural network are optimized using a genetic algorithm
to avoid local optimal solutions, which improves the global
search ability and classification accuracy of the model. The
integration of momentum parameters and Adam optimizer
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FIGURE 9
Confusion matrix diagram. (A) BPNN model, (B) OBPNN model, (C) GA-OBPNN model, (D) IGA combined with optimized BPNN model.

further accelerates the model convergence. The model can
effectively classify the llethal resistance levels of buildings
into different grades, which provides a scientific basis for
earthquake risk assessment.

3. Enhancement of urban planning and disaster prevention and
resilience: By deeply analyzing the effects of different building
structural features on the lethal resistance levels, this study puts
forward strategies and suggestions to improve the structural
design of buildings in order to enhance their resilience. The
construction and application of thismodel can help to improve
urban planning disaster prevention and resilience, which is

of great significance in reducing the damage and casualties of
earthquakes.

Despite the remarkable results achieved in this study, there are
still some limitations. First, although the hybridmodel performswell
in handling large datasets and high-dimensional inputs, its relatively
high computational complexity may limit real-time applications to
some extent. Second, despite the adoption of various techniques to
optimize the model performance, the specific performance of the
model may still be affected by the quality of the dataset, feature
selection, and other factors in practical applications. In addition,
this study mainly focuses on some townships in Anhui Province,
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and the generalizability and cross-regional applicability of themodel
need to be further verified. Future research can explore more
efficient computationalmethods, expand the coverage of the dataset,
and deeply optimize the model parameters to further enhance the
model’s practicality and accuracy.
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