
TYPE Original Research
PUBLISHED 23 May 2025
DOI 10.3389/feart.2025.1547087

OPEN ACCESS

EDITED BY

Ahmed M. Eldosouky,
Suez University, Egypt

REVIEWED BY

Amir Ismail,
Texas A&M University Corpus Christi,
United States
Norman Ettrich,
Fraunhofer Institute for Industrial
Mathematics (FHG), Germany

*CORRESPONDENCE

Xuri Huang,
xrhuang@sunrisepst.com

Mengcheng Li,
17721865392@163.com

RECEIVED 17 December 2024
ACCEPTED 12 May 2025
PUBLISHED 23 May 2025

CITATION

Li M, Huang X, Cao W, Wo Y, Xu M, Ren M and
Lu S (2025) Automatic seismic-well tie based
on cascaded matching optimization method.
Front. Earth Sci. 13:1547087.
doi: 10.3389/feart.2025.1547087

COPYRIGHT

© 2025 Li, Huang, Cao, Wo, Xu, Ren and Lu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Automatic seismic-well tie based
on cascaded matching
optimization method

Mengcheng Li1*, Xuri Huang1,2*, Weiping Cao3, Yukai Wo1,
Minghua Xu4, Mengyu Ren1 and Shunkang Lu1

1School of Geosciences and Technology, Southwest Petroleum University, Chengdu, China, 2State Key
Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,
Chengdu, China, 3Schlumberger, Houston, TX, United States, 4Institute of Geological Exploration and
Development Research, Chuanqing Drilling Engineering Company, Chengdu, China

Seismic-well tie, the alignment of synthetic traces with actual seismic traces
at well locations, is a fundamental step in seismic interpretation, inversion,
and reservoir prediction. This process involves multiple steps, including
preprocessing well logs, calculating reflection coefficients, wavelet estimation,
synthetic traces generation, and aligning synthetic traces with seismic data.
This study focuses on the automated matching process, addressing its
challenges and improving accuracy. Existing methods, such as correlation-
based approaches, local similarity scan, and dynamic time warping, face
limitations in handling time-varying shifts. To overcome these challenges,
we propose the cascaded matching optimization method. This method
decomposes the time shifts calculation into two steps: first, smooth time
shifts are determined using local similarity scan while preserving waveform
characteristics to perform an initial correction; second, the corrected synthetic
trace is refined to account for residual shifts. Tests using synthetic and field
data demonstrate that this method achieves accurate automatic seismic-well
tie while preserving waveform fidelity.

KEYWORDS

seismic-well tie, cascaded matching, local similarity scan, dynamic time warping, time
shifts, correlation coefficient

1 Introduction

Well log curves can provide detailed subsurface parameters and geological interface
stratigraphy, and are often used in conjunction with seismic data, offering high vertical
resolution. However, since most seismic data are in the time domain, while well log data are
in the depth domain, it is necessary to correlate well and seismic data.This process is referred
to as “seismic-well tie.” Seismic-well tie is tying the synthetic trace to the actual seismic
trace at the well location, which is the most fundamental and crucial step in seismic data
interpretation (El Dally et al., 2023), inversion (Wo et al., 2025), and subsequent reservoir
prediction (White and Simm, 2003).

Seismic-well tie is typically conducted in the time domain. The basic process of
seismic-well tie involves five steps: (1) Preprocessing of well logging data. Logging data
is affected by factors such as borehole enlargement and mud invasion, resulting in local
anomalies. It is necessary to reconstruct the abnormal segments or use filtering methods for
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processing (Duchesne and Gaillot, 2011). (2) Calculation of
reflection coefficients through velocity log and density log. It is
important to note that, due to the convolution with the wavelet
required in the subsequent steps, what is needed is a time-
domain reflectivity sequence. Whether calculating the reflectivity
sequence using impedance sequences in the depth domain and
then converting it to the time domain, or first transforming the
impedance sequence to the time domain and then calculating
the reflectivity sequence, there are differences in the synthetics
generated by these two methods (Anderson and Newrick, 2008).
(3) Estimation of appropriate seismic wavelets. (4) Convolution
of reflection coefficients with seismic wavelets to generate a
synthetic trace. Due to factors such as anelastic attenuation
(including anisotropy attenuation), interbed multiples, the wavelet
undergoes variations in both space and time (van der Baan, 2008).
However, the wavelet is a critical factor when generating the
synthetic trace (Munoz and Hale, 2012). (5) Bulk shifting and
appropriate stretching or compression of the synthetic trace to tie
seismic data at the well location. This series of steps does not
seem very difficult, so many details within it are easily overlooked,
resulting in poor quality of the seismic-well tie.

In this paper, we focus on the fifth step, assuming that the
first four steps have already been completed and are reasonable. As
exploration progresses, the number of wells continues to increase,
and in areas with high-density well networks, the manual search
by interpreters for the best match between the seismic trace
near the well and the synthetic trace in step five becomes an
extremely time-consuming task. Currently, the methods commonly
used for automatic seismic-well tie matching can be roughly
divided into three categories. The first category is based on
correlation coefficients. By calculating the cross-correlation between
the seismic and well traces, the global correlation coefficient can
be obtained, and the time shifts corresponding to the maximum
global correlation can be used to apply a bulk shift to the synthetic
trace, thereby achieving the seismic-well tie.The time shifts between
the seismic and well traces are necessarily time-varying due to
factors such as frequency-dependent attenuation that causes velocity
differences between well logs and seismic data (Cui, 2015), as well as
the mismatch between the synthetic wavelet used for convolution
and the actual seismic wavelet (Santos et al., 2024). The local cross-
correlation algorithm (Hale, 2006;Hale, 2009) introduces aGaussian
window function during the cross-correlation calculation, dividing
the seismic and synthetic traces into multiple local signals. By
calculating the correlation coefficients between these local signals, a
time-varying displacement sequence can be obtained. This method
is theoretically straightforward and easy to implement. However,
the choice of window size is crucial. If the local signals exhibit
significant variation, a narrower time window is required, which
can reduce the stability of the results. Conversely, increasing the
window size to improve stability may reduce the accuracy of the
calculated time shifts. To overcome these limitations, Fomel (2007a);
Fomel and Jin (2009) proposed the concept of local similarity,
which involves calculating the similarity characteristics within the
local neighborhood of each sampling point using least-squares
inversion. This process is then used to further derive the time
shifts. Local similarity, compared to local cross-correlation, does
not heavily rely on window selection and can calculate smooth
time shifts (Herrera et al., 2014) enabling appropriate stretching

and compression of synthetic traces to achieve seismic-well tie. The
second category is based on dynamic time warping (DTW). An
early approach to DTW was introduced by Martinson and Hopper
(1992) Martinson et al. (1982). Herrera and van der Baan (2012)
applied DTW for the automatic alignment of well and seismic
traces. More recently, Hale (2013) improved DTW by incorporating
time shifts directly into the algorithm. Furthermore, Herrera and
van der Baan (2014) introduced global constraints to ensure that the
maximum amount of stretching and compression remains within
a reasonable range. The third and most recent category involves
artificial intelligence (AI)-basedmethods.Wu et al. (2022) proposed
an automatic well-seismic tie algorithm that combines convolutional
neural networks (CNN)with variable window resampling. However,
the stretch range of the variable window significantly affects the
quality of the training dataset. Di and Abubakar (2023) applied
self-supervised learning to seismic-well tie, which enables the
automatic extraction of features from unlabeled data, thereby
reducing the need for manual labeling. Additionally, Santos et al.
(2024) developed a deep learning model based on a multilayer
perceptron (MLP) neural network, which predicts accurate wavelets
using only seismic traces. This AI-predicted wavelet is then used
to generate synthetic traces that better match the observed seismic
data, effectively enhancing the seismic-well tie quality.

Through a review of existing literature and technologies, it
is found that automatic seismic-well tie methods based on local
similarity scan (LSS) and DTW still exhibit certain limitations. In
response, we propose a novel automatic seismic-well tie method
based on cascaded matching optimization (CMO). We normalize
this local similarity attribute, LSS to compute the smooth time shifts,
aligning the major waveform features of the synthetic seismogram
and the nearby seismic trace while preserving the waveform
characteristics. This step provides an optimized synthetic trace as
input for subsequent DTW-based residual time shifts calculation.
The synthetic trace is then further refined to enhance well-seismic
consistency. This paper is organized as follows: first, the principles
of the LSS and DTW methods are introduced, and their limitations
are demonstrated using the synthetic data. Then, the cascaded
matching optimization method is applied for the automatic seismic-
well tie of both synthetic and field data. The seismic-well tie’s results
are quality-controlled using three approaches: multi-well time-
depth relationships, well-tie profiles, and well-seismic correlation
coefficients. All results indicate that the proposed method achieves
satisfactory outcomes.

2 Methodology

2.1 Local similarity scan

The global correlation coefficient r is a statistical measure
used to quantify the degree of linear correlation between
two signals, x and y, with a value ranging between −1 and
1. The formula for calculating the coefficient r is defined
as Equation 1:

r =
∑N

t=1
x(t)y(t)

√[∑N
t=1

x(t)x(t)][∑N
t=1

y(t)y(t)]
, (1)
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In the formula, t denotes the time sample index, and N
represents the total number of samples in the signal. The squared
global correlation coefficient can be expressed as the product of two
components, as shown in Equation 2:

r2 = r1r2. (2)

Here, r1 and r2 represent the components related to the two
signals, which can be expressed as follows:

r1 =
∑N

t=1
x(t)y(t)

√∑N
t=1
[x(t)]2
= (xTx)−1(xTy), (3)

r2 =
∑N

t=1
x(t)y(t)

√∑N
t=1
[y(t)]2
= (yTy)−1(yTx). (4)

In Equations 3, 4, x is a vector notation for x(t), and y is a vector
notation for y(t) , where the superscript ( )T denotes the transpose.

To compute the local similarity at each sample point between
two signals, we first convert them into diagonal operators: X is
a diagonal operator composed from the elements of x, and Y
is a diagonal operator composed from the elements of y. Then,
we introduce a regularization operator R, specifically the shaping
regularization operator (Fomel, 2007b), to localize the least-squares
inversion. This effectively smooths the results and ensures stability
during the iterative solution. The local similarity components r1(t)
and r2(t) can then be computed as shown in Equations 5, 6:

r1(t) = [μ2I+R(XTX− μ2I)−1]RXTy (5)

r2(t) = [μ2I+R(YTY− μ2I)−1]RYTx (6)

Here, μ is a scaling parameter used to balance the identity
operator I and the signal energy term in the shaping regularization.
The result of local similarity c(t) is the product of r1(t) and r2(t).
By introducing different time shifts l into the signal x, we perform
the calculation of local similarity, ultimately obtaining a spectrum of
local similarity coefficients c(t, l).

Hereafter, it is necessary to pick the time shifts τ1(t) for
each sampling point from the local similarity spectrum c(t, l).
The traditional method involves traversing each sampling point
and selecting the value of l where the similarity is maximized.
However, thismethodmay lead to discontinuous or unstable picking
trajectories. In this paper, a novel automatic picking method is
employed, viewing the similarity picking process as a variational
problem (Fomel, 2009), analogous to the ray tracing problem-just
as the first-arrival seismic ray corresponds to the trajectory with
the minimum travel time. The optimal similarity trend τ1(t) should
minimize the path defined in Equation 7:

path[τ1(t)] =
tmax

∫
tmin

e[−c(t,τ1(t))]√λ
2+[τ′1(t)

2]dt. (7)

where λ is a scaling parameter controlling the smoothness of the
trajectory. According to variational theory, this leads to the following
eikonal-type equation, as shown in Equation 8:

( ∂T
∂τ1
)

2
+ 1
λ2 (

∂T
∂t
)

2
= e−2c(t,τ1(t)). (8)

where T(t, l) denotes the accumulated traveltime-like cost function.
In this analogy, the local similarity c(t, l) plays the role of inverse
velocity (i.e., squared slowness), and regions of high similarity act
as “waveguides” that attract the optimal trajectory. The final picking
path τ1(t) is extracted by backward ray tracing along the gradient of
T(t, l), and smoothed using shaping regularization (Fomel, 2007b),
to suppress random oscillations.

2.2 Dynamic time warping

DTW is an effective tool for measuring the similarity between
two sequences. It works by calculating the Euclidean distance
between each pair of sampling points in the two sequences,
constructing a Euclidean distance matrix, and then using dynamic
programming to accumulate and sum the Euclidean distances,
forming a cumulative Euclidean distance matrix. Finally, a
backtracking process is used to determine thematching relationship
between sampling points in the two sequences.

If we denote the seismic trace near the well as y(t) and the
synthetic trace as x(t), traditional DTW requires computing the
Euclidean distance matrix by comparing every sample point in y(t)
with every sample point in x(t). This results in a large computational
cost and is inconsistent with physical principles, as the synthetic
trace cannot realistically undergo such extreme stretching and
compression. To address this, Hale (2013) introduced a time-
window constraint, meaning that when calculating the Euclidean
distance matrix (also referred to as the error matrix et,l here), each
sample point in y(t) is only compared to sample points within a
certain neighborhood in x(t). The Euclidean distance is calculated
based on the amplitude differences at each sampling point, using the
following formula:

et,l = [y(t) − x(t+ l)]2. (9)

Equation 9 quantifies the local errors of each sampling point of
the two sequences. To find an optimal matching path, it is necessary
to minimize the global error. First, initialize the first column of the
global error matrix, as shown in Equation 10:

γ1,l = e1,l. (10)

Then cumulative error matrix γt,l can be achieved by
accumulating errors through the following method:

γt,l = et,l +min
{{
{{
{

γt−1,l−1
γt−1,l
γt−1,l+1

. (11)

Equation 11 is illustrated in Figure 1a. At each point, the
accumulated error is computed by comparing the cumulative errors
from the three preceding directions, selecting the minimum among
them, and adding the current local error to obtain the cumulative
error at the current position.

Finally, we find the point with the smallest global error value
from the last column of the global error matrix, which serves as the
starting point for backtracking the path. The corresponding time
shift l for this minimum value is stored as the last element in the
one-dimensional sequence τ2(t) as shown in Equation 12:

τ2(N) = argmin
l
(γN,l). (12)
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FIGURE 1
(a) Schematic diagram of the DTW cumulative error matrix calculation; (b) Schematic diagram of the DTW path backtracking.

Since the error accumulation is based only on the
global error values from the previous three points
(γt+1,τ2(t+1)−1,γt+1,τ2(t+1),γt+1,τ2(t+1)+1), we determine the minimum
among these three global error values and record the corresponding
time shift l, storing it in the sequence τ2(t).This recursive processing
continues using the following formula:

τ2(t) = argmin
l

{{{
{{{
{

γt+1,τ2(t+1)−1
γt+1,τ2(t+1)
γt+1,τ2(t+1)+1

, t = N− 1, ......,1. (13)

Equation 13 is conceptually illustrated in Figure 1b. During
the backtracking procedure, the cumulative error at the current
point is assumed to originate from one of the three adjacent
directions. Accordingly, the cumulative errors from these directions
are evaluated, and the direction associated with the minimum
cumulative error is selected. This process is iteratively applied to
trace back the optimal alignment path.

2.3 Cascaded matching optimization
method

Let the seismic trace recorded near the well be denoted as y(t),
and the synthetic trace generated from well log data be denoted
as x(t). During the seismic-well tie, the synthetic trace requires
stretching and compression, meaning each sampling point in x(t)
has the time shifts denoted as τ(t). This time shifts can be used to
match the well-seismic data, as expressed in Equation 14:

y(t) ≈ x(t+ τ(t)). (14)

Therefore, the key to seismic-well tie is to accurately compute
τ(t). We calculate τ(t) using the cascaded matching optimization
method: first, we obtain the smooth time shifts τ1(t) through a LSS,
and then using the smooth time shifts τ1(t) to correct the x(t):

x1(t) = x(t+ τ1(t)). (15)

In Equation 15, x1(t) represents the synthetic trace after initial
optimization. Under the constraint of the smooth time shifts, we
utilize DTW to further obtain the residue time shifts τ2(t), and then:

x2(t) = x1(t+ τ2(t)). (16)

In Equation 16, x2(t) represents the final synthetic trace after
correction. By calculating the time shifts in steps, the well-seismic
data can be progressively matched, resulting in a good seismic-
well tie.

3 Application

To validate the effectiveness of the proposed method, we apply it
to both synthetic data and field data. First, two signals with known
time shifts are generated, and the correction results from different
methods are compared. Finally, we test the method using well and
seismic data from a field area, and the automatic seismic-well tie
results are quality-controlled using multiple methods, confirming
that the calibration results are satisfactory.

3.1 Synthetic data test

To generate synthetic data, a reflection coefficient sequence
re f(t) is first randomly generated. The signal S1(t) (blue curve in
Figure 2a) is then obtained by convolving this reflection coefficient
sequence with a ricker wavelet having a dominant frequency of
30 Hz.The signal length is n = 750ms. A time-varying shift function
a(t) is then applied to the reflection coefficient sequence, as defined
in Equation 17:

a(t) = 50× [2× abs(2( t
n
mod0.5)− 0.5)− 1] (17)

where t is the time sample index, n is the total number of
samples. The modulo operator “mod” introduces periodicity by
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FIGURE 2
Automatic seismic-well tie using the LSS method. (a) Signals before tie. (b) Similarity attribute matrix generated by LSS. (c) Signals after automatic tie,
with a correlation coefficient of 0.457.

wrapping the normalized time t
n

into a repeating interval of length
0.5. This operation generates a triangular waveform pattern that
repeats every 0.5 units in normalized time. After the subsequent
linear transformations and scaling, the final shift function a(t)
becomes a continuous, smooth triangular wave ranging from
−50 m to 0 m. This design simulates nonstationary time shifts with
continuous variation. The new reflection coefficients are convolved
with the same wavelet to generate the signal S2(t) (red curve
in Figure 2a). The relationship between the two signals can be
expressed as in Equation 18:

S2(t) ≈ S1(t+ a(t)). (18)

Using LSS, the similarity spectrum between the two signals can
be obtained (Figure 2b), The time shifts of signal S2(t), denoted as
a′(t) (green curve in Figure 2b), is picked. The signal S2(t) is then
corrected using this time shifts:

S2
′(t) = S2(t+ a′(t)). (19)

In the Equation 19, S2
′(t) represents the corrected signal. The

corrected results are shown in Figure 2c, where the matching

was performed while preserving waveform characteristics. Good
alignment is observed at the early part around 200 m, whereas the
matching quality is relatively poor in the intervals of 250–350 m
and 550–650 m. This discrepancy arises because the local similarity
method does not compute the similarity of individual points but
rather of local regions, resulting in relatively smooth time shifts path.

When using DTW directly to calculate the time shifts between
S1(t) and S2(t) (as shown in Figure 3a), the cumulative error
matrix is shown in Figure 3b, where red represents high cumulative
error and blue represents low cumulative error. The time shifts
ȧ(t) is obtained using the backtracking formula, and the signal
S2(t) is corrected for time shifts. The result is shown as the
red curve in Figure 3c. DTW ensures that every peak and trough is
forcibly aligned, achieving a very high correlation coefficient (0.959).
However, it disrupts the originalwaveformcharacteristics, leading to
excessive stretching and compression.

Figure 4a still shows the signals S1(t) and S2 (t) from the previous
example. The time shifts are calculated using the cascaded matching
optimizationmethod,which effectively addresses timediscrepancies
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FIGURE 3
Automatic seismic-well tie using DTW method. (a) Signals before tie. (b) Cumulative error matrix generated by DTW. (c) Signals after automatic tie, with
a correlation coefficient of 0.959.

between signals. First, smooth time shifts are determined using the
LSS, and this is used to perform an initial correction on the signal
S2(t) (red curve in Figure 4b). Subsequently, the corrected signal
S′2(t) and the reference signal S1(t) are used as inputs for the DTW
method to calculate residual time shifts, resulting in a more refined
correction. The final corrected signal is shown as the red curve
in Figure 4c. As shown in Figure 4c, it is evident that the smooth
time shifts limit the range of adjustments in the DTW process.
Consequently, the corrected signal successfully eliminates the time
discrepancies while preserving the original waveform characteristics
as much as possible. Moreover, the corrected result achieved a high
correlation coefficient of 0.882, demonstrating the effectiveness and
superiority of this method.

3.2 Field data example

This method is also applied to a field dataset, where the target
layer Horizon-A’s base consists of a widespread and stable mudstone

section. A total of eight wells with available logs are located in the
study area. The spatial distribution of the wells and the structure
of Horizon-A are shown in Figure 5. Before performing automatic
well-seismic tie, it is necessary to carry out quality control on the
preprocessed well log and seismic data (Metwalli et al., 2024). The
3D seismic dataset in this field comprises 155 lines, with each inline
containing 228 traces. As an example, Inline 80 is displayed in
Figure 6. The profile exhibits a high signal-to-noise ratio and clear
continuity of reflectors. Between 1,000 m and 1,200 m, two strong
continuous reflectors are observed. The green horizon represents
Horizon-A, and the cyan one corresponds to Horizon-B. These
horizons can be used as reference markers for well-seismic tie. In
addition, we conducted a spectral analysis of the entire seismic
dataset (as shown in Figure 7). The dominant frequency of the
dataset is approximately 35 Hz, with a frequency range spanning
from 16.3 Hz to 57 Hz. The relatively broad frequency bandwidth
further indicates the high quality of the seismic data.

To clarify the overall workflow, Figure 8 presents a newflowchart
summarizing the key steps of our proposed Cascaded Matching
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FIGURE 4
Seismic-well tie using the cascaded optimization method. (a) Signals before tie. (b) Signals after tie using LSS. (c) Further calibration on using DTW,
resulting in a correlation coefficient of 0.882.

Optimization (CMO)-based automatic well-seismic tie method.
This flowchart highlights the three main components of the process:
data quality control, the core methodology including synthetic trace
generation and cascaded optimization, and final validation through
multi-well consistency checks, time-depth relationship analysis, and
correlation coefficient evaluation. This structured workflow ensures
that each phase of the process is both traceable and reproducible.

We take well-F as an example to illustrate the detailed steps of
the automatic tie procedure. Well-F has undergone comprehensive
preprocessing of the logging data. First, the reflection coefficients
are calculated using the sonic logging data (Figure 9a) and density
logging data (Figure 9b) from Well F. Next, the initial time-depth
relationship (Figure 9c) is determined from the sonic travel time
logs. The reflection coefficients (Figure 9d) are then converted
from depth to the time domain, and finally, they are convolved
with a given 35 Hz ricker wavelet to generate the synthetic trace
(Figure 9e). From the seismic profile crossing the well (Figure 9f), it
can be observed that there is a certain discrepancy between seismic
horizons A and B and the well log markers A and B. The factors

contributing to this mistie are complex. One major factor is that the
sonic log data is not measured from the surface. In areas without
sonic log data, the average seismic velocity of the overlying strata
is typically used to calculate time. As a result, the synthetic trace
computed in this manner will exhibit an overall time shifts relative
to the nearby seismic trace.

The input well-side seismic trace (blue curve in Figure 10a) and
the synthetic trace (red curve in Figure 10a) are used to calculate
their local similarity attribute, which is a two-dimensional matrix.
This local similarity attribute is normalized, and the result is shown
in Figure 10b. We pick the time shifts from the local similarity
attribute (black curve in Figure 10b). These time shifts are then
applied to correct the synthetic trace. As shown in Figure 10c,
the seismic marker layers around 1,035 m and 1,100 m have been
successfully aligned with the corresponding well-log stratification,
indicating that the initial correction effectively captures the layer
correspondence between the well and seismic data. Moreover, the
synthetic trace does not exhibit excessive stretching or compression
during this process, preserving its waveform characteristics. It is
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FIGURE 5
Map of the actual study area and well locations.

FIGURE 6
Seismic profile of inline 80.
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FIGURE 7
Spectrum analysis of the entire field data.

FIGURE 8
Workflow of automatic well-seismic calibration using CMO in the field data.

worth noting that the similarity measure used in LSS is based
on amplitude energy correlation rather than signal polarity. As
a result, even when the synthetic and seismic traces are nearly
opposite in polarity (as observed at the beginning of the trace),
the similarity can still be high. This explains the high similarity

around zero shift in Figure 10b, despite the apparent sign reversal.
To address this issue, we further applied DTW to compute the
residual time shifts between the corrected synthetic trace and the
seismic trace near the well. The cumulative error matrix for this
computation is shown in Figure 10d. Using the path traceback
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FIGURE 9
Synthetic trace generation and seismic well tie for well-F. (a) Acoustic log curve of well-F. (b) Density log curve of well-F. (c) Time-depth relationship
calculated from the acoustic log. (d) Reflectivity sequence calculated from the acoustic and density logs, converted to the time domain using the
time-depth relationship. (e) Synthetic trace generated by convolving the reflectivity sequence with the wavelet. (f) Seismic profile through the well-F.

algorithm, the time shifts are picked (black curve in Figure 10d)
and reapplied to the synthetic trace (red curve in Figure 10c).
As shown in Figure 10e, the synthetic trace corrected through
this cascaded matching optimization demonstrates a significantly
improved alignmentwith the seismic trace.This approach effectively
eliminates the remaining time discrepancies while preserving the
original waveform characteristics of the wavelet group.

As shown in Figure 11, the synthetic traces before and after
automated tie are compared along the well-crossing profile.
By employing the cascaded matching optimization method, the
calibrated synthetic trace exhibits excellent consistency with the
seismic data in the well-crossing profile. Furthermore, an inspection
of the sonic curves reveals no significant distortions or anomalies,
indicating that the synthetic trace avoided excessive stretching
and compression. This demonstrates this method’s effectiveness in
achieving accurate and stable seismic well tie while preserving the
original waveform characteristics.

To further demonstrate the superiority of the proposed method,
we conducted a comparative analysis with two commonly used
automatic seismic-well tie methods: DTW and Windowed Time-
Lag Cross-Correlation (WTLCC). Figure 12 illustrates the results
for Well-F using different methods: the synthetic trace before
calibration, the result calibrated with the cascaded matching
optimization method, the result calibrated using DTW, and the
result calibrated using WTLCC. Although the synthetic trace
calibrated with DTW achieve the highest correlation coefficient
with the seismic trace, this is achieved at the expense of excessively
reducing cumulative errors, leading to pathological stretching and
compression. For instance, at 800 m (highlighted by the green
circle), two distinct peaks in the original synthetic trace are

forcibly compressed into one, significantly distorting the original
waveform characteristics. In contrast, the cascaded matching
optimization method effectively preserves these features while
achieving a high degree of tie accuracy. The WTLCC method
shows suboptimal matching in multiple regions due to its limited
ability to adapt to nonlinear time shifts, further emphasizing the
robustness and adaptability of the proposed cascaded matching
optimization approach.

Using the cascaded matching optimization method, automatic
seismic-well tie is performed for the remaining seven wells in
the field data. In this region, the stratigraphy exhibits continuous
lateral distribution, and the seismic response is characterized
by continuous or sub-continuous reflectors. Synthetic traces
generated from well logs along the seismic profile are expected
to display similar waveform characteristics. By analyzing the
cross-well profile, it is possible to evaluate whether changes
in reflectors at well locations are geologically reasonable and
whether geological boundaries align with seismic horizons.
Figure 13 shows the cross-well profile from the study area. After
applying the cascaded matching and optimization method, the
synthetic traces at well locations exhibit strong vertical and
lateral waveform consistency with the neighboring seismic traces,
verifying the reliability of the automatic seismic-well tie results.
Figure 14 shows the correlation coefficients of eight wells before
and after CMO-based automatic well-seismic tie. The orange
bars represent the correlation coefficients obtained using only
a global bulk shift (Hall, 2012), while the blue bars indicate
the results after applying the proposed method. A comparison
clearly demonstrates a significant improvement in the correlation
coefficients.
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FIGURE 10
Automatic seismic-well tie of well-F using the cascaded matching optimization method. (a) Before the automatic well-seismic tie. (b) Local similarity
matrix and time shifts. (c) Initial correction of the synthetic trace using LCC. (d) Cumulative error matrix calculated by comparing the initially corrected
synthetic trace with the nearby well log. (e) Final automatic well-seismic tie result.

Finally, multi-well time-depth relationship fitting is conducted
as an additional quality control step for the eight wells. Within
this study area, the time-depth relationships of multiple wells
should exhibit a certain level of consistency. If the slope of
a particular well deviates significantly—either too steep or too
flat—it may indicate excessive stretching or compression during the
calibration process. Conversely, if the slopes are consistent but the
curves exhibit vertical shifts, it may suggest significant errors in
calculating the initial start time of the synthetic traces. The multi-
well time-depth relationships obtained after applying the cascaded
matching optimization method are shown in Figure 15. These
relationships are convergent and smooth, further demonstrating

the overall high quality of the seismic-well tie calibration in the
study area.

4 Discussion

Seismic-well tie is a highly challenging task, as highlighted by
the five steps outlined in the introduction. This study primarily
focuses on the fifth step, but the preceding four steps inevitably
influence its outcome to varying degrees. First, we recommend
thoroughly inspecting sonic and density log data using borehole
diameter logs to ensure no additional errors are introduced during
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FIGURE 11
Well-F’s seismic profile through the well. (a) Before the automatic well-seismic tie. (b) After automatic well-seismic tie using cascaded matching
optimization.

the preprocessing stage. In the second step, because well-log data
are recorded in the depth domain while seismic data are typically
in the time domain, it is necessary to establish an initial time-depth
relationship. Ideally, this would be done using checkshot surveys or
Vertical Seismic Profiles (VSP) (Hornby et al., 2006), which provide
direct measurements for accurate time-depth conversion. However,
this study specifically addresses situations in which such datasets are
unavailable. In such cases, we construct the time-depth relationship
by integrating the velocity information from P-wave sonic logs.
Traditionally, checkshot surveys provide discrete time-depth pairs.
These are obtained by measuring the one-way travel time from the
surface to downhole receivers and can be used to derive reliable
average interval velocities. VSP data, in contrast, enable high-
resolution imaging around the borehole and capture both upgoing
and downgoing wavefields, improving interpretations of complex
stratigraphy and reflector polarity. However, in many real-world
exploration or development scenarios—especially in older wells
or cost-constrained projects—checkshot and VSP data are often
missing or incomplete. Our method addresses these challenges
by leveraging P-wave sonic and bulk density logs to generate
synthetic seismograms and build the initial time-depth relationship

through velocity integration. This provides a practical and cost-
effective alternative in data-limited environments. Nevertheless,
a major limitation is the lack of calibration: without checkshot
or VSP data to anchor the velocity field, the resulting time-
depth relationship may deviate from the true seismic response.
To mitigate this issue in practice, we recommend matching
prominent reflectors in seismic data with key stratigraphic markers
interpreted from well logs to reduce alignment errors and
enhance tie accuracy. Overall, although our approach cannot fully
replace the precision enabled by checkshot or VSP data, it offers
broader applicability and greater flexibility in scenarios where
such data are not available. It therefore expands the feasibility
of seismic-well tie in data-constrained environments, enabling
effective integration of well and seismic information with minimal
additional cost.

During the wavelet estimation, multiple parameter adjustments
should be conducted to select an appropriate wavelet, as this
significantly influences the creation of synthetic traces and thereby
affects the accuracy and reliability of automatic seismic-well tie. In
this study, we utilized a constant-phase wavelet determined through
phase rotation and peak amplitude analysis (van der Baan, 2008).
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FIGURE 12
Comparison of automatic well-seismic tie results using different methods. (a) Before tie. (b) Automatic tie using cascaded matching optimization. (c)
Automatic tie using DTW. (d) Automatic tie using WTLCC.

FIGURE 13
Well-to-well seismic profiles of eight wells after automatic tie using cascaded matching optimization.
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FIGURE 14
Correlation coefficient plot between synthetic trace and near-well seismic trace.

FIGURE 15
Time-depth relationship curves for eight wells after automatic tie using cascaded matching optimization.

Although using time-variant wavelets for calibration (Cai et al.,
2023) could enhance accuracy, the increased complexity may pose
challenges. This will be a focus of future research to further refine
the proposed method. Additionally, it is crucial to ensure polarity
consistency between seismic data and well logs (Gratwick and
Finn, 2005), as incorrect polarity could result in automatic tie
failure.High signal-to-noise ratio seismic data are also indispensable

for successful seismic-well tie. Careful consideration of velocity
modeling, particularly ensuring consistency between well and
seismic velocities (Bader et al., 2018; Wo et al., 2024) is essential
for improving the correlation between synthetic seismograms and
seismic traces near the wellbore.

The focus of this study is on the fifth step of the well-seismic
tie process, namely the alignment of synthetic seismograms with
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seismic traces in the vicinity of wells. Before the development of
automatic or semi-automatic techniques, this task was typically
performed manually by interpreters. While manual well tying
benefits from the interpreter’s geological understanding and
experience, it suffers from limited repeatability and poor scalability.
This challenge becomes particularly significant in high-density
well networks, such as those in certain oilfields in eastern China.
For example, in the Shengli Oilfield, the well density can reach
up to 275 wells per square kilometer, making manual well-
seismic tie an extremely time-consuming process. DTW aims to
find a locally optimal path by matching points one-to-one. In
contrast, LSS allows for cross-sequence jumps, which are locally
suboptimal. As a result, DTW tends to introduce more local
stretching and squeezing. Although such adjustments can increase
the correlation coefficient, as shown in Figure 3c, they often lead
to distorted waveforms and potentially pathological matches.
The LSS method, by enabling cross-sequence alignment, is better
suited for preserving waveform characteristics during the initial
matching stage, thereby providing a more reliable starting point for
subsequent DTW application. Consequently, a cascaded matching
optimization strategy is considered meaningful and beneficial.
However, interpreters are advised to evaluate the final automated
tying results using the quality control procedures proposed in this
study. The quality of a well-seismic tie should not be judged solely
by correlation coefficients (Herrera and van der Baan, 2014). A
more comprehensive evaluation involves examining the calibrated
acoustic logs. As illustrated in Figure 11, the AC logs before and after
calibration show no distortion, only a minor overall shift. Moreover,
the synthetic seismograms display minimal waveform variation,
and the alignment between seismic events and geological layering is
satisfactory. For multi-well scenarios, a post-calibration time-depth
crossplot can be generated. In a localized survey area, the time-depth
relationships among different wells are expected to be relatively
consistent. Significant deviations in slope for individual wells may
suggest over-stretching or compression during calibration. If the
slopes are similar but exhibit vertical offsets, the starting time of
the synthetic seismogram may have been incorrectly calculated.
Lastly, inter-well section analysis provides additional validation.
Within a stratigraphically continuous block, reflectors are expected
to display consistent or quasi-consistent seismic phases. Synthetic
traces constructed from logs along such sections should present
comparable waveform features. This allows for evaluation of the
consistency of reflection events at well locations and the match
between geological stratigraphy and seismic horizons, further
supporting the reliability of the well tie.

5 Conclusion

LSS and DTW each have inherent limitations in automated
seismic-well tie. LSS excels in calculating time shifts while
preserving waveform features but often leaves residual time shifts
uncorrected. Conversely, DTW eliminates time discrepancies as
much as possible but fails to maintain waveform coherence. The
cascaded matching optimization method integrates the strengths of
both approaches. It first employs LSS to compute smooth time shifts
and then applies DTW under these constraints to calculate residual
time shifts. This combined approach achieves improved matching

by correcting time shifts while preserving waveform characteristics.
This method offers a practical solution for achieving high-precision
seismic-well ties, demonstrating significant potential for improving
the accuracy and efficiency of well-seismic integration in reservoir
characterization and seismic interpretation.
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