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Introduction: Accurate classification of seabed sediments is essential for marine
spatial planning, resource management, and scientific research. While direct
sampling yields precise sediment information, it is costly and spatially limited.
Multibeam echo-sounding systems (MBES) offer broad coverage but lack
detailed sediment characterization, creating a need for an integrated, data-
driven approach.

Methods: We developed a machine-learning framework that fuses MBES
backscatter data with limited seabed samples. Missing MBES values were
first interpolated using a U-Net model to create a complete raster dataset.
Advanced texture and spectral descriptors—Gray-Level Co-occurrence Matrix,
Law’s texture filters, and discrete wavelet transforms—were extracted from the
backscatter imagery. Five classifiers (Random Forest, Support Vector Machine,
Deep Neural Network, Extreme Gradient Boosting, Light Gradient-Boosting
Machine) were trained to predict four sediment classes (gravel, sand, clay, silt).
To mitigate sample scarcity and class imbalance, a semi-supervised self-training
loop iteratively added high-confidence pseudo-labels to the training set.

Results: Field validation in the East Sea (Republic of Korea) showed that
the Extreme Gradient Boosting model achieved the highest accuracy. Overall
prediction accuracy increased from 60.81 % with the baseline workflow to
72.73 % after applying data interpolation, enhanced feature extraction, and
self-training.

Discussion: The proposed combination of U-Net interpolation, multi-scale
texture features, and semi-supervised learning significantly improves sediment
classificationwhereMBES data are incomplete and sediment samples are sparse.
This integrated workflow demonstrates the potential of machine-learning
techniques to advance seabed mapping and support informed marine resource
management.

KEYWORDS

multibeam echo-sounding (MBES), sediment classification, MBES data interpolation,
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1 Introduction

Seabed sediments play a crucial geological role, functioning
as archives of Earth’s environmental history by preserving
detailed records of climate change, oceanographic processes, and
ecosystem dynamics over geological timescales (McNeill et al.,
2019; Harris and Baker, 2011; Baker et al., 2021). Understanding
the spatial distribution and composition of seabed sediments has
emerged as a fundamental requirement for addressing multiple
contemporary challenges in marine science and management
(Zeppilli et al., 2016). These sediments not only influence benthic
biodiversity patterns and ecosystem functioning but also provide
essential baseline information for sustainable marine resource
exploitation, environmental impact assessment, and climate
change research (Kaikkonen et al., 2021).

Direct sediment sampling, a fundamental technique in seabed
sediment research, involves the collection of sediment samples
using box corers and grab samplers (Herkül et al., 2017). This
method enables precise analysis of the physical and chemical
properties of seabed sediments, accurately identifying components,
particle sizes, and organic content (He et al., 2020). Direct
sampling provides unparalleled ground-truth data, allowing detailed
determination of grain size distribution,mineralogical composition,
organic matter content, and contamination levels (Mudroch and
Azcue, 1995). However, sampling is limited by high operational
costs, low spatial coverage, logistical constraints in deep-sea
surveys, vessel time availability, and dependency on weather
conditions (Brown et al., 2011).

In contrast, acoustic remote sensing using multibeam echo-
sounding (MBES) offers complementary capabilities that can
address many of these limitations. MBES systems provide
continuous, high-resolution bathymetric and backscatter intensity
data over extensive seafloor areas (Ferrini and Flood, 2006).
Backscatter intensity reflects the seafloor’s acoustic characteristics,
influenced by factors such as sediment type, grain size, roughness,
and physical properties (density, sound speed, attenuation) (Brown
and Blondel, 2009; Gaida et al., 2019). This method efficiently
captures geomorphological features, textural variations, and broad-
scale sediment distribution patterns at a lower per-unit cost
compared to direct sampling.

However, acoustic methods alone often provide insufficient
detail for accurate sediment classification due to ambiguities caused
by environmental factors and the indirect nature of acoustic
signatures (Brown et al., 2012). Consequently, accurate seabed
sediment mapping typically requires integrating acoustic data with
ground-truth sediment sampling (Misiuk et al., 2018).

Traditional seabed sediment classification methods using
MBES data heavily rely on expert interpretation and manual
analysis (Dupre et al., 2014). This approach, while valuable, faces
scalability limitations and subjective biases. Recent developments
in machine learning and deep learning techniques have shown
promising results in automating seabed sediment classification
by learning nonlinear relationships between acoustic data
and sediment properties (Diesing et al., 2016; Garone et al.,
2023). Machine learning approaches are effective at extracting
complex patterns from large datasets, providing consistency and
efficiency, and overcoming limitations of manual interpretation

and classical geostatistical methods (Berthold et al., 2017;
Hasan et al., 2012; Lucieer et al., 2013).

Despite these advancements, significant challenges remain due
to inherent data acquisition constraints. Specifically, there is a
notable imbalance between the large volumes of multibeam data
collected and the relatively sparse sediment samples available for
training (Hu et al., 2023).This imbalance can causemodel overfitting
and degrade prediction accuracy (Ying, 2019). Therefore, there is an
urgent need for advanced analytical approaches that can effectively
utilize limited ground-truth data in combination with extensive but
indirect acoustic data.

To address these fundamental challenges, we introduce an
integrated workflow combining data interpolation, advanced
feature extraction, and semi-supervised self-training. A U-Net
convolutional neural network is employed to interpolate missing
MBES data, preserving fine-scale seabed features better than
conventional methods. Feature extraction methods, including
Gray-Level Co-occurrence Matrix (GLCM), Law’s Texture, and
discrete wavelet transform (DWT), are utilized to derive texture and
terrain characteristics from acoustic data, enriching the predictive
feature space.

Semi-supervised self-training, an iterative approach using
pseudo-labeled data, is then applied to mitigate class imbalance
and leverage the vast unlabeled acoustic dataset, improving the
predictive performance of sediment classificationmodels (Wei et al.,
2021). This approach allows models to learn progressively from
limited labeled samples and extensive unlabeled data, enhancing
their robustness and generalization capability.

This study focuses on the East Sea continental shelf and slope,
specifically the Ulleung Basin off South Korea, where we have 95 m-
resolution MBES data paired with a limited set of 553 sediment
samples. To systematically evaluate the effectiveness of our proposed
workflow, we address four primary research questions:

RQ1 – Predictive capacity under data limitations: Can we
achieve practical accuracy in predicting sediment proportions
(gravel, sand, silt, clay) given sparse sampling and medium-
resolution acoustic data?
RQ2 –Performance ofU-Net–based gap filling: Towhat extent
does a U-Net interpolator outperform conventional linear
and cubic interpolation methods in reconstructing missing
acoustic data?
RQ3 – Benefit of texture/terrain features and self-training:
Howmuch improvement in overall accuracy and class-specific
accuracy do advanced feature extraction and semi-supervised
self-training provide relative to fully supervised baselines?
RQ4 – Spatial robustness and transferability: Does our
integrated workflow consistently perform across different
physiographic sub-regions (inner shelf, continental slope,
outer shelf), and can it potentially be transferred to continental
shelves outside the East Sea?

By addressing these questions, we aim to establish a robust,
replicable framework capable of overcoming data acquisition
challenges common to many marine settings. Our results provide
practical insights for enhancing operational seabed sediment
mapping practices, contributing to broader efforts in marine spatial
planning, resource management, environmental monitoring, and
sustainable governance of marine ecosystems.
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FIGURE 1
Workflow for seabed sediment classification using self-training approach.

In this study, we introduce a workflow that includes
data interpolation, feature extraction, and self-training
as shown in Figure 1. First, we use a U-Net model to interpolate
missing values in the acquiredmultibeamdata, resulting in complete
datasets. Next, we perform feature extraction on themultibeamdata,
and the extracted features are used to train five machine learning
models to classify seabed sediments. Using the generated features
and multibeam data as inputs, along with sampling data as labels,
the model conducts regression to predict the proportions of gravel,
sand, clay, and silt in the seabed. The self-training process iterates
based on the regression results, progressively enhancing the model’s
predictive performance. Finally, the model’s predictions of seabed
sediments are validated against actual field data obtained from the

East Sea of South Korea, demonstrating improved accuracy and
reliability.

2 Survey area and data

The survey area is in the East Sea of South Korea, covering
the latitude range of 35.01–36.19 and the longitude range of
128.57–129.57 (Figure 2). This area can be divided into two regions.
The inner continental shelf and the continental slope are mainly
composed of fine sediment particles influenced by sea level changes,
whereas the outer continental shelf consists of coarse residual
sediment particles reflecting past environmental changes. Recent
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FIGURE 2
Map of South Korea, with the survey area highlighted in a red box (a). Multibeam backscatter data (b), bathymetry (c), and sampling points within the
survey area in the East Sea of South Korea.

sediments from high sea level periods are predominantly found on
the inner continental shelf, while residual sediments from low sea
level periods are mainly distributed on the outer continental shelf.
The continental slope is covered with fine sediments supplied by
hemipelagic drift processes (Koo et al., 2014). The research area
spans a range of 5,403 square kilometers, within which multibeam
survey techniques were employed to acquire bathymetric and
backscatter intensity data. Data acquisition took place between
2005 and 2021, and was conducted by the Korea Hydrographic
and Oceanographic (KHOA). The data were carried out using the
EM2040 multibeam echosounder and collected using HYPACK
HYSWEEP, Qinsy, and Teledyne PDS as the primary acquisition
platforms. The original multibeam data were acquired at a higher
resolution, however, due to security restrictions imposed by the
KHOA, only a 95 m resolution version of the data was made
available for use in this study. The resolution of the multibeam
data is crucial for covering large survey areas efficiently while
still capturing fine-scale seabed features. The bathymetry (bathy)
data shows that the depth of the study area ranges from 3 to
163 m, and the backscatter (bs) intensity ranges from −68.4 to
3.4 dB. Within the survey area, a total of 229,301 data points were
acquired for both the ‘bathy’ and ‘bs’ variables. Sampling data was
collected from a total of 553 locations in the survey area using grab
and box corers. The sampling data includes location information,
inclusion ratios of gravel, sand, silt, and clay, and sediment type. The
pixel size of the multibeam data is (1,369, 440), and the sampling
data has been randomly split into train and test data at a ratio
of 8:2 for sediment classification.

3 Data preprocessing

3.1 Headings interpolation of missing
multibeam data using U-Net

Device limitations, economic constraints, and local maritime
conflicts often result in significant gaps in MBES data, including
bathymetry and backscatter data (Li et al., 2023). Similarly, in
our study, missing data issues also occurred due to factors such
as fishing activities, restricted access to shallow waters that are
difficult for survey vessels to navigate, and unusable data that
could not be processed properly. These missing values can increase
uncertainty and introduce bias in seabed sediment predictions,
ultimately reducing accuracy (Sánchez-Arcilla et al., 2021). To
mitigate this issue, this study employs a deep learning-based
interpolation technique using the U-Net model to fill these gaps
and enhance data completeness and usability. The U-Net is a
convolutional neural network (CNN) known for its symmetrical
structure, which accurately separates and identifies fine details in
images (Ronneberger et al., 2015). The model consists of two main
parts: the encoder and the decoder. The encoder extracts important
features from the input image, progressively reducing their size,
while the decoder enlarges these features to restore detailed aspects
of the image (Siddique et al., 2021). Skip connections directly
connect features from each level of the encoder to the corresponding
level of the decoder, minimizing information loss and enabling
the decoder to accurately reproduce fine textures and details
(Zhou et al., 2018).
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FIGURE 3
U-net architecture.

In this study, we used a modified U-Net architecture to address
the challenge of interpolating missing multibeam sonar data. As
input, we use a randomly half-removed image from a 28 × 28
patch of multibeam data, and train an interpolation model by
comparing it to the original patch. The model structure first
applies a Random Masking layer to the input image to add
random masking only during training. It then follows a typical
U-Net structure, extracting features with two max poolings and
concatenating them with the output of the previous layer in a
subsequent upsampling step to restore detail. The end result is an
output with two channels, which is an interpolated version of the
original image. The analysis in this study was conducted using
Python as the programming language. For machine learning and
deep learning tasks, we utilized Scikit-learn and TensorFlow as the
main frameworks. The network is trained using an Adam optimizer
and a mean squared error loss function, with epoch set to 100. Early
termination and model checkpoint callbacks are used to optimize
the performance of the model. The interpolation process for this
model can be seen in Figure 3.

For training the interpolation model, the multibeam data
is split into training, validation, and test datasets as shown in
Figure 4a. Patches of 28 × 28 pixels without missing values were
extracted, resulting in 133,537 training patches, 889 validation
patches, and 119 testing patches. During training, 50% of the
pixels in each patch were randomly removed to serve as input,
while the complete patches were used as labels (Figure 4b).
This approach enables the U-Net model to learn meaningful
patterns from incomplete data and effectively fill the missing

values, thereby enhancing its interpolation performance in real-
world environments. After training the interpolation models,
the performance of the interpolation results was compared with
outcomes obtained using linear and cubic interpolation methods on
the test dataset (Figures 4c–e).

The evaluation metrics employed were the Root Mean Square
Error (RMSE) and the Peak Signal-to-Noise Ratio (PSNR) as
follows:

RMSE = √ 1
n

n

∑
i=1
(Yi − Ŷi)

2

(1)

PSNR = 20 · log10(
MAXI

√MSE
) (2)

In Equation 1, n is the number of patches, Yi is the complete
patch from bathymetry or backscatter data, ̂Yi is the predicted
data, and in Equation 2, MAXI is the maximum possible value
in the data. RMSE measures the discrepancy between actual and
predicted values, where a lower value indicates greater similarity
(Chai and Draxler, 2014). PSNR quantitatively assesses the quality
difference between the original and processed images, with a
higher value indicating a closer resemblance to the original image
(Hore and Ziou, 2010).

The comparison showed that the U-Net model achieved the
highest performance with an RMSE of 0.8825 and a PSNR of
49.4400 across both metrics, indicating an improvement over
linear and cubic models (Table 1). Finally, the U-Net models
for bathymetry and backscatter data are applied to the original
multibeam data. After performing the interpolation, the missing
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FIGURE 4
Data split for MBES data interpolation and examples of interpolation methods: (a) Division of survey area into training, validation, and testing area, (b)
input patch with missing values, interpolation results of (c) U-Net, (d) Linear interpolation, and (e) Cubic interpolation.

TABLE 1 Performace comparisons for U-Net, Linear, and Cubic
interpolations on the test dataset.

Model U-net Linear Cubic

RMSE 0.8825 2.3484 2.3388

PSNR 49.4400 43.7796 44.1122

Bold values indicate the best performance for each metric (i.e., the lowest RMSE and the
highest PSNR).

values were effectively corrected, demonstrating the efficacy of the
U-Net models in enhancing data completeness (Figure 5). One can
also notice that the interpolation model extrapolates the data.

3.2 Feature extraction

Feature extraction typically involves synthesizing information
or attributes that describe the elements of an image to be
classified in image classification (Ruiz et al., 2011). Through
feature extraction, relevant shape information contained in patterns
is described, allowing for the classification of patterns through
a standardized procedure. This process enables the extraction

of the most relevant information from the original data and
its representation in a lower-dimensional space (Kumar and
Bhatia, 2014). Feature extraction from multibeam backscatter data
for seabed sediment classification plays a crucial role in the
fields of marine science and resource management. Backscatter
data obtained using multibeam acoustic technology reflects the
surface characteristics of the seabed, and analyzing this data
enables the identification of the seabed’s physical structure and
sediment types (Preston, 2009).

Seabed roughness, which influences multibeam data, can be
represented as texture characteristics, and in this paper, featureswere
extracted using a texture matrix-based Gray-Level Co-occurrence
Matrix (GLCM), Law’s texture, and wavelet decomposition based
on discrete wavelet transform (DWT). GLCM is utilized to analyze
the texture characteristics of sediments, extracting features that
represent the surface texture and structure of the sediment to
distinguish between various types of sediments (Pican et al.,
1998). The GLCM calculation formula is based on the following
research (Cinar et al., 2021). Law’s Texture is employed to analyze
the texture energy patterns of seabed sediments, aiding in the
identification of distinctive textures of the seabed topography
by understanding the various characteristics of the sediments
(Massot-Campos et al., 2013). This method utilizes convolutional
kernels to extract texture features by emphasizing different spatial
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FIGURE 5
Before and after data interpolation using U-Net on backscatter and bathymetry data.(a) origin backscatter. (b) Origin bathymetry. (c) Interpolated
backscatter. (d) Interpolated bathymetry.

frequency components, enabling the differentiation of sediment
types based on their textural properties (Haralick et al., 1973). DWT
is used to decompose images or acoustic data of seabed sediments

into different frequency components, facilitating the analysis of
diverse topographical features and structures of the seabed through
multiscale analysis (Cui et al., 2020)..
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3.2.1 GLCM calculation
GLCM is a matrix-based computational method that yields

features for gray-level space. In a GLCM matrix shown in Equation
3, P[i, j] represents the frequency of occurrence of gray levels i and
j for each pair of pixels in the image when the two pixels are at a
certain distance and orientation.

P(i, j) = [

[

P(1,1) P(1, Ng)

P(Ng,1) P(Ng, Ng)
]

]
(3)

3.2.2 Mean
The mean (Equation 4) represents the overall brightness level of

the image. Areas with higher brightness are likely to have more fine-
grained sediment, such as sand, while darker areas may have more
coarse-grained sediment, such as gravel or bedrock (Samsudin and
Hasan, 2017).

Mean = μ = 1
n2

n−1

∑
i=0

n−1

∑
j=0

i× P[i, j] (4)

3.2.3 Variance
Thevariance in Equation 5 is calculated by averaging the squares

of the observations minus the mean. Indicates texture variability in
the image, with high variance indicating amix of different grain sizes
and compositions. High dispersion indicates an inhomogeneous
surface with a mix of different grain sizes, most likely a sediment
with a mixture of gravel and sand (Menandro et al., 2022).

Variance = σ = 1
n2

n−1

∑
i=0

n−1

∑
j=0
(i− μ)2 × P[i, j] (5)

3.2.4 Homogeneity
Indicates how uniformly distributed the sediment is. Higher

values indicate a more uniform texture, with similar grain
size and composition. A seafloor with high homogeneity is
likely to be a homogeneous surface composed of fine-grained
sediments (Sathiyamoorthi et al., 2021).

Homogeneity = 1
n2

n−1

∑
i=0

n−1

∑
j=0

P[i, j]
1+ (i− j)2

(6)

3.2.5 Contrast
Contrast represents the difference in brightness between pixels

and helps you assess surface texture and grain size differences on the
seafloor. Areas of high contrast can indicate uneven textures, such
as clastic sediments or bedrock (Park, Y., and Guldmann, 2020).

Contrast = 1
n2

n−1

∑
i=0

n−1

∑
j=0
(i− j)2 × P[i, j] (7)

3.2.6 Dissimilarity
Dissimilarity is calculated by summing the absolute value of

the brightness differences between pixels, and high dissimilarity can
indicate a large number of irregular sediments, such as assemblage
sediments or cobbles, with large differences in grain size and
composition (Alicia et al., 2023)

Dissimilarity = 1
n2

n−1

∑
i=0

n−1

∑
j=0
|i− j| × P[i, j] (8)

3.2.7 Entropy
Entropy indicates the disorder and complexity of the seafloor,

and a high entropy may suggest a seafloor with mixed sediments
with complex and varying particle sizes, or a seafloor with many
complex biological structures such as corals.

Entropy is a measure of the complexity of a texture distribution:
a uniform distribution of values indicates low entropy, while large
fluctuations indicate high entropy (Korda et al., 2022). So in an
undersea environment, high entropy can indicate a seafloor with a
complex mix of sediments of different particle sizes, or a seafloor
with many complex biological structures such as coral.

Entropy = −
n−1

∑
i=0

n−1

∑
j=0

P[i, j] × log(P[i, j] + ϵ) (9)

3.2.8 Energy
Energy indicates the uniformity and repeatability of the

texture, with surfaces with repetitive patterns having high
energy values (Singh et al., 2017). High energy indicates fine-grained
sediments with regular, repetitive patterns, often found in mud or
uniform sandy sediments.

Energy =
n−1

∑
i=0

n−1

∑
j=0
(P[i, j])2 (10)

3.2.9 Correlation
It represents the linear relationship between pixels and assesses

the consistency of the pattern (Srivastava et al., 2020). If the
correlation is high, the sediment is likely to have a regular, patterned
structure. This can be seen in sediments with well-aligned grains.

Correlation =
n−1

∑
i=0

n−1

∑
j=0

(i− μi) × (j− μj) × P[i, j]

σi×σj
(11)

3.2.10 Auto-Correlation
Auto-Correlation indicates the degree of repetition of texture

patterns and assesses the consistency of pixel (Soh and Tsatsoulis,
1999). High magnetic correlation can indicate fine-grained
sediments, or seafloor surfaces with periodic patterns. For example,
highmagnetic correlationmay be seen in structures such as regularly
repeating sand patterns.

Auto−Correlation =
n−1

∑
i=0

n−1

∑
j=0

i× j× P[i, j] (12)

Law’s texture is used to analyze texture energy patterns in
seafloor sediments to help identify unique textures in seafloor
topography by understanding the different characteristics of the
sediments (Massot-Campos et al., 2013). Law’s texture consists of 1D
vectors, each of size 5, that serve to emphasize each feature, and each
of the vectors for level, edge, point, wave, and ripple are as follows L5
(level) = [1 4 6 4 1], E5 (Edge) = [-1 2 0 2 1], S5 (Spot) = [-1, 0, 2, 0,
−1], W5 (wave) = [-1, 2, 0, −2, 1], R5 (ripple) = [1, −4, 6, −4, 1]. For
each filter, a 2D convolutional mask is generated by combining the
1D vectors, and the features generated are L5E5, E5L5, E5S5, S5E5,
S5R5, W5R5, R5W5, L5S5 and S5L5, for a total of 9 features.

DWT is used to decompose image or acoustic data of seafloor
sediments into different frequency components to facilitate the
analysis of different topography and structure of the seafloor
through multiscale analysis (Cui et al., 2020). 2D Discrete Wavelet
Transform (DWT) is a method to extract global and local texture
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information by separating low and high frequency components of
seafloor sediment images. It is decomposed into four sub-bands:
LL, LH, HL, and HH, where LL provides overall brightness and
structure, LH and HL provide vertical and horizontal boundary
information, and HH provides detailed texture. These texture
features are used to distinguish grain size, pattern, and surface
roughness of seafloor sediments, and can be fed into machine
learning models to classify seafloor sediment types and generate
distribution maps.

Bathymetric information significantly influences the
distribution of seafloor sediments. Key geomorphometric variables
derived from bathymetry include slope, aspect, roughness, and
curvature (Janowski, 2025). Geologic texture features have a
significant impact on seafloor bottom readings. These geometric
features can provide reliable information by analyzing the
underlying processes for seafloor structure. Based on this
topographic information, you can ensure the accuracy and reliability
of your terrain analysis for the predictions of your machine
learning model (Janowski, 2025).

3.2.11 Slope
Slope measures the steepness of the seafloor, calculated

as the rate of change in elevation over a certain distance.
Steeper slopes are often associated with coarser sediments due
to higher energy environments that prevent fine particles from
settling, while flatter areas tend to accumulate finer sediments like
silt and clay (Costello et al., 2010).

3.2.12 Aspect
Aspect refers to the compass direction that a slope faces,

influencing sediment deposition patterns based on prevailing
currents and wave action. For instance, slopes facing dominant
currents may experience different sedimentation rates compared to
those oriented away from such currents (Friedman et al., 2010).

3.2.13 Roughness
Roughness quantifies the variability in seafloor elevation,

indicating the complexity of the terrain. Higher roughness
values are linked to coarse materials like gravel or bedrock,
while lower values correspond to finer sediments such as
sand or mud (Volp et al., 2013).

3.2.14 Curvature
Curvature describes the concavity or convexity of the seafloor

terrain. Positive curvature denotes convex features, and negative
curvature indicates concave areas, aiding in predicting sediment
erosion and deposition patterns.

These geomorphometric variables are crucial for understanding
seafloor characteristics and have been effectively utilized in seabed
mapping studies.

4 Modeling approach

4.1 Regression model

While our ultimate goal is to classify sediment types in the
survey area, we begin by performing regression to predict the

proportions of four sediment types: gravel, sand, clay, and silt.
Based on these predicted proportions, we then classify the sediments
by selecting the predominant type for each location. By shifting
from categorical classification to quantitative regressionmodels, this
research aims to provide more accurate and practical insights into
seabed composition (Stephens and Diesing, 2015). The regression
models used in this study include Random Forest (RF), Support
Vector Machine (SVM), Extreme Gradient Boosting (XGBoost),
Light Gradient-Boosting Machine (LightGBM), and Deep Neural
Network (DNN).

The Random Forest (RF) classifier is an ensemble classifier that
generatesmultiple decision trees using a randomly selected subset of
training samples and variables. The RF classifier effectively handles
high data dimensionality and multicollinearity by aggregating
the outputs of multiple decision trees, reducing variance and
improving predictive performance. Additionally, it is relatively
insensitive to overfitting because of its bootstrapped sampling
approach and feature randomness (Breiman, 2001). However, it
can be sensitive to the sampling design, meaning that biased or
unrepresentative samplesmay impact classification accuracy (Belgiu
and Drăguţ, 2016).

Support Vector Machine (SVM) is a machine learning model
that classifies data by finding a decision boundary with maximum
margin, mapping data points to a high-dimensional space. SVM
uses key data points known as support vectors to define the decision
boundary, aiding the model in effectively learning and generalizing
complex data structures (Awad and Khanna, 2015).

Extreme Gradient Boosting (XGBoost) is an ensemble learning
method combining decision trees, where each tree sequentially
corrects the errors of its predecessor. This model maximizes
computational efficiency through parallel processing, caching, and
pruning techniques. Moreover, by handling missing data and
optimizing various loss functions, it enhances the model’s accuracy
and performance, demonstrating excellent capabilities in machine
learning problems such as classification and regression (Chen and
Guestrin, 2016).

Light Gradient Boosting Machine (LightGBM) is a high-
performance gradient boosting framework that provides the
capability to efficiently handle large datasets.This algorithm employs
a boosting method that combines multiple weak prediction models
to create a strong predictive model, using decision trees as its
primary components. LightGBM constructs histograms of data,
transforming continuous numerical data into discrete intervals, thus
reducing memory usage and enhancing computational speed. One
of the main advantages of this framework is its use of histogram-
based algorithms to divide data into bins, whichminimizes memory
consumption and increases processing speed (Ke et al., 2017).

Deep neural network (DNN) is an Artificial Neural Network
(ANN) structure composed of an input layer, an output layer, and
multiple hidden layers in between. DNNs are structured to extract
and learn complex features through several layers, allowing them to
progressively recognize features from low-level to high-level abstract
characteristics in input images (Sze et al., 2017).

In this study, Python was used as the primary programming
language. For machine learning, we employed Scikit-learn,
XGBoost, and LightGBM, while Tensorflow was utilized for
deep learning applications. For the RF, SVM, XGBoost, and
LightGBM models, optimal hyperparameters were determined
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FIGURE 6
Illustration of the self-training process for model improvement.

using GridSearchCV. For the DNN, the model architecture includes
layers with 64, 128, 256, 128, and 64 neurons each, utilizing ReLU
as the activation function. The final layer features 4 neurons with
softmax activation to ensure that the total proportions sum to one.
The Adam optimizer is used to solve the optimization problem,
using mean squared error (MSE) as the loss function.

4.2 Self-training

In the field of seabed classification, integrating multibeam and
sampling data is crucial, yet the scarcity of sampling data remains
a persistent issue. Acquiring sampling data is difficult and costly,
and analyzing the acquired material requires significant time and
resources. To address this challenge, this paper introduces a new
approach using self-training based on semi-supervised learning to
mitigate the problem of sparse sampling data.Thismethod leverages
the predictive power of labeled data while incorporating unlabeled
data to enhance model performance, particularly in scenarios with
limited ground-truth samples (Diesing et al., 2016).Thismethod can
play a crucial role in maximizing data utilization and enhancing the
accuracy of seabed mapping (Amini et al., 2025).

The self-training approach begins with a small set of labeled
data to train a base model. The model then predicts labels for the
remaining unlabeled data, applying pseudo-labeling based on high-
confidence predictions (Zoph et al., 2020). These pseudo-labeled
samples are subsequently added to the training dataset as new
labeled data for retraining. This iterative process, which is vital
for maintaining the consistency and preventing bias across model
predictions, continues until the model’s performance improves
(Figure 6) (Chen et al., 2022; Scikit-learn developers, 2023).

The core of this methodology is that the model learns from
its own predictions, using these insights to process unlabeled data
and enrich the training set. This is especially beneficial in contexts

where labeling large datasets is impractical or expensive (Kim and
Shin, 2013). By expanding the training set through self-training,
the model develops a deeper understanding of complex patterns,
thereby improving its predictive accuracy and reliability in seabed
classification.

In this paper, we perform self-training in the following steps.
First, we train five regression models (RF, DNN, SVM, LightGBM,
and XGBoost) with the initial training material. The five trained
models make predictions on the unlabeled data. The prediction is
performed by a regression process that finds the ratio values of
the four classes: gravel, sand, silt, and clay. The predicted results
of the five models are averaged and this average value is pseudo-
labeled. Compare the MSE values of the results predicted by the
five models based on the pseudo-labeled values, and select the 10
samples with the smallest averageMSE for each class for the pseudo-
labeled unlabeled data and add them to the original train data. The
remaining unlabeled data except the added data is initialized and
used for prediction again in the next step. 1 cycle is done through
the process described above and repeated until the number of data
in each class is twice as large as the class with the most data. The
self-training was repeated for a total of 44 cycles. In this way, the
original 553 data were increased to 258 data for each of the four
classes, totaling 1,032 data. These self-trained data are then used to
train the seafloor sediment prediction model.

5 Results

The model’s performance was assessed using five regression
models on the test dataset across four distinct classes, which varied
in the use of feature extraction and self-training. Specifically, we
categorized the regression results into four types—gravel, sand, silt,
and clay—based on the highest proportion of these types present,
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TABLE 2 Performance of five models under conditions of feature extraction and Self-training.

accuracy (%)

model #1. Feature:2 #2. Feature:2, self-learning #3. Feature: 32 #4. Feature: 32, self-learning

RF 56.75 62.16 60.81 62.38

SVM 60.81 59.46 60.81 66.05

XGBoost 56.75 59.46 67.57 72.73

LightGBM 44.74 62.16 63.51 67.89

DNN 58.11 62.51 64.86 67.89

Bold values indicate the best classification accuracy for each experimental configuration.

TABLE 3 Confusion matrix for the XGBoost model with feature
extraction and self-training on the test dataset.

Class Gravel Sand Silt Clay PA (%)

Gravel 1 5 0 1 14.29

Sand 1 29 3 1 87.88

Silt 0 2 45 9 78.59

Clay 0 1 7 5 38.46

UA(%) 50 78.38 81.82 31.25 OA(%): 72.73

and calculated the overall accuracy and class-specific accuracy for
the test dataset.

As illustrated in Table 2, the base models without feature
extraction or self-training exhibited poor performance, with
accuracies ranging from 44.74% to 60.81%. However, the
introduction of feature extraction and self-learning significantly
enhanced performance. Notably, XGBoost demonstrated the
most substantial improvement, with accuracy increasing from
56.75% to 72.73%. Table 3 presents the confusion matrix for the
test dataset using XGBoost with feature extraction and self-training.
In detail, the model showed good performance in predicting sand
and silt, achieving Producer’s Accuracies (PA) of over 75%.However,
there are still significant challenges in accurately predicting gravel
and clay. The poor gravel prediction is attributed to its minimal
presence in the training set, leading to inadequate learning and
higher misclassification rates. The low accuracy in predicting
clay can be attributed to the inherent difficulty in distinguishing
between silt and clay, as these sediment types have very similar
physical and acoustic properties. Nevertheless, this rise in accuracy
across scenarios indicates that both the feature extractions and
the integration of self-training are crucial in enhancing model
performance on the test dataset.

Further analysis involved using the XGBoost models to classify
the entire survey area under four scenarios of feature extraction
and self-training, as shown in Figure 7. For result verification,
we compared our models’ predictions with the sediment type

distribution data of the East Sea provided by Korea GeoBigData
(Figure 7a) (Park, 2016). This region is predominantly composed
of M, (g)M, sM, gsM, mS, and (g)mS sediment classes. Each class
consists of the following approximate proportions: M (Mud): Nearly
100% mud (silt + clay), with no significant sand or gravel. (g)M
(Slightly Gravelly Mud): Composed of ∼95% mud with a small
amount of gravel (∼0–5%). sM (Sandy Mud): Contains ∼60–80%
mud and ∼20–40% sand, with no gravel. gsM (Gravelly SandyMud):
Made up of ∼60–70% mud, ∼20–30% sand, and ∼5–10% gravel. mS
(Muddy Sand): Primarily∼60–80% sand,with∼20–40%mud. (g)mS
(Slightly Gravelly Muddy Sand): Contains ∼50–70% sand, ∼20–40%
mud, and ∼0–5% gravel. These sediment classifications reflect the
varying depositional environments in the region, influenced by
hydrodynamic conditions.

Predictions were consistently accurate across all scenarios,
particularly in themud belt area—a combination of silt and clay—in
the middle part of the survey area. Enhanced predictions were
noted under the scenario involving feature extraction and self-
training, particularly in the northern mS region and the southern
sM region. Additionally, the (g)mS region, highlighted by the
blue circle in Figure 7a, which is partially included in our survey
area, exhibited potential sand distribution, as indicated by the
blue circle in Figure 7e, confirming that the scenario with the
most advanced feature extraction and self-training yielded the best
prediction results.

6 Discussion

6.1 Scientific and practical contributions

This study demonstrates significant advances in seabed sediment
classification under realistic constraints, achieving an overall
accuracy (OA) of 72.73% using only 553 sediment samples and
relatively low-resolution (95 m) MBES data. Previous studies in
seabed classification typically relied on extensive sampling and high-
resolution acoustic datasets. However, this research proves that
combining advanced feature extraction and semi-supervised self-
training can yield practical accuracy comparable to fully supervised
approaches despite severe data limitations. Specifically, the high
producer’s accuracies achieved for sand (87.9%) and silt (78.6%)
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FIGURE 7
Seabed sediment type distribution results of the East Sea (a) and predicted distribution and seabed sediment mapping results in conditions (b): no
feature extraction, no self-training, (c): feature extraction, no self-training, (d): no feature extraction, self-training, (e): feature extraction, self-training.
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underline the potential of this workflow for reliably mapping
sediment distributions at a regional scale, even when field sampling
is sparse and acoustic data resolution is suboptimal.

From a marine geological perspective, achieving these
accuracy levels with constrained datasets has considerable practical
implications. Operational sediment mapping often faces financial,
logistical, and environmental limitations, making extensive
sampling and high-resolution acoustic data collection difficult.
Thus, this study provides a scientifically grounded and economically
feasible alternative, effectively bridging the gap between ideal
research conditions and practical operational requirements. The
methodological framework outlined here can be particularly
valuable in preliminary assessments for marine spatial planning,
habitat management, offshore infrastructure development, and
environmental monitoring, where obtaining comprehensive field
datasets is challenging.

6.2 Limitations

Despite these significant improvements, several inherent
limitations remain and should be explicitly acknowledged. One
critical issue is the mismatch in spatial resolution and temporal
alignment between the MBES data and sediment samples.
Each 95 m × 95 m MBES pixel integrates extensive spatial
variability, whereas individual grab/core samples represent discrete,
point-specific measurements. This mismatch likely introduces
substantial uncertainty, potentially causing misclassifications by
inadequately capturing the sediment heterogeneity within each
pixel. Additionally, temporal discrepancies—up to 19 years between
acoustic data collection and sediment sampling—further complicate
classification accuracy, given that seabed sediment distributions
can naturally vary over such timescales due to oceanographic and
geomorphologic processes.

Another limitation is related to severe class imbalance in
the training dataset. In particular, gravel samples were extremely
scarce (only a single representative), significantly reducing model
performance and reliability for this sediment type. The clay class
similarly posed challenges due to its acoustic and textural similarity
to silt, resulting in frequent confusion. These class imbalance issues
reflect practical limitations in sample acquisition, affecting the
robustness and generalization capabilities of the developed model.
Statistical measures and field-based validation both indicate that
resolving these class-specific challenges requires targeted sampling
strategies or advanced data augmentation methods to ensure
balanced representation across sediment types.

6.3 Future work and algorithmic
improvements

The promising results of this study open several pathways
for methodological expansion and practical application. First,
extending the proposed approach through transfer learning to
different marine regions represents a critical step in validating its
generalization potential. Given variations in acoustic signatures,
sediment properties, and oceanographic conditions across
continental shelves, future studies should explicitly assess model

transferability using domain adaptation techniques. These
approaches would help refine the framework’s robustness, enabling
broader applicability across diverse marine environments.

Also, algorithmic enhancements focusing on spatially explicit
models—such as convolutional neural networks (CNNs)—are
recommended to explicitly account for spatial correlation and
feature neighborhood contexts inherent to seabed sediments.
Additionally, adopting self-supervised learning (SSL) methods
such as contrastive learning or masked autoencoders can
extract robust features from extensive unlabeled acoustic
datasets, improving downstream performance even with limited
labeled samples (Caron et al., 2021). Incorporating uncertainty
estimation methods, like Monte Carlo dropout or deep ensembles,
will further enhance the practical utility of sediment predictions by
quantifying confidence levels for decision-making in marine spatial
planning contexts.

Collectively, these future directions not only promise improved
classification accuracy but also provide novel insights into
underlying marine geological processes, potentially enabling
proactive detection of environmental change indicators through
advanced machine learning techniques.

7 Conclusion

This study addressed the fundamental challenge of accurately
mapping seabed sediments using limited ground-truth samples
(553 points) and medium-resolution (95 m) MBES backscatter
data. Our results demonstrate that integrating U-Net–based gap
filling, advanced texture and terrain feature extraction, and semi-
supervised self-training can achieve robust sediment classification
accuracy of 72.7%, overcoming typical limitations associated with
sparse sampling and coarse acoustic resolution.

The developed workflow notably improves sediment mapping
accuracy (producer’s accuracies reaching 88% for sand and 79%
for silt), showing that sophisticated machine-learning techniques
effectively compensate for data scarcity, thus enabling reliable
sediment mapping even in logistically constrained environments.

We propose that this modular and adaptable approach
be further applied and fine-tuned across other continental
shelves globally, with significant potential implications for
marine spatial planning, environmental management, habitat
conservation, offshore engineering, and sustainablemarine resource
assessment.
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