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Tropical cyclones, including surge inundation, are a joint event in the coastal
regions of Bangladesh. The surge washes out the life and property within a
very short period. Besides, in most cases, the area remains flooded for several
days. Prediction of inundation susceptibility due to cyclone surge is one of
the key issues in reducing cyclone vulnerability. Surge susceptibility can be
analyzed effectively through geospatial techniques and various algorithms.
Two geospatial techniques, such as GIS-based Analytical Hierarchy Process
(AHP) multi-criteria analysis and bivariate Frequency Ratio (FR) techniques,
and three algorithms, i.e., Artificial Neural Network (ANN), k-nearest neighbor
(KNN) and Random Forest (RF), were applied to understand the comparative
surge inundation susceptibility level between an island, i.e., Sandwip and an
area protected by mangrove, i.e., Dacope on the Bangladesh coast. A total
of ten criteria were considered influential to surge flooding, i.e., Elevation,
Slope, Topographic Wetness Index, Drainage density, Distance from river and
sea, Wind flow distance, LULC, NDVI, Precipitation, and Soil types. Among
them, distance from river and sea (16.34%) and elevation (15.01%) were
found to be crucial to surge inundation susceptibility analysis, according
to the AHP expert’s opinions. Similarly, precipitation (9.88) and elevation
(6.92) in Sandwip and LULC (4.16) and NDVI (4.33) in Dacope were found
to be the highest PR values in the FR analysis. The factor maps and final
surge susceptibility maps were analyzed through ArcGIS 10.8. The final surge
susceptibility maps were categorized into five classes, i.e., very low, low,
moderate, high, and very high. Very high and high susceptibility was found
around the boundary of Sandwip island and the upper portion of the Dacope
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upazila. A very high susceptibility area in Sandwip (45.07%) and Dacope
(49.41%) was observed by KNN and ANN, respectively. The receiver operating
characteristic (ROC) found all techniques acceptable in susceptibility prediction;
however, geospatial techniques possessed a better consistent area under the
curve (AUC) value than the algorithms for both study sites. Policymakers and
professionals can plan to manage disaster reduction activities based on the
susceptibility outcomes.
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AHP, frequency ratio, ANN, KNN, random forest, sandwip, dacope

1 Introduction

A cyclone is one of the most dangerous disasters, accompanied
by dreadful winds and high tidal surges. The surge washes out
low-gradient areas quickly and remains inundated for extended
periods. Due to the force generated from the sea surface, the impact
of cyclones is enormous in tropical and subtropical areas. Thus,
it causes severe life losses and property damages. For example,
the recent super Typhoon Yagi made landfall on 07 September
2024 in Vietnam and instigated tremendous flooding problems in
Southeast Asia. It approximately caused a life loss of 21 in the
Philippines, 344 in Vietnam, and 125 in Myanmar (IFRC, 2024a).
A few years back, another cyclone, ‘Haiyan’, in the Philippines
caused a large number of causalities (34,870) with massive property
damages (Ryu et al., 2020). Similarly, Bangladesh had the highest
life loss (300,000) in history due to the cyclonic surge in 1970
(Hossain and Mullick, 2020). Due to its geographical position,
Bangladesh is regarded as one of the places most likely to experience
cyclone incidents. Weather Underground enlisted thirty-six of the
most perilous cyclonic events throughout the world, according to
some research sources. Among them, seventeen cyclones hit the
coast of Bangladesh, and twenty-six originated from the Bay of
Bengal. In most of the year, Bangladesh’s coast experiences cyclonic
events (Weather Underground, 2022). However, the most notable
incidents occurred in 1876, 1919, 1961, 1963, 1965, 1970, 1985,
1988, 1991, 2007, and 2009. On 26 May 2024 cyclone ‘Remal’
hit the coastal area of Bangladesh with the highest wind velocity
of 111 km/hr and around 2.5 m of surge height. Although only
16 people died from the incidents, however, 4.6 million people
were directly affected. Their houses, field crops, and aquaculture
fishponds were flooded and damaged (IFRC, 2024b). Surge height
is one of the prime causes of the severity of cyclones. During the
cyclone in 1970, the highest surge height was 10.6 m. Another
incident occurred in the Chittagong coastal area in 1991, where the
surge height was found to be 6.1 m (Tasnim et al., 2015), and that
caused 140,000 causalities (Flather, 1993). Due to the development
of early warning and evacuation processes by government and non-
government organizations, mortality has been reduced (Baten et al.,
2018; Wang et al., 2022). However, in 2007, the cyclone ‘Sidr’ caused
3,295 people to die with a wind speed of 223 km/hr and a surge
height of 6 m. The Barguna district and its adjacent regions were
seriously destroyed due to the perilous event (Tasnim et al., 2015).
Thus, cyclone management in Bangladesh still needs to improve
to reduce its impact. Predicting surge inundation susceptibility

during a cyclonic event is one of the critical aspects of the cyclone
management system.

Susceptibility can be assessed through different means.
Geospatial techniques and machine learning algorithms are very
effective in the present context (Hoque et al., 2018). GIS-RS
techniques such as Analytical Hierarchy Process (AHP) multi-
criteria analysis, and Frequency Ratio (FR) are two effective ways
by which policymakers and managers are now making several
decisions. In recent times, AHP has been applied in several
susceptibility analyses, such as landslide (Liu et al., 2024), flooding
(Mourato et al., 2023; Rana et al., 2023; Sarkar et al., 2023), and soil
erosion (Sadia et al., 2023). In addition, AHP is also used to identify
potential sites for solar power (Islam et al., 2024) and groundwater
(Sutradhar et al., 2021). On the contrary, FR was used in research
around 2000. However, recently, FR has been widely used in flood
susceptibility assessment (Hasanuzzaman et al., 2022a; Saha et al.,
2022; Sarkar et al., 2022; Addis, 2023; Dutta et al., 2023; Ghosh et al.,
2023; Megahed et al., 2023). In line with geospatial science, machine
learning algorithms are increasingly popular in many decision-
making tools. Notably, in flood susceptibility analysis, several
algorithms have been used very recently, for example, Artificial
Neural Network (ANN) (Avand et al., 2021; Mangkhaseum et al.,
2024), k-nearest neighbor (KNN) (Madhuri et al., 2021; Hasan et al.,
2023), and Random Forest (RF) (Avand et al., 2021; Hasanuzzaman
et al., 2022b; Seydi et al., 2022; Hitouri et al., 2024). Researchers also
use hybrid ensembles to predict flood probability. For example,
(Rahman et al., 2021), used locally weighted linear regression
(LWLR), random subspace (RSS), reduced error pruning tree
(REPTree), RF, and M5P model tree algorithms. Similarly, another
study applied a hybrid ensemble of Dagging and Random Subspace
(RS) coupled with ANN, RF, and Support Vector Machine (SVM) to
predict flooding susceptibility (Islam et al., 2021). However, in very
few cases, the geospatial technique or machine learning was used
to analyze cyclone surge inundation susceptibility. Therefore, the
comparison of these methods and techniques would be beneficial
for future surge susceptibility analysis. In this regard, the most
widely used techniques, i.e., AHP, FR, and algorithms i.e., ANN,
KNN, and RF would be interesting to apply in this study to find
their effectiveness in surge inundation susceptibility analysis.

Previously, spatial research on cyclones included the
impact assessment of wind force and surges on forests, crops,
transportation, and other land uses. Some of them also conducted
vulnerability analysis and hazard mapping based on land use
and land cover (LULC) and social indicators (Hoque et al., 2017;
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Murali et al., 2018; Charrua et al., 2021; Delaporte et al., 2022).
A few cyclone surge predictions used surge modeling, where the
Surge Decay Coefficient (SDC) was calculated. This SDC mainly
depended on surge height and DEM (Hoque et al., 2016; Akter and
Dayem, 2021). In only a few cases, AHP and FR have been used for
surge susceptibility analysis (Mamun et al., 2024). While previous
studies related to cyclones have primarily focused on evaluating
their impact on mangroves, agriculture, land use, and vulnerability
assessment, there is a need to consider additional factors such as
wind flow distance from the seashore, Topographic Wetness Index
(TWI), slope, drainage density, LULC, etc. to understand cyclone
surge susceptibility better. Therefore, cyclone surge inundation
susceptibility analysis has an opportunity to be assessed using
geospatial techniques and machine learning algorithms. Besides,
geographic locations determine essential characteristics of a place
that trigger the susceptibility. For example, an island in the sea and
an area protected by mangrove forests may have several features
limiting the surge inundation susceptibility. This will allow the
showcasing of the geographical attributes of surge inundation
susceptibility. Sea shores are susceptible to cyclone surges. However,
the contribution of the mangrove to reduce such susceptibility
would be evident by including a mangrove-protected area. On the
contrary, the seawater surrounding an island makes the location
susceptible to cyclone surge inundation.Thus, the primary objective
of this study is to compare the surge inundation susceptibility
between an island, i.e., Sandwip upazila, and an area protected by
mangroves, i.e., Dacope upazila, to cyclone surges using AHP, FR,
ANN, KNN, and RF techniques. Thus, this research integrates the
flood-causing criteria into the susceptibility assessment of cyclone
surge inundation.

2 Methodology

2.1 Study area

The whole southern side of Bangladesh is exposed to the Bay of
Bengal. Numerous rivers and canals flow from north to south and
finally fall to the Bay. Bangladesh’s coastal areas are administratively
divided into exposed and interior coasts (Figure 1). Several islands
are situated in the estuary. This study considered Sandwip island,
administratively regarded as an upazila under the Chittagong
district. The Sandwip upazila lies between 22°16′and 22°43′north
latitudes and between 91°17′and 91°37′east longitudes. The total
area of the upazila is 762.42 sq km, which is a few kilometers away
from the mainland of Chittagong. The island has a population of
0.3 million, and their primary occupation is farming. The main
crops are paddy, coconut, betel leaf, palm, sesame, vegetables, etc.
The historical tropical cyclone destroyed the site on 29 April 1991
(Islam et al., 2012a). With a surge height of 6.1 m, the cyclone
caused 140,000 casualties (Flather, 1993). Besides, the area always
seems vulnerable during cyclone formation in the Bay of Bengal or
Indian Ocean.

The southwest corner of Bangladesh is famous for the
Sundarbans mangrove forest, which covers about 6,000 sq km.
Numerous interconnected rivers, creeks, and canals comprise the
Sundarbans, a unique ecosystem (Begum et al., 2021). Dacope
is an upazila in the Khulna district that lies between 22°24′and

22°40′north latitudes and between 89°24′and 89°35′east longitudes.
The southern portion of the upazila is covered with mangroves.
However, the people live in the northern part. The total population
is more than 0.15 million in the upazila. The main occupation is
agriculture, and the extended form of shrimp culture is practiced
due to high salinity. Twomighty rivers, Shibsa and Pasur, encompass
both sides of the upazila. Besides, the Manki and Bhadra rivers are
notable. Moreover, a few canals are worth mentioning, such as
Palashbari, Churia, Nalian, and Jugra (Islam et al., 2012b).Thus, the
cyclone surge can cause inundation through these waterbodies.

2.2 Data sets

Open Topography distributed the information regarding
DEM and slope from the Shuttle Radar Topography Mission
(SRTM) Global datasets (OpenTopography, 2013). DEM data
was used to produce drainage density and TWI map. The
administrative boundary of Sandwip and Dacope upazila was
acquired from DIVA-GIS and Banglapedia (Islam et al., 2012a;
2012b).

LandUse LandCover (LULC)mapswere prepared fromLandsat
8 OLI images through supervised classification.

Using Equations 1, 2, the Normalized Difference Vegetation
Index (NDVI) map was also calculated from Landsat 8 OLI images.

NDVI =
(NIR−R)
(NIR+R)

(1)

NDVIcalculationforLandsat8 =
(Band5−Band4)
(Band5+Band4)

(2)

Here, NIR means near-infrared, and R indicates the red
band. The different categories were classified based on their
values of −1 to 1.

The Euclidean distance technique was used to get wind flow
distance classes from the southern last point of the upazila. Similarly,
the Euclidean distance process calculated the distance from the river
or sea. Before that, the shape file of canals, rivers, and the last
southern point was prepared in Google Earth Pro.

Ten years of total rainfall from 2012 to 2021 was retrieved from
the CHRS Data Portal, and the average for both study sites was
calculated (CHRS Data Portal, 2023).

Soil types datasets were collected from theWorld Reference Base
(WRB) for Soil Resources.

Extensive field surveys and Focus Group Discussions (FGDs)
generated the flooded and non-flooded points from historical cases.
A total of 120 flooded (80 for training and 40 for validity test) and
80 non-flooded points were created.

Most analyses were conducted from 2024 datasets, such as
LULC, NDVI, wind distance, distance from rivers or sea, flooded
locations, and non-flooded locations. Only DEM, precipitation,
and soil data were collected from different years. The soil remains
unchanged for a long time. Precipitation data were prepared,
averaging 10 years. DEM data also remains unchanged for an
extended period. The same coordinate system (WGS_1984_UTM_
Zone_46N) and resolution (30 m) were adopted for all the factors
(IUSS Working Group WRB, 2015) (Table 1).
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FIGURE 1
Map of two study areas in the Bangladesh coastal region.

TABLE 1 Types of data sets used in the study with their sources and properties.

Data category Source Period Resolution from source Types of maps
produced

DEM and slope raster Shuttle Radar Topography Mission
Global (SRTM GL1). Distributed by
OpenTopography

2013 30 m × 30 m TWI, Elevation, Slope, Drainage
density

Administrative unit shapefile DIVA-GIS,
Upazila administration website,
Google Earth Pro

NA NA Upazila boundary, Wind flow
distance from the seashore

Landsat 8 OLI image USGS Earth Explorer 2024/03/09 30 m × 30 m LULC, NDVI

Line shape file Google Earth Pro 2024 15 m × 15 m Distance from river and sea

PERSIANN- CSS CHRS Data Portal. PERSIANN -
Cloud Classification System

2012–2021 0.04° × 0.04° Average annual precipitation

Soil classification WRB for Soil Resources 2016 250 m × 250 m Soil types

Flooded and non-flooded points Field survey
Goole Earth Pro

July 2024 NA Training and validation data sets

2.3 Analysis

This study used five techniques, AHP, FR,ANN,KNN, andRF, to
analyze cyclone surge inundation susceptibility. Ten factors related
to surge inundation were identified for all of the analyses.The spatial
maps were prepared by acquiring datasets from various sources.
The maps were reclassified into five classes: very low, low, moderate,

high, and very high susceptibility to inundation and numbered 1 to
5 chronologically. These classified maps were used for each of the
five methods. Meanwhile, the pairwise ranking was done by experts
from different institutions, according to (Saaty, 2008). The experts
were chosen from various important and related organizations,
such as several departments of relevant universities, Bangladesh
Water Development Board (BWDB), Oxfam International, Center
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FIGURE 2
Flow chart of the cyclone surge inundation susceptibility analysis process.

for Environmental and Geographic Information Services (CEGIS),
Swisscontact, and International Federation of Red Cross and Red
Crescent Societies (IFRC). The ranking outcome was used in
the AHP technique to prepare the final susceptibility map. On
the other hand, 80 surge inundation locations were used in the
FR calculation to prepare the susceptibility map. The 80 surge-
flooded and 80 non-flooded points were used in ANN, KNN, and
RF techniques to prepare the final susceptibility map. Thus, ten
susceptibility maps were prepared for two study sites. Finally, the
ROC method assessed the accuracy of these susceptibility maps
using 40 flooded points (Figure 2).

2.3.1 Factors for cyclone surge susceptibility
This study identified ten significant factors responsible

for cyclone surge susceptibility (Table 2). Most were
crucial for flood susceptibility analysis (Saha et al., 2022;
Addis, 2023; Megahed et al., 2023).

Each factor was classified into five susceptibility classes, i.e., very
low, low, moderate, high, and very high (Table 3).

All factors were categorized into five classes by applying
the natural break. Only the LULC was classified through
supervised classification, and NDVI classes were named based on
their values (Mamun et al., 2024).

2.3.2 Susceptibility analysis through AHP and FR
AHP considers the relative importance of the factors affecting

susceptibility. Pairwise contrast matrices calculated the weight of
the factors. The process includes a comparison matrix, comparison
normalization, Consistency Index (CI), and Consistency Ratio (CR)
formation (Hussain et al., 2023).

CI =
(λmax−n)
(n− 1)

(3)

In Equation 3, λmax expresses the product of the
sum of columns in a pairwise matrix and the average

weight from the normalized matrix, and n denotes
the matrix’s order.

CR = CI
RI

(4)

In Equation 4, RI is elaborated as a Random Index, which shows
a standard value depending on the number of factors participating
in the analysis.

Saaty introduced the method AHP in the 90s (Saaty, 1987),
and later, it became widespread in various research areas. The
relative importance was assigned and calculated on a scale of 1
to 9, which had a distinct meaning (Saaty, 2008). For example, 1
means equal importance, 3 means moderate importance, 5 means
strong importance, 7 means more strong importance, and 9 means
extreme importance. The intermediate values 2, 4, 6, and 8 are the
intermediate stages of the upper and lower scales. The importance
of one factor to another in the context of satisfying a specific
objective is determined through this numbering. This study used a
template developed and distributed by (Goepel, 2013), by which the
relative importance was calculated by inputting the opinion of the
experts. This relative importance was used as the factor’s weight and
included in the overlay process during the final susceptibility map
preparation.

The Frequency Ratio (FR) technique was previously used in
other studies, for example, in landslide risk analysis (Youssef et al.,
2023; Aziz et al., 2024). Recently, the method has also been
used in flood susceptibility analysis (Addis, 2023; Barman et al.,
2024). The process assesses a bivariate relationship between the
dependent and independent variables. In this study, the dependent
variable was the flooded area, and the independent variable
was flood factors. The following equations were adopted from
(Rahman et al., 2023; Youssef et al., 2023).

FR =
FP
P
FA
A

(5)
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TABLE 2 Justification of factors selected for cyclone surge inundation susceptibility analysis.

Factor Justification Source

Elevation Elevation has a significant role in inundation. Water
flows quickly if the elevation is minimal.

Vu et al. (2023)

Slope Similarly, a gentle slope also triggers surge inundation
because it impacts water infiltration and runoff
capacity.

Al-Juaidi et al. (2018)

Drainage density Drainage density means the number of streams or
channels that flow in a given area. The more the
numbers mean water can quickly move forward.
During the cyclonic event, the water comes from the
Bay and enters further inside the land through these
channels. Therefore, more drainage density denotes
more susceptibility.

Rahman et al. (2023)

TWI TWI explains the distribution of the wetness of any
surfaces that control water flow—the more TWI, the
more inundation.

Rahmati et al. (2016), Penki et al. (2022)

Distance from sea and rivers The Bay of Bengal surrounds the Sandwip island.
Hence, the distance from the sea around the upazila is
minimal, whereas the middle portion is far from the
waterbody. On the contrary, the east and west sides of
Dacope upazila are surrounded by two mighty rivers.
The southern side is open to the Bay. In addition,
numerous rivers and canals flow inside the upazila.
Therefore, susceptibility can be found everywhere in
Dacope, concerning the distance from the river or sea.

Islam et al. (2012a), 2012b

LULC LULC is crucial for the hydrological characteristics of
any place because it has effects on infiltration and
runoff.

Rahman et al. (2019)

NDVI Similarly, NDVI can also describe hydrological
characteristics often because the value indicates
particular land cover types. For example, more NDVI
value means healthy vegetation, whereas a value near
zero or minus indicates waterbody or smooth metallic
surfaces.

Martinez and Labib (2023)

Wind flow distance Wind flow distance from the seashore was included in
this study due to its importance in cyclonic events.
Generally, the wind flows from south to north, from
the Bay of Bengal to inland, reducing its forces.
Therefore, the lower part of both upazilas was
considered to have the highest wind velocity, and the
upper part was supposed to have the lowest wind
velocity. Wind flow distance from the seashore was
determined by five equal divisions: more in the
southern region and less in the north.

Mamun et al. (2024)

Precipitation Precipitation directly enhances flooding conditions.
Generally, precipitation occurs in the monsoon season
in Bangladesh. Besides, precipitation can also be
observed during the summer and autumn. Due to the
high rainfall, all the rivers, canals, ponds, and ditches
are filled with water. Therefore, when the surge water
enters the inland surfaces during a cyclonic event,
there remains no place to store this water. Thus, the
water washes away additional areas and inundates
more extent.

Mondal et al. (2020)

Soil types Sandwip is comprised of four types of soil: Gleysols,
Cambisols, Acrisols, and Fluvisols. On the contrary,
Dacope is comprised of additional Solonchaks. All of
these soils are very new soil and susceptible to erosion.
They possess a high amount of sediments.

IUSS Working Group WRB (2015)
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TABLE 3 Susceptibility classes of different factors for Sandwip island and Dacope

Criteria Area Susceptibility classes

Very low Low Moderate High Very high

Elevation (m)
Dacope >13.1 10.1–13.00 6.01–10.00 3.01–6.00 <3.00

Sandwip >7.01 5.01–7 2.01–5 −1.99 – 2 <-2

Slope (%)
Dacope >6.08 3.45–6.07 2.1–3.44 1.02–2.09 <1.01

Sandwip 5.24–20.8 3.03–5.23 1.97–3.02 0.982–1.96 0–0.981

Drainage density (sq
km)

Dacope 0.0631–0.368 0.369–0.672 0.673–0.977 0.978–1.28 1.29–1.59

Sandwip 0–0.367 0.368–0.785 0.786–1.2 1.21–1.68 1.69–2.6

TWI (level)
Dacope 4.76–7.87 7.88–9.81 9.82–11.9 12–14.5 14.6–21.3

Sandwip 3.4–5.76 5.77–7.83 7.84–9.54 9.55–12.1 12.2–18.5

Distance from sea or
river (m)

Dacope 1,775.6–3,079.9 1,207.9–1,775.5 773–1,207.8 374.43–772.99 0–374.42

Sandwip 2,178.5–3,156.2 1,534.9–2,178.4 953.06–1,534.8 445.59–953.05 0–445.58

Wind flow distance
from the seashore
(level)

Dacope 0–0.182 0.183–0.308 0.309–0.418 0.419–0.524 0.525–0.655

Sandwip 0.321–0.383 0.231–0.32 0.148–0.23 0.0812–0.147 0–0.0811

LULC

Dacope Mangrove Homestead and
street plantation

Settlement Agriculture and
barren land

Waterbody, fish
culture

Sandwip Mangrove Homestead and
street plantation

Settlement and
agriculture

Char land and
barren land

Waterbody

NDVI

Dacope Healthy vegetation
0.26–0.463

Low dense
vegetation
0.21–0.25

Agricultural land
0.16–0.20

Barren area and
settlement
0.06–0.15

Waterbody
−0.132- 0.05

Sandwip Healthy vegetation
0.26–0.5

Low dense
vegetation
0.21–0.25

Settlement and
agricultural land
0.16–0.2

Char land
0.06–0.15

Waterbody
−0.12- 0.05

Precipitation (mm)
Dacope 1,560–1,650 1,660–1,740 1,750–1,800 1,810–1,910 1,920–2,030

Sandwip 1,634–1,720 1,721–1,770 1,771–1,826 1,827–1,874 1,875–1,940

Soil types
Dacope Gleysols Cambisols Solonchaks Acrisols Fluvisols

Sandwip Gleysols Cambisols ------------ Acrisols Fluvisols

In Equation 5, FP = flood points in the factor class, P = total
flood points, FA = factor class area, A = total area. Then, FR must
be normalized into probability ranges (0,1) using Equation 6.

RF = FR of factor class
∑FR of factor classes

(6)

Predicted Rate (PR) is the interrelationship between actual
flooded areas (training data points) and inundation factors, which
can be determined by using Equation 7.

PR =
(RFmax − RFmin)
(RFmax − RFmin)Min

(7)

The study gathered 120 flooded points from each site and
randomly separated 80 flooded points as training datasets. The
remaining points (40) were used for the accuracy test. The bivariate
statistical relationship between surge inundation factors and actual
flooding points was calculated on the geospatial platform, and
FR values were calculated (Tables 4, 5). The value represents
the susceptible level for each of the factors. For example, slope
percentage is negatively correlated with susceptibility. Therefore,
more slope gradient means less susceptibility to surge inundation.
In the case of Sandwip, the slope represents five classes, where
the first-class FR value is 0.00052, which belongs to a high slope
percentage >5.24. The FR value of the subsequent classes increases
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with the decrease in slope percentage. Finally, the fifth-class FR value
0.00291 corresponds to <0.981 percentage class (Table 4). Similarly,
in the case of Dacope, the second slope class is (3.45–6.07) %,
which has an FR value of 0.00024, and the fifth class is <1.01%,
which has an FR value of 0.00076 (Table 5). Here, both the fifth
classes have higher pixel values, which indicates that both the areas
were very highly susceptible to surge inundation regarding slope.
The other factors can be explained through this process. However,
it might be possible that particular classes may not follow the
chronological order of the FR value of any factor because of the
correlation of that class to susceptibility—for example, the LULC
and NDVI classes. Besides, a particular class of a factor may have
zero (0) FR value due to the null or very negligible value of the class
area and pixel value.

2.3.3 Susceptibility analysis through ANN, KNN,
and RF

Artificial Neural Networks (ANN) have significant advantages
in regression problem analysis. It can learn nonlinear relationships
from complex data and adapt to complex input-output mapping
relationships. The network’s deep structure allows it to capture
multilevel abstract representations of the input features, leading to
a better understanding of the underlying patterns in the data. Thus,
ANN can handle complex data structures in regression problems
and adaptively learn and optimize models. This study optimized the
internal parameters of the ANN by employing a Bayesian approach
(Shanmuganathan, 2016).

The k-nearest neighbor (KNN) method calculates the distance
between the input sample points and each sample point in the
training set (usually using the Euclidean distance or the Manhattan
distance). Then, it selects the k, the closest neighboring sample
points, as the basis for prediction. In a regression problem, the
nearest-neighbor method takes the weighted average or direct
average of the output values of these k neighboring sample
points and uses them as the predicted output values of the input
sample points (Ling et al., 2020).

Random Forest (RF) is a regression algorithm based on
voting from multiple decision trees. In constructing each decision
tree, RF uses bootstrap sampling to select training samples
and extract features randomly, which helps to deal with high-
dimensional data, reduces overfitting, and improves the model’s
generalization ability (Breiman, 2001). In this study, the 160
constructed inundated and non-inundated points were used as the
sample set, divided into training and test sets in the ratio of 7:3, and
combined with the feature factors as the input data for the three
models, which ultimately resulted in the stability prediction maps
of the three models.

Different feature raster values were extracted according
to the location of the sample points. The sample points and
their corresponding feature values were composed into different
vectors. These vectors were put into the model for training.
The trained model was then used for overall susceptibility
prediction. In the sample collection process, only inundated
or uninundated locations were considered. However, the
susceptibility evaluation required the frequency and duration of
the inundation. So, in the subsequent sample selection process,
the composition and spatial distribution of the sample were
determined according to the historical data. This study considered

80 flooded and 80 non-flooded training points for susceptibility
analysis (Figure 3).

2.3.4 Accuracy assessment for different
susceptibility analysis methods

Accuracy is crucial when applying several methods for a specific
analysis (Hasanuzzaman et al., 2022b). The current study used
five different methods for susceptibility analysis. Therefore, their
accuracy should be of great interest for future applications in
similar research. Receiver Operating Characteristics (ROC) can
suitably assess classification performance (Yariyan et al., 2020).
The ROC process measures the true and false positive rate and
provides the number of categorized cells that match accurately
or speciously. Area Under Curve (AUC) generally describes the
trend and provides the reliability of the methods used in the
analysis (Avand et al., 2021). One hundred twenty flood points
were identified for each of the study sites through field surveys
and historical flooded area identification by the community
people. The field surveys were conducted in July 2024. The
GPS locations of flooded and non-flooded points were collected
through a vigorous survey. Then, the raster format was created
for those points and overlaid in the location area. Out of the
120 flooded points, 40 were separated randomly and used for
validation (Figure 3).

3 Results

3.1 Cyclone surge inundation susceptibility
factors between two sites

Ten factor-maps expressing five inundation susceptibility classes
were prepared for each site. The elevation map of Sandwip island
showed very low to low susceptibility in the middle part and
very high susceptibility in the right corner of the segregated
part of the upazila. On the contrary, very high susceptibility was
found in the upper part and moderate to very low susceptibility
in the lower part of Dacope upazila. Both places showed very
gentle slopes, thus possessing very high to high susceptibility
in most areas.

Drainage densitymaps of both sites demonstratedmany streams
and channels, thus triggering more susceptibility. During any surge
inundation the water can enter to the inland areas through any types
of channels. Some big rivers characterize the upper part of Dacope,
and the lower part has many prominent canals (Islam et al., 2012b).
Therefore, Dacope revealed more very high to high susceptibility
than Sandwip.

More TWI means more water to follow which increases
susceptibility. Two sites demonstrated that Sandwip possessed
very high and high susceptibility classes compared to Dacope in
regards to TWI.

During the rainy season a good amount of rainfall occurred
all over the country. However, the 10 year’s average precipitation
provided some variations among different parts of the upazilas.
Moderate to very high precipitation susceptibility was observed
in the upper area of Sandwip island and the lower part of
Dacope upazila (Figure 4).
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TABLE 4 Details of the surge flood susceptibility criteria and their FR values (Sandwip).

Criteria Class Points % points Class area % Of class area Surge pixel FR RF

Elevation

1 62,271 17.79 13,500 2.04 15 0.00024 0.029

2 104,843 29.96 82,800 12.52 92 0.00088 0.104

3 126,811 36.23 463,500 70.07 515 0.00406 0.481

4 34,563 9.88 101,700 15.37 113 0.00327 0.387

5 267 0.08 0 0.00 0 0.00000 0.000

Slope

1 1911 0.54 900 0.14 1 0.00052 0.066

2 18,635 5.28 13,500 2.04 15 0.00080 0.101

3 66,435 18.82 82,800 12.52 92 0.00138 0.174

4 133,881 37.93 281,700 42.59 313 0.00234 0.294

5 107,893 30.56 282,600 42.72 314 0.00291 0.366

Drainage density

1 64,098 18.15 83,700 12.65 93 0.00145 0.140

2 91,245 25.84 213,300 32.24 237 0.00260 0.251

3 83,360 23.61 243,900 36.87 271 0.00325 0.314

4 62,075 17.58 80,100 12.11 89 0.00143 0.139

5 27,881 7.90 40,500 6.12 45 0.00161 0.156

TWI

1 15,390 4.36 28,800 4.35 32 0.00208 0.166

2 145,067 41.10 252,900 38.23 281 0.00194 0.154

3 98,151 27.80 198,900 30.07 221 0.00225 0.180

4 50,741 14.37 130,500 19.73 145 0.00286 0.228

5 16,395 4.64 50,400 7.62 56 0.00342 0.272

Distance from river or sea

1 31,867 9.03 0 0.00 0 0.00000 0.000

2 46,494 13.17 0 0.00 0 0.00000 0.000

3 63,728 18.05 39,600 5.99 44 0.00069 0.088

4 78,768 22.31 197,100 29.80 219 0.00278 0.354

5 107,774 30.53 424,800 64.22 472 0.00438 0.558

Wind

1 30,315 8.59 40,500 6.12 45 0.00148 0.405

2 37,120 10.52 24,300 3.67 27 0.00073 0.074

3 73,585 20.84 145,800 22.04 162 0.00220 0.223

4 99,152 28.09 158,400 23.95 176 0.00178 0.180

5 88,595 25.10 292,500 44.22 325 0.00367 0.372

LULC

1 5,946 1.68 4,500 0.68 5 0.00084 0.161

2 49,741 14.09 0 0.00 0 0.00000 0.000

3 67,308 19.07 3,600 0.54 4 0.00006 0.011

(Continued on the following page)
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TABLE 4 (Continued) Details of the surge flood susceptibility criteria and their FR values (Sandwip).

Criteria Class Points % points Class area % Of class area Surge pixel FR RF

4 186,831 52.92 645,300 97.55 717 0.00384 0.736

5 18,902 5.35 8,100 1.22 9 0.00048 0.091

NDVI

1 106,475 301.63 2,700 0.41 3 0.00003 0.002

2 64,356 182.31 8,100 1.22 9 0.00014 0.012

3 44,738 126.74 112,500 17.01 125 0.00279 0.241

4 82,353 233.29 477,000 72.11 530 0.00644 0.555

5 30,806 87.27 61,200 9.25 68 0.00221 0.190

Precipitation

1 98,425 27.89 307,800 46.53 342 0.00347 0.354

2 46,445 13.16 129,600 19.59 144 0.00310 0.316

3 21,491 6.09 18,000 2.72 20 0.00093 0.095

4 105,195 29.81 189,900 28.71 211 0.00201 0.204

5 57,103 16.18 16,200 2.45 18 0.00032 0.032

Soil type

1 7,055 2.00 17,100 2.59 19 0.00269 0.246

2 1,284 0.36 0 0.00 0 0.00000 0.000

4 21,596 6.12 122,400 18.50 136 0.00630 0.576

5 298,657 84.60 522,000 78.91 580 0.00194 0.178

Distance from the river or sea map of Sandwip displayed that
the surroundings of the upazila had very high susceptibility because
this was an island in the Bay of Bengal, and fewer rivers were present
there. On the contrary, Dacope showed susceptibility to distance
from river or sea because many prominent rivers and canals were
spread all over the upazila.

Five Euclidean distances from the southern shoreface to
the inland northward movements create five wind classes. Due
to the ghast of wind, the wave actions and flow movement
vary. Wind flow distance maps illustrated more susceptibility
in the southern region of both upazila, which reduces to
the northward.

LULC classification of Sandwip island categorized the
surrounding area of the upazila as char and barren land. Thus,
this area was under high susceptibility. In the middle of the island,
there were homesteads and street plantations that were denoted
to have low susceptibility. On the other hand, in the lower part
of Dacope, there were mangrove forests, leading to very low
susceptibility—the upper part of the upazila comprised agricultural
land categorized as moderate susceptibility to inundation. The
same explanation can be expressed for NDVI on both sites. More
NDVI defined good vegetation cover, which was responsible for
susceptibility reduction.

Fluvisols type of soil was dominant in both the study sites. This
soil is young in nature and rich in sediments.Therefore,most regions

of both upazila had very high susceptibility classes to cyclone surge
inundation (Figure 5).

3.2 Surge inundation susceptibility
between two sites by AHP

The experts considered that distance from the river or sea and
elevation were the most influential factors among the ten factors
(Table 6). Then, LULC, slope, NDVI, and drainage density were
reflected as vital factors in cyclone surge inundation susceptibility.
According to the expert opinion, soil type, precipitation, TWI, and
wind flow distance were the least dominant factors for inundation
susceptibility. The distance from the river or sea was found to be the
most influential criterion in assessing cyclone surge susceptibility in
a coastal area of Bangladesh (Mamun et al., 2024).

Using the AHP scores, i.e., Normalized Principal Eigenvector
(%), the inundation susceptibility maps were prepared for Sandwip
andDacope (Figure 6). GIS-AHPmulti-criteria analysis showed that
very high (17.49% of Sandwip, 9.77% of Dacope) and high (28.43%
of Sandwip, 18.61% of Dacope) susceptibility classes were located
all around the Sandwip island and upper part of Dacope (Figure 6).
The lower part and right side of the small segregated area of Sandwip
were revealed under the high susceptibility class. The middle
portion of Sandwip island and the lower portion of Dacope are
considered low and very low susceptibility concerning cyclone surge
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TABLE 5 Details of the surge flood susceptibility criteria and their FR values (Dacope).

Criteria Class Points % points Class area % Of class area Surge pixel FR RF

Elevation

1 76,821 9.22 0 0.00 0 0.00000 0.000

2 204,285 24.51 0 0.00 0 0.00000 0.000

3 240,390 28.84 8,100 2.12 9 0.00004 0.019

4 163,239 19.59 130,500 34.12 145 0.00060 0.261

5 148,718 17.84 243,900 63.76 271 0.00166 0.719

Slope

1 7,612 0.91 0 0.00 0 0.00000 0.000

2 42,441 5.09 9,000 2.35 10 0.00024 0.140

3 147,527 17.70 30,600 8.00 34 0.00023 0.137

4 341,918 41.02 142,200 37.18 158 0.00046 0.274

5 293,955 35.27 200,700 52.47 223 0.00076 0.450

Drainage density

1 104,778 12.57 55,800 14.59 62 0.00059 0.210

2 204,906 24.58 92,700 24.24 103 0.00050 0.178

3 205,159 24.61 101,700 26.59 113 0.00055 0.195

4 232,148 27.85 62,100 16.24 69 0.00030 0.105

5 86,576 10.39 68,400 17.88 76 0.00088 0.311

TWI

1 317,983 38.64 85,500 22.35 95 0.00030 0.095

2 185,392 22.53 55,800 14.59 62 0.00033 0.107

3 147,721 17.95 77,400 20.24 86 0.00058 0.186

4 142,226 17.28 142,200 37.18 158 0.00111 0.354

5 29,561 3.59 21,600 5.65 24 0.00081 0.259

Distance from sea or river

1 38,853 4.66 0 0.00 0 0.00000 0.000

2 113,148 13.57 27,000 7.06 30 0.00027 0.136

3 191,680 22.99 52,200 13.65 58 0.00030 0.155

4 243,045 29.15 191,700 50.12 213 0.00088 0.450

5 247,064 29.63 111,600 29.18 124 0.00050 0.258

Wind

1 177,094 21.25 160,200 41.88 178 0.00101 0.449

2 199,767 23.97 221,400 57.88 246 0.00123 0.551

3 220,480 26.46 0 0.00 0 0.00000 0.000

4 132,771 15.93 0 0.00 0 0.00000 0.000

5 103,235 12.39 0 0.00 0 0.00000 0.000

LULC

1 467,419 56.08 0 0.00 0 0.00000 0.000

2 78,453 9.41 36,900 9.65 41 0.00052 0.158

3 47,911 5.75 36,000 9.41 40 0.00083 0.253

(Continued on the following page)
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TABLE 5 (Continued) Details of the surge flood susceptibility criteria and their FR values (Dacope).

Criteria Class Points % points Class area % Of class area Surge pixel FR RF

4 199,892 23.98 299,700 78.35 333 0.00167 0.505

5 39,768 4.77 9,900 2.59 11 0.00028 0.084

NDVI

1 437,453 52.49 1800 0.47 2 0.00000 0.001

2 106,758 12.81 43,200 11.29 48 0.00045 0.128

3 95,579 11.47 110,700 28.94 123 0.00129 0.367

4 158,062 18.96 219,600 57.41 244 0.00154 0.440

5 35,591 4.27 7,200 1.88 8 0.00022 0.064

Precipitation

1 454,167 54.47 382,500 100.00 425 0.00094 1.000

2 149,183 17.89 0 0.00 0 0.00000 0.000

3 168,910 20.26 0 0.00 0 0.00000 0.000

4 36,175 4.34 0 0.00 0 0.00000 0.000

5 25,353 3.04 0 0.00 0 0.00000 0.000

Soil type

1 2,395 0.29 0 0.00 0 0.00000 0.000

2 1845 0.22 0 0.00 0 0.00000 0.000

3 167 0.05 0 0.00 0 0.00000 0.000

4 41,539 4.98 27,900 7.29 31 0.00075 0.599

5 787,657 94.49 354,600 92.71 394 0.00050 0.401

FIGURE 3
Training and validation points for susceptibility and accuracy analysis.
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FIGURE 4
Factor maps of elevation, slope, drainage density, TWI, and precipitation for Sandwip island and Dacope upazila.
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FIGURE 5
Factor maps of distance from river or sea, wind distance, LULC, NDVI, and soil types for Sandwip island and Dacope upazila.
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inundation. Moderate susceptibility class was depicted throughout
the area for Sandwip (24.77%) and Dacope (23.67%) upazila.

3.3 Surge inundation susceptibility
between two sites by FR

Surge inundation factors and actual flooding points are
compared in a bivariate fashion in FR analysis. Table 7 showed that
LULC possessed the highest PR value (6.15), followed by NDVI
(4.68), distance from river or sea (3.99), elevation (3.84), and so
on for Sandwip. So, these factors influenced high susceptibility in
FR analysis in Sandwip. On the contrary, TWI (1.00) was found
to be the lowest dominant criterion for FR analysis. Similarly,
precipitation (9.88), elevation (6.92), NDVI (4.33), and LULC
(4.16) were regarded as highly contributory factors for surge
inundation susceptibility analysis for Dacope FR calculation. Wind
flow distance was the least significant for the same area.

Like the AHP susceptibility analysis, FR showed a similar
type of susceptibility class. However, the very low and low classes
covered relatively more areas in both upazila. Another critical
difference was that the very low (45.03%) and low (19.38%)
susceptibility classes were very distinguished in Dacope (Figure 6).
Moderate susceptibility to surge inundation area was very distinct
in Sandwip island. In the case of Dacope, the moderate class was
insignificant (6.89%).

3.4 Surge inundation susceptibility
between two sites by different machine
learning models

Surge inundation susceptibility analysis of Sandwip by ANN
showed that most of the areas were in very high (28.09%) to high
(40.91%) classes (Figure 7). Very low (3.26%) and low (2.27%) areas
were mostly absent in the figure. The moderate susceptibility class
was depicted in the middle of the island. On the other hand, ANN
analysis of Dacope showed a very high (49.41%) susceptibility class
in the upper and very lower parts of the upazila. However, unlike
Sandwip, a low (20.57%) susceptibility class was visible in the lower
middle part of the Dacope upazila (Figure 6).

KNN analysis for Sandwip showed a very high (45.07%)
susceptible class around the island. A very low (18.44%) class
susceptibility was found in the middle part of the island and the
upper part of the segregated region of the upazila (Figure 6). The
surge inundation susceptibility of Dacope by KNN was mostly
similar to the outcome of the ANN analysis (32.44% very high class).
However, it had a more moderate (26.57%) susceptibility class with
low and very low susceptibility classes (Figure 7).

Cyclone surge inundation susceptibility by RF in Sandwip
looked similar to the outcome of the AHP analysis. The outer
region of the island revealed very high (27.64%) to high (37.09%)
susceptible classes and very low to low classes in the central part
(Figure 7). RF analysis for Dacope displayed the upper and middle
lower regions of the upazila comprised of very high 31.92%), high
(27.45%), and moderate (21.76%) susceptibility classes. Besides,
the lower portion of the upazila demonstrated low and moderate
susceptibility classes (Figure 6).

3.5 Accuracy of different methods used in
the study

The maximum accuracy for cyclone surge inundation
susceptibility analysis was found in FR and ANN for Sandwip
and Dacope, respectively. The AUC value for the Sandwip analysis
showed chronological values as AHP>KNN>RF >ANN.However,
all the values were acceptable within standard ranges (Mandrekar,
2010). On the contrary, the Dacope’s AUC value showed that
only the RF analysis was behind the standard range (0.63). The
other analyses, FR, AHP, and KNN, showed sufficient accuracy
for Dacope (Figure 8). Therefore, the outcome of the analysis using
different methods was accepted according to the ROC calculation.

4 Discussion

Flood susceptibility analysis throughAHP (Mourato et al., 2023;
Rana et al., 2023; Sarkar et al., 2023) and FR (Hasanuzzaman
et al., 2022b; Saha et al., 2022; Sarkar et al., 2022; Addis, 2023;
Dutta et al., 2023; Ghosh et al., 2023; Megahed et al., 2023) has
become popular recently. Machine learning algorithms have also
been newly applied for flood susceptibility analysis (Avand et al.,
2021; Meliho et al., 2021; Rahman et al., 2021; Hussain et al., 2023).
However, the AHP, FR, ANN, KNN, and RF methods to analyze
cyclone surge inundation susceptibility in this study was relatively
new in this field. Previously, the cyclone surge susceptibility was
assessed by calculating the Surge Decay Coefficient (SDC), which
only depended on surge height and DEM (Akter and Dayem, 2021;
Hoque et al., 2021). Besides these characteristics, several other issues
were significant for inundation susceptibility, such as slope, TWI,
distance from the river or sea, drainage density, LULC, NDVI,
precipitation, etc. The wind flow distance from the seashore was
also considered influential as the wind force reduced with distance
from the seashore. All these factors were included in this current
study. Research related to cyclones was mostly considered impact
and vulnerability analysis.The impact assessment included the effect
of cyclonic events on life loss, property damages, transportation
destructions, etc. (Fakhruddin et al., 2022). A few studies were
also based on LULC (Charrua et al., 2021). Vulnerability analysis
was primarily based on social and economic indicators (Roy and
Blaschke, 2015; Quader et al., 2017). On the contrary, this study
considered only the physical properties for susceptibility analysis. A
recent study was conducted on the Bangladesh coast to determine
the cyclone surge susceptibility of a coastal upazila using AHP and
FR techniques (Mamun et al., 2024). The study site of that research
was located on the exposed coast, and its southern boundary was
open to the Bay of Bengal. However, many other geographical
contexts prevailed on the Bangladesh coast. Thus, both study sites
of the current research were selected purposively. Sandwip island
was a common place for cyclone surges that caused severe havoc to
the lives and property of its inhabitants. A great cyclone devastated
the island, causing 140,000 casualties in 1991 (Flather, 1993).
Besides, due to the open boundaries surrounding the island with
the Bay of Bengal, the area was more prone to cyclonic events.
On the other hand, Dacope upazila possessed unique geographic
and demographic characteristics; the lower portion was covered by
mangroves where no people were living, and the upper portion
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FIGURE 6
Cyclone surge inundation susceptibility of Sandwip island and Dacope upazila by different methods.
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TABLE 7 PR values of surge flooding criteria and their contribution to susceptibility.

Factors Min RF Max RF (Max-Min) RF (Max-Min)
Min RF

PR value

Sand Dac Sand Dac Sand Dac Sand Dac Sand Dac

Elevation 0.03 0.02 0.48 0.72 0.45 0.70 0.118 0.101 3.84 6.92

Slope 0.07 0.14 0.37 0.45 0.30 0.31 0.118 0.101 2.54 3.09

Drainage density 0.14 0.11 0.31 0.31 0.18 0.21 0.118 0.101 1.49 2.03

TWI 0.15 0.10 0.27 0.35 0.12 0.26 0.118 0.101 1.00 2.56

Distance from river or sea 0.09 0.14 0.56 0.45 0.47 0.31 0.118 0.101 3.99 3.10

Wind flow distance 0.07 0.45 0.40 0.55 0.33 0.10 0.118 0.101 2.81 1.00

LULC 0.01 0.08 0.74 0.50 0.72 0.42 0.118 0.101 6.15 4.16

NDVI 0.002 0.00 0.55 0.44 0.55 0.44 0.118 0.101 4.68 4.33

Precipitation 0.03 0.00 0.35 1.00 0.32 1.00 0.118 0.101 2.73 9.88

Soil type 0.18 0.40 0.58 0.60 0.40 0.20 0.118 0.101 3.38 1.95

FIGURE 7
Susceptibility area percentage classes of Sandwip island and Dacope upazila by different methods.

was inhabited heavily. Besides, the upazila was surrounded by two
mighty rivers from the west and east side. Additionally, a few other
rivers and prominent canals flowed inside the upazila. During the
cyclone Morel, the upazila has recently been flooded due to high
surges in several places (IFRC, 2024b). Hence, both sites were
selected purposely to discover the susceptibility differences due to
cyclone surge inundation.

According to the factor maps, both study sites had a low
gradient, evident in various research studies (Hoque et al., 2019;
Islam et al., 2020). Therefore, the low elevation and gentle slope
characteristics should be considered in disaster risk reduction

(DRR) planning. The Bangladesh Water Development Board
(BWDB) constructed embankments and polders in the coastal
areas (Rahman et al., 2022). The height of the structures should
be determined based on the previous cyclonic surge height.
Besides, well-planned water regulators should be ensured before
the construction. Because the drainage density showed numerous
stream flows in the areas (Figure 4). Bangladesh was characterized
by heavy precipitation during the monsoon period (Mondal et al.,
2020). Besides, colossal precipitation occurred during cyclonic
events, especially during cyclone landfall (Moon et al., 2023).
Thus, the amount of rainfall needs to be considered during the
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FIGURE 8
Accuracy validation of different methods to surge inundation susceptibility analysis.

susceptibility modeling and planning process. Rivers and canals
were spread throughout the entire area, especially in Dacope,
making the sitesmore susceptible (Figure 5).These rivers’ banks and
canals would overflow and inundate a large area during any surge.
As the rivers are directly linked to the Bay of Bengal, the surge wave
pushes rapidly with more height to the northward direction during
the cyclone.This triggers thewater to be inundatedmore areas inside
the upazila. Due to the absence of a proper drain-out procedure, the
water remained on the land surface longer (Roy et al., 2022). Hence,
hydraulic structures such as embankments, dams, sluice gates, etc.,
should be appropriately maintained.

Fluvisols, a relatively new soil, characterized most areas
(IUSS Working Group WRB, 2015) as susceptible to inundation.
The lower portion of Dacope and the middle portion of Sandwip
were characterized by healthy vegetation (Figure 5). The final
susceptibility map showed similarities to the LULC and NDVI
susceptibility classes. Therefore, it was evident that mangroves
and healthy vegetation had the potential to reduce cyclone
surge inundation susceptibility. Based on this outcome, a coastal
green belt should be mandatory along the entire southern
coast of Bangladesh. The south-western side of the coast was
covered with Sundarbans’ natural mangrove forest (Begum et al.,
2021). Many other coastal regions, including several islands,
were gone under mangrove plantations by the Bangladesh Forest
Department (BFD) (Mahmood et al., 2023). However, many
opportunities remain for mangrove plantations in the coastal area.
In addition, like Dacope, a green belt of at least a minimum width
should be maintained to reduce the impacts of cyclonic events.

This study discussed two main issues: inundation susceptibility
analysis of two distinct areas and the suitability of geospatial
techniques and algorithms used in cyclone surge inundation
susceptibility analysis. From the results of the susceptibility analysis,
Sandwip showed susceptibility primarily in areas around the island.
The middle part showed very low to low susceptibility in all the
analyses. One of the primary causes was that the island had been
surrounded by seawater. There were a few patches of plantation
mangroves in some locations of Sandwip. However, they were too
low to reduce the susceptibility of the cyclone surge inundation in
the surroundings. Conversely, in the middle of the island, there was

low susceptibility presented because of the unavailability of rivers
or canals, the presence of vegetation cover, and higher elevation.
On the contrary, very high and high susceptibility was observed
in the northern part of the Dacope upazila, whereas the southern
part was adjacent to the seawater. The mangroves chiefly triggered
the dissimilarities of the outcome. Mangroves could reduce cyclonic
impacts, including wind force and wave action (Mahmood et al.,
2023). Besides, the northern parts were characterized by twomighty
rivers from the west and east sides. The LULC and NDVI analysis
also supported the high susceptibility in the northern part.

Geospatial techniques weremore accurate thanmachine learning
algorithms except for ANN analysis for Dacope. Many studies found
high AUC values in different susceptibility analyses (Youssef and
Pourghasemi, 2021; Alqadhi et al., 2022). The reason behind the
relatively low AUC values of algorithms could be explained by their
processes. Machine learning algorithms generally analyze large data
sets (Adadi, 2021; Sarker, 2021). Hence, in most cases, the study
area was also extensive. The present study sites were relatively small
compared to the entire coastal regions or a country. Besides, the factor
maps information and training sample points were not very large in
numbers. Therefore, the three machine learning algorithms used in
the study provided a standard accuracy level but were not better than
the AHP or FRmethods.Thus, these results concluded that geospatial
techniques such as AHP and FR are more suitable for cyclone surge
inundationanalysis for small regions.However, all theanalyses showed
their potential to assess cyclone surge inundation susceptibility. Out
of ten AUC values, only the value found by RF in Dacope showed
lower than 70%. Based on this analysis, it can be concluded that
geospatial techniques and machine learning algorithms are capable
of inundation susceptibility analysis. However, algorithms are more
suitable for large volumes of data sets.

5 Conclusion

Geospatial techniques and machine learning algorithms have
recently been applied in different susceptibility assessments. This
study used two geospatial techniques, i.e., AHP and FR, and three
algorithms, i.e., ANN, KNN, and RF, to understand the cyclone
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surge inundation susceptibility of two distinct physiographic regions
in Bangladesh coast. The susceptibility classes were categorized
into five classes. More susceptibility was depicted surrounding
Sandwip island and the upper portion of Dacope upazila. Due to
the mangrove forest at the lower side of the Dacope upazila, very
low to low susceptibility was predicted. However, two mighty rivers,
less vegetation density, and other factors caused susceptibility in the
upper portion of the upazila. On the contrary, the middle part of the
Sandwip upazila was found to be very low to low susceptibility due
to the greater distance from thewater body, higher elevation, and the
abundance of vegetation. These outcomes could be similar to those
of the other coastal areas of Bangladesh. Thus, a green belt has been
suggested for all along the coast, including islands, to reduce cyclone
vulnerability. The outcomes from different methodologies used in
the study concluded that the surge inundation susceptibility analysis
could be successfully conducted by geospatial techniques, and
algorithms. ROC calculation found that all five analysis processes
had standard accuracy, and practitioners could use them for cyclone
management. However, machine learning algorithms could perform
better for extensive dataset analysis. Surge inundation susceptibility
analysis of a larger area through hybridmachine learning algorithms
could be the further research direction of this research conclusion.
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