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Introduction: Landslides are a major geohazard in the northern Ethiopian
highlands, causing significant damage to farmland, infrastructure, and
settlements, with profound socio-economic consequences. This study aims
to address the pressing need for enhanced natural hazard management by
investigating landslide susceptibility in theDebek regionof SouthWollo, Ethiopia.

Methods: Thestudyemploysadvancedgeospatialmodelingtechniquestoassess
landslide susceptibility. Key causative factors—slope gradient, aspect, elevation,
proximity to streams and springs, slopematerial, distance to lineaments, and land
use/land cover (LULC)—were identified and analyzed through field surveys and
satellite imagery. A total of 328 landslide events were documented, with data
divided into training (75%) and validation (25%) sets. Landslide susceptibilitymaps
were generated using the Frequency Ratio (FR) and Analytical Hierarchy Process
(AHP)models. Validation of themodels was conducted through landslide density
indices (R-index) and receiver operating characteristic (ROC) curves.

Results: The analysis revealed that slope material and proximity to springs were
themost influential factors contributing to landslide susceptibility. The FRmodel
demonstrated a slightly better performance than the AHP model, with an ROC
success rate of 0.828 and a prediction rate of 0.835, compared to 0.826 and
0.832, respectively, for the AHP model. The models were validated through the
R-index and ROC curves, which showed a high degree of concordance between
the predicted and observed landslide events.

Discussion: This study highlights the effectiveness of GIS-based geomatics
approaches in landslide susceptibility mapping in a data-scarce region. The
comparative analysis of the FR and AHPmodels demonstrates the strengths and
limitations of each, offering valuable insights for landslide risk mitigation. The
findings underscore the importance of integrating geospatialmodeling in natural
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hazard management, supporting more informed land-use planning, targeted
mitigation strategies, and comprehensive disaster prevention initiatives.

Conclusion: This research contributes to advancing the understanding of
landslide dynamics in the Ethiopian highlands and provides critical resources for
policymakers and stakeholders involved in disaster riskmanagement. The study's
findings enhance the capacity for effective landslide-prone area identification
and susceptibility reduction, reinforcing the importance of geospatial modeling
in improving natural hazard management frameworks.

KEYWORDS

analytical hierarchy process (AHP), frequency ratio (FR)model, geohazards and georisks,
geospatial modeling, landslide susceptibility mapping, natural hazard mitigation

1 Introduction

Landslides are among the most persistent natural hazards
worldwide, arising from the complex interplay of geological,
hydrological, and anthropogenic factors (Silalahi et al., 2019).
Defined as the downward movement of rock, debris, or earth
materials along slopes due to gravitational forces exceeding the
shear strength of underlying materials, landslides occur in various
forms, including slides, flows, topples, falls, spreads, and creep
(Varnes, 1984).These geohazards result in profound social, economic,
and environmental impacts, particularly in regions susceptible to
climate change, land-use transformations, seismic activity, and intense
rainfall, which collectively amplify the frequency and magnitude
of landslide occurrences (Mao et al., 2024; Mekonne et al., 2022;
Nanehkaran et al., 2023; Pardeshi et al., 2013).

Ethiopia, with its rugged terrain and diverse climatic conditions,
is particularly vulnerable to georisks such as landslides, especially
in highland and escarpment regions (Wubalem et al., 2022).
The socio-economic repercussions of landslides in Ethiopia
are severe, resulting in fatalities, displacement, and extensive
damage to infrastructure and agriculture (Mewa and Mengistu,
2022). Between 2018 and 2020, landslides caused 120 deaths,
60 injuries, and displaced over 8,000 households (Wubalem,
2021). A notable event occurred on 13 August 2021, when a
landslide along the Addis Ababa-Bahir Dar corridor obstructed
transportation for nearly 5 days, causing substantial economic
losses (Wubalem et al., 2022). Beyond immediate human and
economic costs, landslides contribute to environmental degradation,
emphasizing the necessity for robust susceptibility assessment and
mitigation measures (Shano et al., 2022). Despite the prevalence
of landslides, comprehensive susceptibility mapping in Ethiopia
remains inadequate. This deficiency impedes effective land-use
planning and disaster mitigation efforts (Abay et al., 2019).

South Wollo, in the Amhara region, is one of the most affected
areas, with Debek identified as a key zone of concern (Ali, 2024). The
convergence of steep slopes, heavy seasonal rainfall, andunsustainable
land-use practices such as deforestation and agricultural expansion
significantly contribute to slope instability (Ayele et al., 2025). Seismic
activities further compound these susceptibility s, reflecting the
intricate relationship between natural and human-induced factors
(Pardeshi et al., 2013; Wubalem et al., 2022). Debek, South Wollo,
exemplifies a vulnerable region with limited landslide susceptibility
analysis. The absence of thorough hazard assessments has led to

infrastructure damage, reduced agricultural output, and community
displacement (Ali, 2024; Mekonne et al., 2022). For instance, in
2018, a rotational landslide in the Tiy Embuayochi area destroyed
farmland and residential properties, exacerbating local vulnerabilities
(Wubalem et al., 2022). Similarly, in 2010, a landslide near Mersa
village resulted in 17 fatalities (Wubalem et al., 2022). These incidents
underscore the urgent need for advanced susceptibility mapping to
inform mitigation and preparedness strategies.

Despite the country’s vulnerability, existing studies have not
adequately addressed the limitations of variousmodeling techniques
in hazard assessments. Prior research on landslide susceptibility
has predominantly employed statistical and deterministic models
without systematically comparing their efficacy with expert-driven
methodologies (Abay et al., 2019; Shano et al., 2021). While
statistical models provide quantitative assessments, they often
lack contextual adaptability, whereas expert-driven approaches,
despite their flexibility, introduce subjectivity (Ali, 2024). This
study aims to bridge this gap by integrating both statistical
and expert-driven models, offering a more balanced and robust
approach to landslide susceptibility assessment. Moreover, the study
is motivated by the need to advance geospatial modeling for
disaster susceptibility reduction. Existing literature on landslide
susceptibility modeling has largely overlooked the comparative
advantages and limitations of Frequency Ratio (FR) and Analytical
Hierarchy Process (AHP) models, particularly in the Ethiopian
context (Berhane and Tadesse, 2021;Mengstie et al., 2024). A critical
examination of these methodologies is necessary to determine
their suitability in data-scarce environments such as Debek, South
Wollo, where landslide events are frequent and poorly documented
(Ali, 2024; Mekonnen et al., 2022).This research, therefore, provides
empirical insights into the efficacy of FR and AHP models,
contributing to improved decision-making in hazard-prone regions.

The rationale for selecting FR and AHP models lies in their
unique advantages over other geospatial modeling techniques, such
asMachine Learning (ML) and deep learning approaches (Abay et al.,
2019). The FR model is particularly useful for landslide susceptibility
assessment due to its ability to statistically quantify the relationship
between historical landslides and conditioning factors (Baral et al.,
2021). It is a widely used bivariate approach that is computationally
efficient and interpretable, making it suitable for regions with limited
geospatial data availability (Baral et al., 2021; Shano et al., 2021).
On the other hand, the AHP model incorporates expert judgment
in assigning weights to influencing factors, allowing for a more
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flexible, qualitative assessment of landslide susceptibility (Kumar
and Anbalagan, 2016; El Jazouli et al., 2019). In contrast, ML and
deep learning models, while powerful, require extensive datasets
for training and validation (Mao et al., 2024), which may not be
readily available in regions like South Wollo. Additionally, the “black
box” nature of ML models often limits interpretability, making them
less practical for policymakers and land-use planners who require
transparent, explainable methodologies (Nanehkaran et al., 2023).
Giventheseconsiderations,FRandAHPmodelswereselectedfor their
complementary strengths FR providing quantitative precision and
AHPincorporatingexpert-driveninsights.Thecomparativeanalysisof
thesemodels enables amore comprehensive susceptibility assessment,
facilitating effective disaster susceptibility management. This study,
therefore, aims to conduct a comparative analysis of FR and AHP
models to assess landslide susceptibility in Debek, South Wollo. The
study’s objectives are threefold: 1) to evaluate the spatial distribution
of landslide susceptibility using FR and AHP models, 2) to assess
the relative effectiveness of thesemodels in predicting landslide-prone
areas, and3) togenerate susceptibilitymaps that can informmitigation
strategies, land-use planning, and community resilience efforts. By
addressing these objectives, this research contributes to the growing
body of knowledge on landslide susceptibility modeling and provides
actionable insights for disaster susceptibility reduction in Ethiopia.

2 Study area description

The study area, Debek, is situated along the border of Tenta
and Mekdela weredas in the South Wollo Zone of the Amhara
Region, within Ethiopia’s northern highlands. It covers approximately
295.59 km2 and is geographically bounded by Eastings of 0503675
to 0531986 and Northings of 1241155 to 1259835 (Figure 1). The
region’s physical characteristics include steep highland terrain with
elevations ranging from 1,617 to 3,160 m above sea level, placing
it within the Northern Ethiopian volcanic plateau. The climate is
classified as semi-arid to temperate, with mean annual precipitation
of 924.5 mm and temperatures ranging from 6.6°C to 26.4°C. The
rainy season (June to September) coincides with the Ethiopian
Kiremt, contributing to intense soil saturation and runoff, which
increase landslide susceptibility. The geological profile is dominated
by Cenozoic volcanic formations and Quaternary deposits, including
lapilli tuff, agglomerate basalt, and columnar aphanitic basalt, overlaid
by residual and colluvial soils. These geologic and climatic factors,
combined with anthropogenic activities such as deforestation and
agricultural expansion, render the area highly prone to landslides.
A high-resolution topographic map (Figure 1), land use map, and
geological layers were created to provide a spatial understanding of
the study area. These maps were developed using a 12.5 m × 12.5 m
Alos Palsar DEM and field data, ensuring accuracy and relevance for
susceptibility modeling.

3 Methodology

3.1 Data acquisition and compilation

Accurate and comprehensive data is essential for developing
reliable landslide susceptibility maps. This study integrates various

environmental, topographical, geological, and land-use datasets to
assess and map landslide-prone areas in Debek, South Wollo,
Ethiopia. The datasets used are carefully selected to reflect critical
landslide conditioning factors, ensuring that the Frequency Ratio
(FR) and Analytical Hierarchy Process (AHP) models effectively
capture the spatial variability of landslide susceptibility. By leveraging
Geographic Information System (GIS) tools, these datasets are
processed and analyzed to produce accurate and actionable
susceptibility maps. The following Table 1 summarizes the primary
data sources utilized in this study, detailing their relevance, resolution,
and acquisition sources.

3.2 Methodological outline

In this study, the Frequency Ratio (FR) and Analytical
Hierarchy Process (AHP) models were selected for landslide
susceptibility assessment due to their simplicity, interpretability,
and widespread application in geohazard studies, particularly in
data-scarce environments. These models offer practical advantages,
making them accessible to researchers and decision-makers without
requiring complex computational resources (Althuwaynee et al.,
2016; El Jazouli et al., 2019). Their ability to provide clear insights
into the contribution of various causative factors enhances their
utility for disaster susceptibilitymanagement andmitigation strategies
(Leonardi et al., 2022). One of the key strengths of FR and AHP
is their applicability in regions where comprehensive landslide
inventories andhigh-resolutiongeospatialdatasets are limited (Kumar
and Anbalagan, 2015). The FR model, as a data-driven approach,
establishes statistical relationships between landslide occurrence and
conditioning factors, making it effective in identifying spatial patterns
of susceptibility (Li et al., 2016). AHP, on the other hand, allows for
expert-driven weighting of factors, ensuring that domain knowledge
plays a critical role in hazard assessment (Abay et al., 2019). Their
established reliability in geospatialmodeling further underscores their
relevanceinlandslide-proneregionslikeDebek,SouthWollo,Ethiopia.
This dual-model approach enhances the reliability of susceptibility
assessments by combining statistical correlations with expert-driven
factor weighting (Ali, 2024). The process begins with data acquisition
and preprocessing, where landslide inventories and conditioning
factors (e.g., slope, lithology, and land cover) are integrated into the
GIS environment to build a comprehensive spatial database. The FR
model calculates the relative frequency of landslide occurrences for
each factor class, providing a quantitative assessment of susceptibility.
Simultaneously, the AHP model applies pairwise comparisons to
derive factor weights, reflecting the influence of each parameter on
landslide occurrence through expert judgment.

The resulting susceptibility maps are generated by overlaying and
integrating weighted factor layers, producing classified outputs that
delineate zones of varying landslide susceptibility. Model validation
is conducted using historical landslide data and performance metrics
to ensure accuracy and reliability. The key novelty of this study lies
in its integrated methodology, combining detailed field surveys with
advanced remote sensing techniques, thus ensuring the inclusion of
both accessible and remote areas in the landslide inventory map.
The large dataset of 328 identified landslides, combined with a
comprehensive sampling method and rigorous model validation,
providesarobustfoundationforlandslidesusceptibilitymodeling.This
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FIGURE 1
Location map of the study area.

approach contributes to the advancement of landslide susceptibility
assessment in the region and offers a replicable methodology for
similar studies inother landslide-proneareas. Furthermore, the study’s
findings are particularly valuable for improving disaster preparedness
and land-use planning in South Wollo, Ethiopia, by providing
actionable data for policymakers and planners.

Despite these advantages, both models have certain limitations.
AHP’s reliance on expert judgment introduces a level of subjectivity,
which can lead to inconsistencies in factor weight assignment
(El Jazouli et al., 2019). Similarly, the FR model assumes a linear
relationship between landslide occurrence and conditioning
factors, which may not always capture the complex interactions
that drive landslide processes (Intarawichian and Dasananda,
2011). Additionally, while these models perform well in many
contexts, machine learning (ML) and deep learning techniques
often yield higher predictive accuracy by leveraging large datasets
and identifying non-linear patterns (He et al., 2021). However,
these advanced methods require extensive training datasets, which
may not always be available for landslide studies in remote
regions (Kumar et al., 2023). Given these considerations, future
research could explore hybrid approaches that integrate FR
and AHP with ML techniques to enhance predictive accuracy.
Combining expert-driven insights with data-driven machine
learning models could help overcome the limitations of individual
methods while leveraging their respective strengths (Mao et al.,
2024). This would contribute to more robust and adaptable
geohazard assessment frameworks, ultimately improving disaster
preparedness and mitigation efforts in landslide-prone regions. The
overall research approach, summarizing data integration, model
application, and validation processes, is visually represented in
Figure 2.

3.3 Landslide inventory map: definition,
purpose, and methodology

A landslide inventory map is a crucial tool for assessing and
understanding landslide-prone areas, providing a detailed spatial
representation of landslide occurrences (Mohammady et al., 2012;
Pourghasemi and Rahmati, 2018). It plays a fundamental role
in landslide susceptibility modeling by cataloging and mapping
landslide events, their frequency, and distribution (Nohani et al.,
2019). Such maps enable researchers, planners, and policymakers
to identify regions at high susceptibility of landslides, making
them indispensable in disaster susceptibility reduction and
land-use planning (Reichenbach et al., 2018). The accuracy
and comprehensiveness of the landslide inventory map directly
influence the reliability of subsequent analyses, such as landslide
susceptibilitymapping, which plays a key role in developing effective
mitigation strategies. Landslides are complex natural hazards
influenced by various factors, including geological conditions,
topography, climate, and human activities (Tsangaratos and
Rozos, 2013). Understanding the distribution of past landslides
and their relationship to these factors is essential for predicting
future occurrences. The landslide inventory map serves as the
foundation for such investigations, providing critical data on
the spatial distribution of landslides, their frequency, and the
contributing factors (Althuwaynee et al., 2016). This information
is indispensable in creating models that predict the likelihood of
future landslides under various conditions.

In this study, we utilized a combined approach to construct a
detailed landslide inventory map for the Debek region of South
Wollo, Ethiopia (Figure 3). The methodology involved both field
surveys and remote sensing techniques, ensuring comprehensive
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TABLE 1 Primary data sources utilized in this study, their relevance, resolution, and acquisition sources.

Factor Data type Description and
purpose

Resolution/Scale Timeframe Source &
applicability

Geomorphic Factors

Slope Gradient Continuous Raster Measures steepness, a
critical indicator of
landslide susceptibility

12.5 m 2023–2024 NASA Earthdata (ALOS
PALSAR DEM):
High-resolution global
DEM useful for terrain
analysis

Slope Aspect Continuous Raster Determines slope
direction, affecting water
drainage and erosion
patterns

12.5 m 2023–2024 NASA Earthdata (ALOS
PALSAR DEM): Derived
from DEM to assess
exposure to erosion

Elevation Continuous Raster Evaluates topographic
variation and terrain
ruggedness

12.5 m 2023–2024 NASA Earthdata (ALOS
PALSAR DEM):
Essential for topographic
influence on landslides

Hydrologic Factors

Distance to Stream Vector (Line) Assesses proximity to
water bodies
contributing to erosion
and slope instability

1:50,000 2023–2024 Ethiopian Geospatial
Institute: National
hydrological datasets for
stream mapping

Distance to Spring Vector (Point) Evaluates groundwater
influence, affecting slope
stability

1:50,000 2023–2024 Field Surveys, Ethiopian
Geological Survey:
Ground-truthed
locations of springs

Geologic Factors

Slope Material Categorical Raster Classifies surface
materials influencing
slope strength

1:250,000 2022–2024 Ethiopian Geological
Survey: Geological maps
digitized for slope
stability analysis

Distance to Lineament Vector (Line) Maps proximity to fault
lines and fractures,
significant for landslide
susceptibility

1:250,000 2022–2024 Ethiopian Geological
Survey: Lineament maps
from remote sensing and
field verification

Cover Factor

Land Use/Land Cover
(LULC)

Categorical Raster Identifies vegetation,
urban areas, and land
management practices
affecting slope stability

30 m 2023–2024 Landsat 8 Imagery
(USGS): Recent land
cover classification
crucial for land-use
impacts

These datasets form the backbone of the susceptibility analysis, facilitating the identification of critical landslide-prone areas and enhancing the predictive capabilities of the FR and AHP models.
The integration of multi-source data through GIS ensures a comprehensive and robust assessment of landslide susceptibility s in Debek, South Wollo.

data collection fromdifferent areas of the study region. Field surveys,
conducted on-site, provide ground-truth data, enabling researchers
to confirm landslide presence and map their exact locations. This
approach is essential for obtaining detailed information on the
morphology, size, and types of landslides, which cannot always
be captured by remote sensing methods alone. Remote sensing,
including high-resolution Google Earth imagery, was employed to
map landslides in more remote or less accessible areas where field
surveys were difficult due to geographical constraints.This approach

enabled the coverage of larger regions, providing valuable insights
into landslides occurring in hard-to-reach areas. By combining
the data from both sources, the resulting inventory map is
comprehensive, accurate, and representative of both accessible and
remote areas of the study region.

The landslide data used in this study consists of 328
individual landslides identified through field surveys and satellite
imagery. The sampling method involved the random selection
of 246 landslides (75%) for model training, with the remaining
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FIGURE 2
General work flow of the study.

FIGURE 3
Landslide inventory map of the study area.

82 landslides (25%) set aside for validation. This approach
ensures a robust model training process while maintaining
the independence of the validation dataset. To ensure the
reliability of the landslide data, both field surveys and remote
sensing techniques were applied, with each complementing
the other. Field surveys provided first-hand, ground-based
observations, while remote sensing offered broader regional
coverage, particularly in inaccessible areas. The use of both

methods ensures comprehensive data collection and enhances
the accuracy of the landslide inventory map. Despite these
efforts, inherent data limitations could introduce biases in model
outputs. The accuracy of landslide inventories depends on factors
such as spatial resolution, cloud cover interference in satellite
imagery, and potential underreporting of smaller or inaccessible
landslides. Moreover, temporal inconsistencies in data collection
may affect the precision of susceptibility modeling, as some
landslide occurrences may not be captured in real time. Future
improvements could involve the integration of high-resolution
remote sensing techniques, such as LiDAR and InSAR, to enhance
landslide detection accuracy. Additionally, collaboration with local
authorities and community-based monitoring initiatives could
provide more comprehensive and real-time data for refining
landslide susceptibility assessments.

3.4 Validation techniques

Model validation is a critical component of landslide
susceptibility assessment, ensuring the reliability and robustness
of predictive models (Cemiloglu et al., 2023). In this study, we
employed Receiver Operating Characteristic (ROC) curves and
landslide density indices (R-index) to evaluate model performance,
as these techniques provide valuable insights into predictive
accuracy and spatial agreement between susceptibility maps
and observed landslide events. The ROC curve measures the
model’s ability to distinguish between susceptible and non-
susceptible areas, while the R-index quantifies the distribution
of landslide occurrences within different susceptibility zones,
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reinforcing the consistency of our results (Nanehkaran et al.,
2021). We acknowledge the importance of incorporating diverse
validation techniques to enhance model robustness. While k-
fold cross-validation is a widely used approach for assessing
model generalizability, its implementation was constrained
by the nature of our dataset (Mao et al., 2024). The limited
availability of landslide inventories in the study area and the
spatial clustering of events presented challenges in dividing the
dataset into independent training and validation subsets. Instead,
we supplemented our validation framework with additional
performance indicators, including the area under the ROC curve
(AUC) for quantitative evaluation and a comparative assessment
of susceptibility maps through statistical correlation analyses.
These methods provide a comprehensive validation strategy that
strengthens the reliability of our findings (Ali, 2024; Ayele et al.,
2025; Berhane and Tadesse, 2021). Future research could explore
the integration of k-fold cross-validation and other advanced
validation techniques, particularly as more extensive landslide
datasets become available (Rosi et al., 2023). Incorporating machine
learning-based validation approaches, such as permutation feature
importance and bootstrapping methods, could further refine model
assessment, ensuring the robustness of susceptibility mapping in
diverse geomorphological settings.

3.5 Landslide conditioning and triggering
factors: understanding the key
determinants of landslide susceptibility in
study area

Landslides are complex natural phenomena influenced by a
range of conditioning and triggering factors (Wubalem et al., 2022).
Conditioning factors are those that predispose an area to landslide
occurrence, while triggering factors are immediate or short-term
causes that initiate landslide events (Kumar and Anbalagan, 2016).
This section delves into various key factors identified in the
literature and their influence on landslide susceptibility in Debek,
South Wollo, Ethiopia, focusing on slope gradient, slope aspect,
elevation, distance to streams, springs, slope material, lineaments,
and land use/land cover changes (Abay et al., 2019). These factors
include a combination of topographical, geological, hydrological,
and anthropogenic variables that together shape the landscape’s
vulnerability to landslides. Understanding these factors is essential
for developing effective landslide susceptibility maps, which form
the foundation for mitigation efforts and disaster susceptibility
reduction strategies.

3.5.1 Topographic (geomorphic) factors
Slope gradient is one of the most influential factors in landslide

susceptibility modeling. The slope gradient directly impacts the
shear forces acting on the terrain, with steeper slopes experiencing
higher shear stresses compared to gentler slopes, making them
more susceptible to failure (Mohammady et al., 2012). Steep
slopes are more prone to destabilization because the gravitational
pull on the soil or rock is significantly higher, reducing the
material’s shear strength and leading to potential landslides
(Anbalagan, 1992). In the study area of Debek, South Wollo, the
slope gradient was derived from a 12.5 m × 12.5 m Alos Palsar

DEM and classified into five distinct categories: 0°–15°, 15°–25°,
25°–35°, 35°–45°, and >45° (Figure 4a). This classification follows
Ambalagan (1992) slope gradient categorization, which is crucial
for differentiating areas with varying vulnerabilities to landslides. As
indicated byMohammady et al. (2012), the higher the slope gradient,
the greater the potential for landslides, as steep terrain experiences
more significant gravitational forces, leading to a higher probability
of slope failure.

The slope aspect plays a significant role in understanding the
exposure of an area to environmental factors such as sunlight,
rainfall, and wind. These factors directly affect vegetation growth,
evaporation rates, and erosion, all of which are closely linked
to slope stability (Ramesh and Anbalagan, 2015; Chen et al.,
2017). Vegetation, for example, can act as a natural stabilizer
for slopes by binding the soil, while areas exposed to more
rainfall or intense sunlight may experience increased erosion,
reducing the soil’s shear strength. The slope aspect map for
the study area was also derived from the Alos Palsar DEM,
and classified into nine categories: flat, north (N), north-east
(NE), east (E), south-east (SE), south (S), south-west (SW), west
(W), and north-west (NW) (Figure 4b). Each category represents
different exposure levels to climatic and hydrological processes,
as observed by Abay et al. (2019), who highlight the significant
role of slope aspect in shaping the ecological and hydrological
conditions of a region. For instance, slopes facing the south receive
more direct sunlight, which can increase evaporation and reduce
soil moisture, thereby potentially reducing the susceptibility of
landslides in some areas. In contrast, north-facing slopes may
accumulate more moisture, leading to higher erosion and a greater
likelihood of failure.

While elevation alone does not directly trigger landslides,
it is closely associated with other environmental factors such
as rainfall intensity, temperature variations, erosion rates,
and vegetation patterns—all of which influence slope stability
(Leonard et al., 2023; Catani et al., 2013). Higher elevations
are typically characterized by more intense rainfall, which can
exacerbate soil erosion and increase the likelihood of slope
failure. Furthermore, the combination of high altitude and intense
weathering processes can lead to the weakening of the slope
material, making it more vulnerable to collapse. In the case of
Debek, the elevation map was created using the Alos Palsar
DEM and classified into five altitude classes: 1,617 m–1,989 m,
1,989 m–2,208 m, 2,208 m–2,455 m, 2,455 m–2,743 m, and
2,743 m–3,160 m (Figure 4c). The higher elevation classes,
particularly those exceeding 2,455 m, often experiencemore intense
rainfall and rapid erosion processes, contributing to increased
landslide susceptibility. As demonstrated in other regions, such
as the study by Catani et al. (2013), elevation serves as an indirect
indicator of environmental conditions that significantly affect slope
stability.

3.5.2 Hydrologic influences on landslide
triggering

The proximity to streams and springs plays a pivotal role
in landslide susceptibility. Streams, through the continuous
flow of water, can reduce the shear strength of earth materials
by saturating soils, making them more prone to erosion and
failure (Dai and Lee, 2002). Springs, on the other hand, elevate
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FIGURE 4
Landslide causative factors. (a) Slope, (b) Aspect, (c) Elevation, (d) Distance to stream.

groundwater levels, leading to increased pore water pressure that
further reduces the strength of slope materials, thereby triggering
landslides (Chimidi et al., 2017). For the Debek region, the
distance to streams was classified into five categories based on
buffer zones: 0 m–340.7 m, 340.7 m–716.7 m, 716.7 m–1116.2 m,
1,116.2 m–1,668.5 m, and 1,668.5 m–2,996.2 m (Figure 4d).
Proximity to streams was identified as a critical factor in landslide
occurrence, as areas closer to water sources tend to experience
higher erosion and soil saturation. Likewise, the distance to
springs was mapped by buffering the identified spring points, and
classified into five distance classes ranging from 0 m–1,043.3 m
to 5,037.7 m–7,601.2 m (Figure 5a). As reported by Dai and Lee
(2002), regions near springs are more vulnerable to landslides due
to the increased groundwater infiltration that weakens the slope
materials.

3.5.3 Geologic contributions to landslide
occurrence

The material composition of a slope is a crucial determinant
of its stability. Weaker materials, such as weathered rock or loose
soil, aremore susceptible to landslides compared tomore competent
rocks (Raghuvanshi et al., 2015). In Debek, lithological data from
the Geological Survey of Ethiopia (GSE, 2010) and soil data
from the Food and Agriculture Organization (1986) were used to
classify the slope material into four categories: Agglomeratic basalt,
Aphanetic basalt, Colluvium soil, and Residual soil (Figure 5b).
These classifications indicate varying degrees of strength and
stability, with more resistant rocks like basalt being less prone to
failure compared to softer materials like residual soils, which are
more easily eroded and prone to sliding. Lineaments, which include
faults, fractures, and joints, serve as pathways for water infiltration
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FIGURE 5
(a) Distance to spring, (b) Slope material, (c) Distance to lineament, (d) Landuse land cover.

and increase the permeability of rock formations (Raghuvanshi et al.,
2015). The closer a slope is to a lineament, the more vulnerable
it becomes due to the structural disruption that weakens the
slope material and provides easier drainage channels. In Debek,
the distance from lineaments was classified into five categories,
ranging from 0 m–219.1 m to 1,245.0 m–2539.8 m (Figure 5c). As
observed by Raghuvanshi et al. (2015), the presence of lineaments
in the region enhances the potential for landslide development by
disrupting the natural stability of the geological structure.

3.5.4 Land use/land cover contributions to
landslide occurrence

Human activities such as deforestation, intensive agriculture,
and urbanization significantly affect landslide susceptibility,
particularly in areas where natural vegetation is removed, leaving

the slopes vulnerable to erosion and instability (Raghuvanshi et al.,
2015). In Debek, land use/land cover data derived from Landsat
8 imagery were classified into five categories: cultivation land,
vegetation, barren land, built-up areas, and riverbeds (Figure 5d). As
demonstrated by numerous studies (e.g., Raghuvanshi et al., 2015),
deforestation and agricultural activities are major contributors to
landslide occurrences, particularly in steep regions where vegetation
loss exacerbates soil erosion.

3.6 Models for landslide susceptibility
mapping

Two widely used models in landslide susceptibility mapping,
FrequencyRatio (FR) andAnalyticalHierarchyProcess (AHP),were
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employed in this study to predict landslide-prone areas in Debek,
South Wollo. Both models have their strengths and limitations, and
their combined use allows for a more comprehensive assessment of
landslide susceptibility.

3.6.1 Frequency ratio (FR) model
The Frequency Ratio (FR) model is a robust and widely used

bivariate statistical approach for generating landslide susceptibility
maps (Mandal et al., 2018). It operates by examining the spatial
relationship between landslide occurrences and the various
causative factors influencing slope instability in the study area
(Intarawichian and Dasananda, 2011). This approach quantifies
the association between landslide distribution and each factor class
by calculating the ratio of landslide occurrence to non-landslide
occurrence across different factor classes. The FR model is based on
the premise that areas with similar factors to those where landslides
have occurred in the past are more likely to experience future
landslides. This model provides a relatively simple, yet effective,
method for identifying landslide-prone regions. The formula for
calculating the frequency ratio is given in Equation 1.

Frequency Ratio (FR) =
( Landslide Pixel in Factor Class

Total Landslide Pixels 
)

( Factor class pixel
Total Factor class pixels

)
(1)

Where a value greater than 1 indicates a stronger spatial
correlation between the factor class and landslide occurrence,
while a value less than 1 signifies weaker correlation (Ramesh
and Anbalagan, 2015; Nohani et al., 2019). For this study, after
calculating the FR values for each factor class, the values were
normalized to a probability range of [0, 1] by applying the relative
frequency formula given in Equation 2.

Relative Frequency (RF) =
Factor Class Frequency Ratio

∑Factor Class Frequency Ratio
(2)

The relative frequency values were then multiplied by 100 to
assign class weights to each factor class (Sifa et al., 2019). Each
causative factor in the landslide model has a different degree
of influence, which is represented by the Prediction Rate (PR),
determined through Equation 3.

Prediction Rate (RF) = RFmax−RFmin
(RFmax−RFmin)min

(3)

Finally, the Landslide Susceptibility Index (LSI) for the study
area was derived bymultiplying the PR and RF values for each factor
and performing a raster summation of all factors using Equation 4.

Landslide Susceptibility Index (LSI) =
n

∑
i=n
(PFi− FRi) (4)

This provides a comprehensive susceptibility map, where areas
with higher susceptibility to landslides are identified based on the
combined effect of multiple causative factors.

3.6.2 Analytical hierarchy process (AHP) model
The Analytical Hierarchy Process (AHP) model is a multi-

criteria decision analysis technique that involves the comparison
of various factors affecting landslide susceptibility (Saaty, 1990).
In AHP, factors are ranked based on their relative importance

in contributing to landslides, and the model assigns weights to
each factor accordingly. The weighted factors are then combined
to produce a susceptibility map that indicates the likelihood of
landslide occurrences in different regions (Vargas, 1990). The AHP
model is particularly useful for integrating various types of data,
including both qualitative and quantitative factors, and is capable
of handling complex interactions between different variables. To
develop a robust landslide susceptibility map this method involves
the following steps:

Step 1: Problem Definition and Hierarchical Structuring: In
this study, the first step was to define the problem;
landslide susceptibility modeling and organize it into
a hierarchical structure with the goal of determining
the relative importance of each causative factor affecting
landslides. This hierarchical decomposition allows for a
clear understanding of the problem’s complexity and how
each factor interrelates (Saaty, 1990).

Step 2: Judgmental Matrix Development: The next step involves
the construction of a judgmental matrix based on pairwise
comparisons of factors and their classes. Using Saaty’s
(2000) scale, values between 1 and 9 were assigned to
express the relative importance of one factor over another.
This subjective judgment process helps quantify the degree
of importance each factor holds in relation to landslide
occurrence. The matrix is of a very specific form, known
as a reciprocal matrix, where the entry aij represents
the relative importance of factor i compared to factor
j, and the reciprocal property aij = 1/aij holds for all
comparisons (Saaty, 1990).

Step 3: Computation of Local Weights/Priorities: After the
matrix is constructed, the next stage involves calculating
the local weights or priorities for each factor. These
weights reflect the relative importance of each factor in
influencing landslide occurrence. In AHP, this is done
by computing the principal eigenvector of the matrix,
represented by Equation 5.

Aω = λmaxω (5)

where ω is the principal eigenvector, and  λmax is the principal
eigenvalue of the matrix

Step 4: Consistency Check: To ensure the reliability of the results,
consistency needs to be checked. The Consistency Index
(CI) is computed using Equation 6.

Consistency Index (CI) = (λmax − n)/(n− 1) (6)

Where n is the number of factors being compared. A consistency
ratio (CR) is calculated to verify the consistency of judgments using
Equation 7.

Consistency ratio (CR) = CI
RI

(7)

Where, RI is the random consistency index, which is provided by
Saaty (2000). A CR value greater than 0.1 suggests inconsistency in
the judgments, while a CR of 0 indicates perfect consistency (Saaty,
1980).
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Step 5: Aggregation of Scores and Final Susceptibility Index
Calculation: Once consistency is verified, the final step is to
aggregate the individual weights and ratings of each factor
and class. The overall Landslide Susceptibility Index (LSI)
is then calculated using Equation 8.

Landslide Susceptibility Index (LSI) =
N

∑
i=1

wjwij (8)

Where, wj is the weight of parameter, and wij is the rating value
or weight of class i in parameter j. This aggregation results in a
final LSI map that combines the influence of all factors, providing
a comprehensive and spatially explicit representation of landslide
susceptibility across the study area.

Both the FrequencyRatio (FR) andAnalyticalHierarchy Process
(AHP) models, when applied in tandem, offer complementary
insights into the spatial distribution of landslide hazards. By
using this data to train and validate susceptibility models such
as FR and AHP, the study offers valuable insights into the
potential for landslides in the Debek region of South Wollo.
These maps are critical for disaster susceptibility management
and land-use planning, as they help decision-makers implement
effective measures to reduce landslide susceptibility s and protect
communities and infrastructure. By leveraging both statistical and
subjective judgmental approaches, these models provide a nuanced,
robust framework for landslide susceptibility assessment in Debek,
South Wollo, Ethiopia.

4 Results and discussion

4.1 Landslide susceptibility mapping using
the frequency ratio (FR) model

Landslide susceptibility mapping is a crucial tool for
identifying and assessing the susceptibility of landslides in
vulnerable regions (Gautam et al., 2021). In this study, we
employed the Frequency Ratio (FR) model to generate a Landslide
Susceptibility Index (LSI) for the Debek region of South Wollo,
Ethiopia. The FR method uses the spatial distribution of landslide
occurrences and the relationships between various causative
factors, such as slope, aspect, elevation, land use, and distance
to streams, springs, lineaments, and other relevant features. By
analyzing these factors, the study aims to better understand the
spatial variations in landslide susceptibility and to guide effective
mitigation strategies. The Landslide Susceptibility Index (LSI) was
computed by multiplying the Prediction Rate (PR) and the Relative
Frequency (RF) for each factor class. The resulting LSI values were
then summed using raster operations to obtain a comprehensive
susceptibility map. The study categorized the region into five
susceptibility classes: very low, low, moderate, high, and very high.
The results highlight significant spatial heterogeneity in landslide
susceptibility across the area, with notable implications for land-use
planning, infrastructure development, and disaster preparedness.

Slope: The slope factor plays a significant role in landslide
susceptibility, with steeper slopes exhibiting a higher likelihood
of landslide occurrences. In this study, the slope was classified

into five distinct classes: 0º–15°, 15º–25°, 25º–35°, 35º–45°, and
>45°. The results show that the lowest susceptibility is associated
with gentle slopes (0º–15°), which constitute 44% of the region,
with a Frequency Ratio (FR) of 1.39. As the slope steepens, the
susceptibility increases, particularly in the >45° class, which has
a very low Frequency Ratio of 0.14. The relationship between
slope and landslide occurrence is consistent with previous studies
that indicate steeper areas are more prone to landslides due
to gravitational forces, reduced vegetation cover, and erosion
susceptibility s. This is because steeper slopes have a greater
component of downward force that can overcome the resisting
forces, such as friction and cohesion, thus triggering landslide
events (Bishop, 1955). Landslides tend to occur more frequently
on slopes that exceed a certain angle, which varies depending on
soil composition, vegetation cover, and other factors (Kohno and
Higuchi, 2023). For example, in areas with loose or unconsolidated
soils, the threshold for slope failure may be lower than in areas
with more stable rock formations (Luzon et al., 2016). According
to studies, slopes steeper than 30–35° are often associated with
increased landslide susceptibility, especially in areas with high
rainfall or seismic activity (Guzzetti et al., 2012). The relationship
between slope and landslide occurrence is one of the most well-
established in landslide studies. Studies conducted globally in
similar geomorphological regions support the finding that steeper
slopes are more prone to landslides. For instance, a study in the
Southern Alps of New Zealand (Schlögl et al., 2025) found that
slopes greater than 35° were highly susceptible to landslides due
to gravitational forces and reduced vegetation cover, similar to
what was observed in South Wollo. The study further indicated
that the presence of unconsolidated material, such as loose soil
or volcanic ash, made these slopes even more vulnerable, an
aspect that could be explored in the Debek region where soil
composition may contribute to slope failure. In Ethiopia, especially
in areas like the Ethiopian Highlands, where the combination of
steep terrain and frequent rainfall exacerbates soil erosion, studies
have also confirmed that steeper slopes exhibit increased landslide
susceptibility (Guzzetti et al., 2012). The role of deforestation and
agricultural encroachment in increasing landslide susceptibility has
also been noted (Ali, 2024), and this is a factor that should be
considered in the Debek region as well.

Aspect: Aspect, which refers to the direction in which a slope
faces, also significantly influences landslide susceptibility. These
elements can significantly influence factors like erosion rates,
vegetation growth, and soil moisture, all of which affect slope
stability (Dahal et al., 2008). For instance, south-facing slopes in
the Northern Hemisphere typically receive more direct sunlight
and experience higher temperatures, which can lead to increased
evaporation rates and, consequently, drier conditions. On the other
hand, north-facing slopes are generally cooler and receive less direct
sunlight, which may result in higher soil moisture content. These
variations in moisture levels can affect the cohesion of soil particles
and contribute to soil erosion or accumulation, both of which
influence the stability of slopes. Additionally, certain environmental
conditions, such as higher rainfall or snowmelt, may exacerbate
erosion and lead to slope failure in areas with specific aspects
(Schuster, 1986). In the Debek region, the highest susceptibility
is observed on southern-facing slopes (1.75 FR), followed by
southeastern-facing slopes (1.36 FR). These directions are often
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more exposed to the sun, which can lead to rapid weathering
of the soil and increased instability during heavy rainfall events.
Conversely, northern-facing slopes exhibit the lowest landslide
susceptibility, reflecting the fact that these areas tend to retain
moisture longer and experience less soil erosion. This finding
aligns with similar research in other mountainous regions, where
aspect influences the amount of rainfall infiltration and moisture
retention, critical factors in slope stability. In terms of aspect, studies
in other regions with similar climatic conditions show consistent
patterns with those observed in the Debek region. In regions of
Nepal, for example, southern-facing slopes were found to be more
prone to landslides due to their exposure to higher temperatures
and increased evaporation rates (Schuster, 1986). Similarly, in the
Central Andes of Peru, southern-facing slopes were found to exhibit
higher erosion rates, leading to a greater susceptibility of landslides
(Zhou et al., 2020). These findings confirm the importance of aspect
in controllingmoisture levels, erosion, and temperature, all of which
contribute to slope instability in the Debek region. Furthermore,
studies in the Mediterranean region have found that aspect-related
variability in landslide susceptibility is particularly marked during
wet seasonswhen southern slopes experience greater drying, further
reducing soil cohesion (Petley et al., 2007). Such dynamics may
be more prominent in the Debek region, where seasonal rainfall
patterns contribute to fluctuating soil moisture content.

Elevation: Elevation is another important factor in landslide
occurrence, with different altitudinal zones displaying varying levels
of susceptibility. The study divides elevation into five categories:
1,617–1,989 m, 1,989–2,208 m, 2,208–2,455 m, 2,455–2,743 m,
and 2,743–3,160 m. The highest susceptibility is found in the
2,208–2,455 m elevation range,where the FR value reaches 2.39.This
area is characterized by steep slopes andhigh rainfall, which together
exacerbate the susceptibility of landslides. As elevation increases
beyond 2,455 m, landslide susceptibility significantly decreases,
likely due to more stable terrain and lower population density. The
association between elevation and landslide susceptibility is well-
documented in the literature, where mid-range altitudes are often
more susceptible to landslides due to a combination of physical
terrain features and climatic factors. Furthermore, elevation can
influence temperature and moisture conditions that affect erosion
rates and vegetation health. For example, at higher elevations,
freezing and thawing processes can weaken rock and soil materials,
making them more susceptible to landslide initiation during
periods of rapid warming or heavy rainfall (Malet et al., 2002). The
association between mid-range altitudes and increased landslide
susceptibility is well-documented in mountainous regions globally.
For instance, in the Himalayas, elevation zones between 1,500 and
2,500 m are often found to be most prone to landslides due to the
combination of steep slopes, frequent rainfall, and rapid snowmelt
(Kumar et al., 2023). Similarly, studies in the European Alps have
shown that mid-elevation areas (around 2,000 m) are at heightened
susceptibility of landslides during the wet season, particularly when
rainfall triggers mass movements (Schlögl et al., 2025). In Ethiopia,
as in other mountainous regions, the vulnerability of mid-elevation
areas to landslides is compounded by factors such as population
density, agricultural expansion, and infrastructure development.
The highest susceptibility observed in the 2,208–2,455 m elevation
zone in the Debek region further corroborates the global trend
that mid-range altitudes tend to experience a higher frequency of

landslides. Thus, understanding elevation patterns is critical for
assessing the potential for landslide occurrences, particularly in
mountainous regions like South Wollo, where significant elevation
changes are common.

Distance to Stream: The proximity to streams and rivers is
another crucial factor influencing landslide susceptibility. Areas
within 340.7 m of a stream exhibit the highest susceptibility (FR =
1.55), while regions located farther away show progressively lower
susceptibility. This trend is expected, as streams often erode banks,
saturate soils during floods, and destabilize slopes. The positive
correlation between landslide susceptibility and distance to streams
is supported by several studies, which suggest that streams can
both directly and indirectly trigger landslides through processes
like undercutting and hydrological saturation. Furthermore, the
undercutting of riverbanks by streams or rivers can lead to the
destabilization of slopes, especially in areas with steep gradients. As
the water erodes the base of the slope, it weakens the foundation,
increasing the likelihood of landslide occurrence (Montgomery and
Dietrich, 1994). In the Debek region, the presence of streams is a
critical factor in determining landslide susceptibility, as it directly
influences soil saturation levels and erosion rates along riverbanks
and slopes adjacent to waterways. The findings in Ethiopia align
with studies from other mountainous regions like the Andes in
South America and the Himalayas in Asia (Mandal, et al., 2018). In
these regions, streams and rivers similarly undercut slopes, leading
to soil instability and landslides. For example, in Nepal’s hilly
terrains, research has shown that the proximity of rivers increases the
likelihood of landslide events due to bank erosion and soil saturation
(Regmi et al., 2014). Similarly, in the Peruvian Andes, Calderón-
Guevara et al. (2022) emphasize the role of streams in triggering
landslides through processes like undercutting, echoing findings
from the Debek region.

Distance to spring: Springs, like streams, contribute to slope
instability by saturating the soil and increasing pore pressure
(Ali et al., 2024). The study reveals that areas within 1,043.3 m
of a spring exhibit a high susceptibility to landslides (FR = 2.49),
indicating the significant role of groundwater in triggering slope
failures. The correlation between proximity to springs and landslide
susceptibility highlights the importance of groundwater dynamics in
the study of landslides, a relationship that is increasingly emphasized
in landslide susceptibility research. In areas where springs are
located near steep slopes, the combination of groundwater seepage
and high soil moisture can act as a trigger for landslides, particularly
during periods of heavy rainfall or snowmelt (Mekonnen et al.,
2022). In regions where groundwater discharge is concentrated,
such as fault zones or areas with highly permeable soils, the
susceptibility of landslides is amplified (Baral et al., 2021). This
is because the increased water content in the soil decreases its
overall stability, making it more likely to slide down the slope
under gravitational forces. Similar patterns are observed in other
mountainous regions with fault zones and significant groundwater
discharge. For example, in Japan’s mountainous terrain, Kohno
and Higuchi (2023) demonstrated the critical role of springs in
triggering landslides, especially in regions with steep gradients and
high rainfall. Similarly, in the Italian Alps, Schlögl et al. (2025)
emphasized the influence of springs and groundwater seepage on
landslide occurrence, where springs concentrated near fault zones
and permeable soils amplified landslide susceptibility s.
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Slope Material: The type of underlying slope material is another
critical factor in determining landslide susceptibility (Leonardi et al.,
2022). In this study, colluvial soil, characterized by loose and
unconsolidated material, exhibited the highest susceptibility (FR
= 3.17). This finding is consistent with many previous studies,
which have shown that colluvial soils are more prone to landslides
because of their low shear strength and high moisture retention
capacity (Ali, 2024; Mekonnen et al., 2022). Aphanetic basalt and
agglomeratic basalt, by contrast, show much lower susceptibility
due to their more cohesive and stable properties. Geological
materials, such as lapilli tuff, residual soils, and other loose or
unconsolidated materials, are more susceptible to erosion and
failure than more consolidated bedrock (Nohani et al., 2019). These
materials are easily eroded by water, especially during periods of
intense rainfall, which can increase the susceptibility of slope failure.
Other regions with similar geomorphology, such as the Andes and
the Himalayas, show similar patterns. In the Andes, Calderón-
Guevara et al. (2022) observed that colluvial soils in steep slopes
were highly susceptible to landslides, particularly during periods of
intense rainfall. Likewise, in the Himalayan region, Chawla et al.
(2018) highlighted the vulnerability of colluvial soils to landslides,
particularly in areas where agriculture and land use changes have
led to soil instability.

Distance to Lineament: Lineaments, which refer to fractures
or faults in the earth’s crust, are critical factors influencing
landslide susceptibility (Kumar and Anbalagan, 2016). These
features concentrate stress within the earth’s crust and create
pathways for groundwater movement, both of which can contribute
to slope instability (Mohammednur et al., 2024). Faults and fractures
weaken the surrounding rock mass, reducing its shear strength and
making it more susceptible to failure. The proximity of a slope
to these geological features increases the likelihood of landslides,
particularly in regions with active tectonic processes (Ali, 2024).
In the Debek region, areas closer to lineaments, specifically within
219.1 m, display a higher susceptibility (FR = 1.01). This is because
fault zones often create zones of weakness in the rock mass, which
can bemore easilymobilized during seismic events or heavy rainfall.
The role of lineaments in landslide occurrence is widely recognized
in geological literature, where it is understood that fractures can
act as pathways for water infiltration, further weakening the slope.
Similar trends are observed globally. In the Italian Alps, Schlögl et al.
(2025) noted that landslides frequently occur in regions near fault
lines, as the faults reduce the shear strength of the rock and provide
pathways for water to infiltrate. InNepal, Baral et al. (2021) observed
that lineaments often coincide with high landslide susceptibility,
particularly in tectonically active regions where faults increase
the likelihood of slope failure due to seismic activity and water
infiltration.

Land Use and Land Cover (LULC): The type of land use and
land cover (LULC) significantly influences landslide susceptibility
(Catani et al., 2013). Cultivated lands (FR = 1.48) and river beds
(FR = 1.11) exhibit moderate susceptibility, while barren lands
(FR = 0.19) are less susceptible to landslides. Vegetation, which
provides slope stabilization through root systems, significantly
reduces susceptibility (Wubalem et al., 2022). This finding supports
the conclusion that deforestation and land degradation are key
drivers of landslide susceptibility in many regions, particularly in
the Ethiopian Highlands. Studies have repeatedly shown that areas

with extensive agricultural land use or sparse vegetation are more
prone to landslides due to reduced root cohesion and increased
soil erosion (Mekonnen et al., 2022). Forest clearing for agriculture,
combined with the expansion of settlements, has likely led to
greater soil exposure and higher erosion rates (Chimidi et al., 2017).
These activities coupled with natural environmental factors such
as rainfall and slope gradient, create conditions that are highly
conducive to landslide occurrence (Intarawichian and Dasananda,
2011). This pattern is consistent with findings from other regions
where land degradation and deforestation exacerbate landslide
susceptibility. In the Philippines, Luzon et al. (2016) showed
that deforestation for agriculture significantly increases landslide
vulnerability, especially during the rainy season. Similarly, in the
Andes, Calderón-Guevara et al. (2022) highlighted that areas with
heavy agricultural land use, where vegetation is removed, experience
higher landslide susceptibility s due to reduced soil stability and
increased erosion. Table 2 presents the Frequency Ratio (FR),
Relative Frequency (RF), and Prediction Rate (PR) for each class of
the conditioning factors, providing insight into their influence on
landslide susceptibility.

The final Landslide Susceptibility Map (Figure 6) was derived
by integrating the weighted contributions of all causative factors
using the Frequency Ratio (FR) model. The study area was
classified into five distinct landslide susceptibility categories:
very low, low, moderate, high, and very high. The spatial
distribution of these categories highlights significant variations
in landslide susceptibility across the region. As depicted in
the susceptibility map, approximately 41.18% of the study area
falls under the “Very Low” susceptibility category, indicating
regions with minimal susceptibility of landslides, predominantly
located in relatively flat terrains and areas with stable soil
conditions. The “Low” susceptibility class accounts for 17.77%,
while “Moderate” susceptibility covers 18.52% of the region. These
areas are characterized by moderate slopes, relatively stable soil
structures, and less intense land-use activities. Conversely, the
“High” susceptibility zones, comprising 15.95% of the study area,
are primarily associated with steeper slopes, unstable geological
formations, and areas with significant land-use changes, such as
deforestation and agricultural expansion. Most notably, the “Very
High” susceptibility category covers 22.53% of the region, indicating
the most critical zones requiring immediate attention. These high-
susceptibility areas are primarily concentrated around Debek,
Meguat, Gafa, and Mingash, where steep slopes, proximity to water
bodies, and altered land-use patterns converge to increase landslide
potential.

The findings in the Debek region align with previous studies
conducted in other landslide-prone areas of Ethiopia. For instance,
a study by Ali et al. (2024) in the Amhara region revealed that
70% of landslides occurred on slopes steeper than 25°, which
is consistent with the current study, where high susceptibility
areas were predominantly associated with slopes exceeding 30°.
Similarly, Mohammednur et al. (2024) conducted an assessment
in the Sidama Zone and found that land-use changes, particularly
agricultural expansion on steep slopes, significantly increased
landslide susceptibility. In the current study, agricultural practices
near steep slopes and deforested regions in Debek further
corroborate these findings. Moreover, Shano et al. (2021) reported
that Ethiopian highlands with slopes greater than 30–35°, especially
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FIGURE 6
Landslide susceptibility map produced by FR model.

when combined with high rainfall and land-use changes, were
highly susceptible to landslides. The current results support
this observation, as regions with slopes exceeding 35°, such
as the Mingash and Kulbit Amba areas, exhibited the highest
susceptibility indices.

The findings from the Debek region also exhibit strong
similarities with landslide susceptibility studies conducted in other
mountainous regions globally. In the Andes Mountains of South
America, Zhou et al. (2020) applied a Frequency Ratio (FR) model
and identified slopes above 30° as the most susceptible to landslides,
closely mirroring the results of the current study. Likewise, Sharma
and Sandhu. (2024) reported similar patterns in the Himalayas of
Nepal, where landslide susceptibility was strongly influenced by
slope steepness, elevation, and land-use changes. Furthermore, a
study conducted by Kumar et al. (2023) in the Himalayas found
that mid-range altitudes (between 2,000 and 3,000 m) exhibited
the highest landslide susceptibility due to a combination of steep
slopes, intense rainfall, and rapid snowmelt. This observation
parallels the current study, where elevations ranging from 2,200
to 2,500 m showed the highest susceptibility indices, particularly
around Debek, Meguat, and Mingash. In Japan’s mountainous
regions, particularly in the Chugoku and Kinki areas, Chiba et al.
(2017) found that slopes steeper than 25° and elevations between
500 and 1,500 m were associated with high landslide frequencies.
While the elevation range in Debek is higher, the similarity in slope
thresholds underscores the universal role of steep terrain in landslide
susceptibility. The landslide susceptibility map generated through
the AHP model offers a critical tool for disaster susceptibility
management and land-use planning in Debek and other similar

regions. The identification of 22.53% of the area as “Very High”
susceptibility highlights the urgent need for targeted mitigation
strategies.

4.2 Landslide susceptibility mapping using
the AHP model

In the context of Debek, South Wollo, Ethiopia, landslide
susceptibility mapping serves as a crucial tool for understanding
the potential for landslide events and enabling the implementation
of appropriate disaster susceptibility reduction strategies. The
application of the Analytical Hierarchy Process (AHP) model
for landslide susceptibility assessment integrates multiple
environmental factors such as slope, aspect, elevation, proximity
to streams and springs, slope material, land use/land cover (LULC),
and distance to lineament that influence the occurrence and severity
of landslides in the region.Thismethod provides a robust framework
for generating spatial susceptibilitymaps, which can significantly aid
in land-use planning, hazard mitigation and adaptive management
strategies.

Slope is one of the most critical parameters influencing
landslide susceptibility. The AHP-based weighting system revealed
that areas with slopes greater than 45° are associated with the
highest susceptibility, receiving the greatest weight of 0.36. These
areas represent steep terrain, which is more prone to mass
movement due to gravitational forces. Conversely, areas with
slopes between 10° and 15° are classified as low-susceptibility
zones, receiving a weight of only 0.09. This weighting reflects
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the natural resistance of shallower slopes to landslides. The
model suggests a clear correlation between increasing slope
and heightened susceptibility, highlighting the importance of
managing steep terrains through engineering and vegetation-
based stabilization measures. The findings corroborate existing
literature emphasizing slope as a primary determinant in landslide
susceptibility assessment. Slope angles exceeding 45° exhibits
the highest susceptibility (weight 0.36), reflecting the strong
correlation between steep gradients and gravitational forces
that trigger mass movement (Juliev et al., 2019). These results
underscore the necessity of implementing engineered slope
stabilization techniques, such as retaining walls and terracing,
in steep terrains (Chen et al., 2017). Additionally, afforestation
and bioengineering methods have demonstrated effectiveness in
reducing surface erosion and enhancing soil cohesion in steep
landscapes (Catani et al., 2013).

Aspect is another significant factor that affects landslide
occurrence in mountainous regions (Mandal et al., 2018). The
susceptibility model demonstrated that southern-facing slopes (S)
are more prone to landslides compared to other aspects, with a
weight of 0.18. This may be due to increased solar exposure, which
can lead to greater weathering of rocks and soils, thereby reducing
their stability. On the other hand, flat and northern-facing slopes
exhibit relatively low susceptibility to landslides, as reflected by their
respectiveweights of 0.07 and 0.08.Thedifferential influence of slope
aspect underscores the importance of incorporating orientation-
based susceptibility assessments in landslide susceptibility mapping.
This pattern aligns with studies indicating that higher solar
radiation on southern slopes accelerates weathering and desiccation,
compromising slope stability (Hosseini et al., 2023). In contrast,
northern-facing slopes, which are typically shaded, exhibit lower
susceptibility due to reduced thermal stress and moisture loss
(weight 0.08). This finding suggests the integration of aspect-
related data into comprehensive susceptibility assessment models,
as advocated by Reichenbach et al. (2018).

Elevation is another influential variable in the AHP model.
The study revealed that areas situated at higher elevations (above
2,455 m) have a significantly higher susceptibility of landslides,
with the highest weightings attributed to elevations ranging from
2,743 to 3,160 m (0.32) and 2,455–2,743 m (0.29). These regions
often experience more intense weather events, including heavy
rainfall and snowmelt, which can trigger landslides.The relationship
between elevation and landslide susceptibility emphasizes the need
for increased monitoring and adaptive strategies in high-altitude
areas. These results reflect the heightened exposure of high-
altitude regions to intense precipitation, snowmelt, and freeze-thaw
cycles, all of which contribute to slope instability (Jaiswal and
Van Westen, 2013).Monitoring systems and early warning networks
in high-altitude zones are vital to mitigating the susceptibility
s associated with these environmental stressors (Gariano and
Guzzetti, 2016).

Proximity to Streams and Springs also emerged as a critical
factor in landslide susceptibility. The AHP model demonstrated
that areas closer to streams and springs are at greater susceptibility
of landslides, with the weight for the nearest zone (0–283.7 m)
being 0.45. This suggests that water plays a pivotal role in the
destabilization of slopes, either through saturation of soils or
by undermining the structural integrity of the terrain. Areas

far from water sources (beyond 1,622 m) are less susceptible,
which highlights the protective role of distance from water
bodies in reducing landslide susceptibility. Hydrological factors,
particularly proximity to streams and springs, significantly influence
landslide susceptibility, as indicated by the highest weighting
(0.45) for areas within 283.7 m of water sources. This observation
aligns with global studies demonstrating that water saturation
reduces soil shear strength, increasing the likelihood of slope
failure (Rahman et al., 2022). Structural interventions, such
as drainage channels and slope surface sealing, have proven
effective in managing hydrological impacts and reducing landslide
occurrence (Ayalew and Yamagishi, 2005).

The slope material factor also contributes significantly to the
overall susceptibility assessment. The AHP model revealed that
colluvial soils, which consist of loose, unconsolidated materials, are
highly susceptible to landslides, receiving a weight of 0.56. This
soil type is prone to erosion and mass movement, particularly
in areas where the slope is steep. In contrast, residual soils and
agglomeratic basalt are relatively more stable, as indicated by their
lower weights (0.06 and 0.13, respectively). The importance of slope
material is evident in the high susceptibility associated with colluvial
soils (weight 0.56), which are inherently unstable and prone to
erosion (Liu et al., 2021). These findings align with investigations
in other regions where colluvial deposits consistently emerge as
critical zones for landslide initiation (Tang et al., 2020).The relatively
stable nature of residual soils and agglomeratic basalt reinforces the
protective role of denser, consolidated materials (weight 0.06 and
0.13, respectively), emphasizing the need for detailed geotechnical
assessments in landslide-prone areas.

Proximity to Lineaments also contributes to landslide
susceptibility, though to a lesser extent. The AHP model assigns
a higher susceptibility (weight of 0.38) to areas within 219.1 m
of lineaments, which are indicative of geological fault zones.
These areas are more likely to experience ground movements,
including landslides, as a result of tectonic activity. The influence
of lineament proximity highlights the importance of incorporating
geological data into landslide susceptibility assessments, particularly
in seismically active regions. The proximity to lineaments (within
219.1 m, weight 0.38) reflects tectonic activity’s role in destabilizing
terrain (Pourghasemi et al., 2013). This finding highlights the value
of integrating remote sensing and geophysical surveys into landslide
mapping, as advocated by Guzzetti et al. (2012).

Land Use/Land Cover (LULC) is another critical factor
influencing landslide susceptibility in Debek. The AHP model
highlighted that cultivated lands, with a weight of 0.46, are the
most susceptible to landslides. This result aligns with previous
studies indicating that agricultural activities, especially those
involving intensive land cultivation and deforestation, contribute
significantly to soil instability and erosion. Conversely, areas covered
with vegetation (weight of 0.17) are less susceptible to landslides
due to the stabilizing effect of plant roots on the soil. The land
use data reinforces the notion that sustainable land management
practices, such as reforestation and controlled agricultural
expansion, can play a significant role in mitigating landslide
susceptibility s. This result aligns with research demonstrating
that intensive agricultural practices and deforestation exacerbate
soil erosion and slope destabilization (Ray and Lazzari, 2020).
Conversely, vegetated areas exhibit lower susceptibility (weight
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0.17), supporting the well-established role of plant roots in
enhancing slope stability (Sidle et al., 2006). Promoting sustainable
land management practices, such as agroforestry and controlled
deforestation, are crucial in reducing landslide susceptibility s
(Youssef et al., 2023). Table 3 presents the pairwise comparison
matrix, weightings, and consistency ratio (CR) for the factor classes,
which are essential for assessing the relative influence of each
conditioning factor in the landslide susceptibility analysis.

The final landslide susceptibility map generated from the
Analytical Hierarchy Process (AHP) model classified the study
area into five distinct susceptibility categories: very low, low,
moderate, high, and very high (Figure 7). The results revealed
that approximately 23.09% of the area falls under the very
low susceptibility category, while 26.34% is classified as low
susceptibility. Moderate susceptibility areas cover 17.77% of the
study area, whereas high susceptibility zones account for 13.74%.
Notably, the most concerning zones are the very high susceptibility
areas, which comprise 19.06% of the region. These findings
underscore the urgent need for targeted landslide susceptibility
management strategies, particularly in the very high susceptibility
zones, where the likelihood of landslides is greatest. To mitigate
the potential impacts of landslides in high-susceptibility zones,
proactive measures are essential. These include the implementation
of early warning systems, enforcement of land-use regulations,
and the adoption of soil stabilization techniques. Such strategies
can significantly reduce the vulnerability of communities and
infrastructure in susceptible areas. Furthermore, integrating
community-based awareness programs with technological solutions
can enhance resilience and preparedness against future landslide
events. The AHP-based landslide susceptibility mapping approach
employed in this study offers a robust and comprehensive framework
for assessing landslide susceptibility s in Debek, South Wollo,
Ethiopia. By integrating multiple environmental factors and
assigning appropriate weightings, the model provides valuable
insights into the spatial distribution of landslide susceptibility. The
analysis highlights the critical role of factors such as slope, aspect,
elevation, and proximity to water sources in determining landslide
susceptibility. Moreover, the findings emphasize the importance of
considering both natural and anthropogenic factors in landslide
susceptibility mapping.

The findings of this study align closely with previous
research conducted in Ethiopia and other regions with similar
geomorphological and climatic conditions. In Ethiopia, landslide
susceptibility mapping using the Frequency Ratio (FR) model
has been conducted in various regions, including the central and
southern highlands. For instance, studies in the Amhara region
(Ali et al., 2024) and the Sidama Zone (Ayele et al., 2025) employed
similar models and found that slope, elevation, and land use were
significant contributors to landslide occurrences. The steep slopes
of the Ethiopian highlands, particularly in areas like South Wollo,
were identified as primary determinants of landslide susceptibility,
consistent with the findings in the Debek region. Ali et al. (2024)
reported that 70% of landslides in the Amhara region occurred
on slopes steeper than 25°, similar to the Debek region, where
slopes greater than 45° exhibited very low Frequency Ratios (0.14).
Furthermore, the results of these studies indicated that areas with
slopes greater than 30–35° were highly susceptible to landslides,
especially when coupled with high rainfall and land-use changes

such as deforestation (Ali, 2024). This consistency in findings across
Ethiopia suggests that steep terrain and intense rainfall patterns
are universal susceptibility factors for landslide susceptibility
in Ethiopian highland regions. While the general findings are
consistent, some variations were noted regarding the impact of land-
use changes. For example, Mekonnen et al. (2022) highlighted that
agricultural activities on steep slopes significantly contributed to
landslide susceptibility, an aspect that warrants further exploration
in the Debek region.

Internationally, the FR model has been applied in regions
with comparable geomorphological and climatic conditions,
further contextualizing the findings in the Debek region. For
example, studies in the Andes Mountains in South America
(Valdes Carrera et al., 2023) and the Himalayas in Nepal
(Mandal et al., 2018) used the same method to assess landslide
susceptibility and found similar relationships between slope and
landslide occurrences. In the Andes, steep slopes above 30° were
identified as the most prone to landslides, closely matching the
results observed in Ethiopia (Calderón-Guevara et al., 2022). In
the Himalayas, landslide susceptibility was strongly influenced
by elevation, with mid-range altitudes being most susceptible
due to a combination of steep terrain, increased rainfall, and
rapid snowmelt (Batar and Watanabe, 2021). This parallels the
findings in the Debek region, where elevation zones between
2,208 and 2,455 m exhibited the highest landslide susceptibility.
Similarly, in the mountainous regions of Japan, particularly in
the Chugoku and Kinki areas, landslide susceptibility studies also
emphasize the role of slope and elevation (Kohno and Higuchi,
2023). Luzon et al. (2016) found that areas with slopes greater
than 25° and elevations between 500 and 1,500 m had a higher
frequency of landslides, reflecting the patterns observed in Ethiopia’s
highlands. This comparative analysis suggests that the landslide
susceptibility in the Debek region is largely influenced by common
physical and climatic factors consistent across several global
regions with mountainous terrains (Kohno and Higuchi, 2023).
In conclusion, the AHP-based landslide susceptibility mapping
approach provides a highly effective framework for assessing
landslide susceptibility s in Debek, South Wollo, Ethiopia. The
results emphasize the critical role of environmental factors such
as slope, elevation, and land use in determining susceptibility.
Furthermore, the consistency of findings with both regional and
international studies highlights the robustness of the model in
identifying high-susceptibility areas. To enhance the accuracy and
reliability of future landslide susceptibility predictions, further
studies should incorporate dynamic data, such as rainfall intensity,
seismic activity, and land-use changes. Such advancements would
contribute to more effective disaster susceptibility management and
sustainable land-use planning in landslide-prone areas, ultimately
safeguarding lives, livelihoods, and infrastructure in Ethiopia’s
highland regions.

4.3 Validation of landslide susceptibility
maps

Validating landslide susceptibility maps is crucial for assessing
the reliability of the models used to predict landslide-prone areas.
In this study, two widely recognized models—Frequency Ratio
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TABLE 3 Pair wise comparison matrix, weightings, and CR of factor classes.

Slope [1] [2] [3] [4] [5] Weight

[1] 10º–15° 1 1/2 1/2 1/3 1/3 0.09

[2] 15° −25° 2 1 1/2 1/2 1/3 0.12

[3] 25°–35° 2 2 1 1/2 1/2 0.18

[4] 35° −45° 3 2 2 1 1/2 0.25

[5] >45° 3 3 2 2 1 0.36

CR = 0.025

Aspect [1] [2] [3] [4] [5] [6] [7] [8] [9] Weight

[1] Flat 1 1 1 1/2 1/3 1/3 1/3 1/2 1 0.07

[2] N 1 1 1 1/2 1/2 1/2 1/2 1/2 1 0.08

[3] NE 1 1 1 1/2 1/2 1/2 1/2 1 1 0.08

[4] E 2 2 2 1 1/2 1/2 1 1 1 0.11

[5] SE 3 2 2 2 1 1 1 2 2 0.16

[6] S 3 2 2 2 1 1 2 2 2 0.18

[7] SW 3 2 2 1 1 1/2 1 1 1 0.12

[8] W 2 2 1 1 1/2 1/2 1 1 1 0.1

[9] NW 1 1 1 1 1/2 1/2 1 1 1 0.1

CR = 0.016

Elevation [1] [2] [3] [4] [5] Weight

[1] 1,617–1989 1 1/2 1/2 1/3 1/3 0.09

[2] 1,989–2,208 2 1 1/2 1/2 1/3 0.12

[3] 2,208–2,455 2 2 1 1/2 1/2 0.18

[4] 2,455–2,743 3 2 2 1 1 0.29

[5] 2,743–3,160 3 3 2 1 1 0.32

CR = 0.017

D. to stream [1] [2] [3] [4] [5] Weight

[1] 0–283.7 1 2 3 5 7 0.45

[2] 283.7–648.8 1/2 1 2 3 5 0.26

[3] 648.8–1,058.6 1/3 1/2 1 2 3 0.15

[4] 1,058.6–1,622.1 1/5 1/3 1/2 1 2 0.09

[5] 1,622.1–2,996.2 1/7 1/5 1/3 1/2 1 0.05

CR = 0.006

D. to Spring [1] [2] [3] [4] [5] Weight

[1] 0–1,073.1 1 3 5 6 7 0.52

(Continued on the following page)
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TABLE 3 (Continued) Pair wise comparison matrix, weightings, and CR of factor classes.

D. to Spring [1] [2] [3] [4] [5] Weight

[2] 1,073.1–2,116.4 1/3 1 3 3 4 0.23

[3] 2,116.4–3,457.8 1/5 1/3 1 2 3 0.12

[4] 3,457.8–5,067.5 1/6 1/3 1/2 1 2 0.08

[5] 5,067.5–7,601.2 1/7 1/4 1/3 1/2 1 0.05

CR = 0.029

Slope Material [1] [2] [3] [4] Weight

[1] Aglomeratic
Basalt

1 1/5 1/2 3 0.13

[2] Colluvial Soil 5 1 3 6 0.56

[3] Aphanetic Basalt 2 1/3 1 5 0.25

[4] Residual Soil 1/3 1/6 1/5 1 0.06

CR =0.041

LULC [1] [2] [3] [4] (5) Weight

[1] Cultivation Land 1 6 3 5 3 0.46

[2] Barren Land 1/6 1 ¼ 1/3 1/4 0.05

[3] Vegetation 1/3 4 1 3 1/2 0.17

[4] Built up 1/5 3 1/3 1 1/3 0.09

[5] River bed 1/3 4 2 3 1 0.23

CR = 0.047

D. Lineament [1] [2] [3] [4] [5] Weight

[1] 0–219.1 1 2 3 3 3 0.38

[2] 219.1–458.2 1/2 1 2 3 3 0.26

[3] 458.2–766.9 1/3 1/2 1 2 3 0.17

[4] 766.9–1,245.0 1/3 1/3 ½ 1 2 0.11

[5] 1,245.0–2,539.8 1/3 1/3 1/3 1/2 1 0.08

CR = 0.039

(FR) and Analytical Hierarchy Process (AHP) were employed
to map landslide susceptibility in Debek, South Wollo, Ethiopia.
Validation is necessary to determine how well these models
predict landslide occurrences and their spatial distribution. Several
robust techniques were applied to validate the generated maps,
including the Relative Landslide Density Index (R Index) and
the Receiver Operating Characteristics (ROC) curve analysis.
These methods are commonly used in landslide susceptibility
studies and provide a quantifiable measure of model performance.
Both the R Index and ROC curve analysis assess the models’

predictive abilities and their effectiveness in correctly identifying
landslide-prone regions.

4.3.1 Relative landslide density index (R Index)
The Relative Landslide Density Index (R Index) is a key

validation method used to assess how well landslide occurrences
align with the generated susceptibility classes (Figure 8). This
index indicates the distribution of landslide points across different
susceptibility classes and helps to measure the model’s effectiveness
in identifying areas that are more likely to experience landslides.
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FIGURE 7
Landslide susceptibility map produced by AHP.

The formula for the R Index compares the percentage of landslide
occurrences in each susceptibility class with the area of that class,
providing a relative measure of landslide density in each category.
In the case of Debek, the R Index revealed an increasing trend
in landslide occurrence from the very low susceptibility classes
to the very high susceptibility classes (Figure 8). This pattern
underscores the validity of both the Frequency Ratio and Analytical
Hierarchy Process models. As expected, the high and very high
susceptibility areas exhibited a significantly higher concentration of
landslides, suggesting that themodels effectively prioritize landslide-
prone areas. The R Index value demonstrates that the maps are
accurately reflecting the spatial relationship between susceptibility
and landslide occurrence.This reinforces the reliability of themodels
in predicting landslide hotspots and highlights the importance
of these tools in disaster susceptibility management and land-use
planning in vulnerable regions.

4.3.2 Receiver operating characteristics (ROC)
curve

The Receiver Operating Characteristics (ROC) curve is another
critical validation tool used to assess the predictive accuracy of
landslide susceptibility models. The ROC curve provides a graphical
representation of a model’s ability to classify landslide-prone areas
correctly. The performance of the model is quantified by calculating
the Area Under the Curve (AUC), with values ranging from 0 to
1. An AUC value above 0.5 indicates that the model has predictive
power, while values below 0.5 suggest that the model’s predictions
are unreliable. AUC values closer to 1 reflect excellent model
performance. In this study, both the Frequency Ratio (FR) and
Analytical Hierarchy Process (AHP) models were evaluated using
the ROC curve.TheAUCvalues for the success rate, whichmeasures

the model’s accuracy in fitting with historical landslide data, were
0.828 for the FR model (Figure 9a) and 0.826 for the AHP model
(Figure 9b). These values indicate that both models performed well,
with the FR model showing a marginal advantage in terms of fitting
the historical landslide data. The success rate AUC values above
0.8 suggest that both models have strong predictive capabilities and
are highly effective in identifying landslide-prone areas based on
past occurrences. Furthermore, the prediction rate, which measures
the model’s ability to predict future landslide occurrences, was also
evaluated using the validation landslide dataset. For the prediction
rate, the AUC values were 0.835 for the FR model (Figure 10a)
and 0.832 for the AHP model (Figure 10b). Similar to the success
rate, the FR model slightly outperformed the AHP model in terms
of predictive accuracy. However, both models demonstrated strong
performance,withAUCvalueswell above the threshold of 0.8, which
is considered indicative of excellent predictive power. These results
further validate the effectiveness of both the FR and AHP models in
forecasting landslide-prone areas.

4.4 Comparison of FR and AHP models

The comparative analysis of the Frequency Ratio (FR) and
Analytical Hierarchy Process (AHP) models revealed that the FR
model demonstrated superior predictive performance, reflected in
its higher success and prediction rates. This advantage aligns with
the FR model’s data-driven nature, which objectively quantifies
landslide susceptibility based on historical occurrences. In contrast,
the AHP model, while slightly less precise, provides valuable
flexibility through expert-driven pairwise comparisons, enabling the
integration of domain knowledge into susceptibility assessments.
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FIGURE 8
R-index for the landslide susceptibility classes.

FIGURE 9
AUC (success rate) of the landside susceptibility maps. (a) FR model. (b) AHP model.

Despite the marginal performance edge of the FR model, both
approaches proved highly effective in identifying landslide-prone
areas. The strengths of each suggest that a hybrid modeling
approach, integrating the statistical robustness of FR with the
structured decision-making framework of AHP, could further
enhance predictive accuracy and resilience in landslide susceptibility
assessments. This integrated approach would allow for better
calibration across diverse terrains while retaining interpretability
and adaptability for regions with limited geospatial data. In the
Debek region, slope material and proximity to springs emerged
as the most significant conditioning factors, underscoring the
role of lithological weaknesses and groundwater dynamics in

slope instability. These findings align with previous studies
in highland environments, where subsurface hydrology and
geological composition often drive landslide occurrences. However,
susceptibility factors may vary across regions, influenced by
localized conditions such as seismic activity, deforestation, or
seasonal precipitation extremes. This highlights the importance
of site-specific recalibration when applying these models to
other areas.

The increasing exploration of hybrid approaches in geospatial
modeling further emphasizes the potential of combining FR
and AHP with machine learning (ML) techniques. Advanced
classifiers such as Random Forest and Support Vector Machines
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FIGURE 10
AUC (Prediction rate) of the landside susceptibility maps. (a) FR model. (b) AHP model.

offer high classification accuracy but typically require extensive
training datasets and computational resources. By integrating
FR and AHP with ML-based models, future studies could
refine susceptibility mapping while maintaining interpretability
in data-scarce environments. Recognizing the potential of
hybrid methodologies, future research should explore ensemble
modeling techniques, sensitivity analyses, and region-specific
calibrations to enhance the robustness and applicability of
landslide susceptibility assessments. Additionally, advancements
in remote sensing technologies, such as high-resolution LiDAR and
Synthetic Aperture Radar (SAR), can further improve landslide
inventories by enabling real-time terrain monitoring. Ultimately,
the landslide susceptibility maps generated through this study
provide valuable resources for disaster susceptibility reduction,
land-use planning, and infrastructure development in Ethiopia.
By identifying high-susceptibility zones, these maps empower
decision-makers to prioritize mitigation measures, such as slope
stabilization, early warning systems, and sustainable land-use
practices. Collaboration with regional authorities and disaster
management agencies is underway to integrate these findings
into national hazard management frameworks, ensuring that
both existing and future developments account for landslide
susceptibility.

4.5 Implications for landslide susceptibility
management and future research

The successful validation of both the Frequency Ratio (FR)
and Analytical Hierarchy Process (AHP) models underscores
their significant potential for advancing disaster susceptibility
management, land-use planning, and hazard mitigation in
mountainous regions like Debek. The generated landslide
susceptibility maps offer critical insights that can guide decision-
making in land development, infrastructure planning, and
environmental conservation. By identifying high-susceptibility
areas, policymakers and stakeholders can implement targeted

susceptibility mitigation strategies, including early warning
systems, land-use regulations, and engineering interventions
aimed at reducing the socio-economic and environmental
impacts of landslides. A key implication of this study is the
necessity of integrating landslide susceptibility assessments into
comprehensive susceptibility management frameworks. Proactive
measures can significantly enhance community resilience and
reduce the adverse effects of landslides. Slope stabilization
techniques, such as vetiver grass planting, terracing, and check
dams, can reinforce vulnerable slopes and minimize soil erosion.
Simultaneously, reforestation efforts using native vegetation
can restore degraded landscapes, improve soil stability, and
reduce surface runoff. Moreover, land-use zoning policies should
restrict agricultural expansion and construction activities in high-
susceptibility zones to prevent further land degradation and
exposure to hazards.

The establishment of community-based early warning systems
is equally crucial, enabling timely alerts during heavy rainfall events
and facilitating rapid evacuation. Infrastructure planning should
also incorporate landslide susceptibility considerations, ensuring
the design and construction of roads, bridges, and buildings with
proper drainage systems, soil retention structures, and resilient
materials. Such integrated approaches can significantly mitigate
landslide susceptibility s while promoting sustainable development
in vulnerable regions. While the current models demonstrate
strong predictive capabilities, future research should focus on
enhancing their accuracy by integrating additional dynamic
factors known to influence landslide occurrence. These include
rainfall intensity, soil moisture, and seismic activity, which can
provide more comprehensive susceptibility assessments. Moreover,
the incorporation of detailed temporal datasets would enable
the development of models that are responsive to changing
environmental conditions, improving their utility for real-time
susceptibility management. Long-term monitoring through
remote sensing technologies and field-based assessments would
further strengthen the understanding of landslide susceptibility
evolution over time. Additionally, evaluating the impact of land-use
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changes, such as urban expansion and agricultural intensification,
could refine susceptibility predictions and inform adaptive
land management strategies. Collaboration between researchers,
policymakers, and local communities will be essential in ensuring
the successful implementation of these approaches.

5 Conclusion and recommendations

5.1 Conclusion

This study demonstrates the effectiveness of geospatial modeling
in assessing landslide susceptibility inDebek, SouthWollo, Ethiopia,
by comparing the Frequency Ratio (FR) and Analytical Hierarchy
Process (AHP) models. Through the integration of topographical,
geological, hydrological, and anthropogenic factors, the analysis
identified slope material and proximity to springs as the most
significant contributors to landslide susceptibility. The FR model
exhibited slightly superior performance, achieving an ROC success
rate of 0.828 and a prediction rate of 0.835, compared to the AHP
model’s success and prediction rates of 0.826 and 0.832, respectively.
The final Landslide Susceptibility Map revealed a spatially diverse
distribution of landslide susceptibility, with 22.53% of the study area
classified under the “Very High” susceptibility category and 41.18%
falling within the “Very Low” susceptibility category. These findings
emphasize the urgent need for targetedmitigation strategies in high-
susceptibility zones, including slope stabilization, reforestation,
and land-use zoning to limit human activity in vulnerable areas.
Moreover, the study underscores the critical role of GIS-based
approaches in natural hazard management, offering policymakers
and stakeholders valuable insights for informed decision-making.
The integration of susceptibility maps into land-use planning,
early warning systems, and infrastructure development can
significantly reduce landslide hazards. Future research should focus
on incorporating real-time monitoring systems and climate change
projections to further refine susceptibility assessments and enhance
geosusceptibilitymitigation efforts. By advancing the understanding
of landslide dynamics in the Ethiopian highlands, this study
reinforces the pivotal role of geospatial modeling in strengthening
disaster resilience and promoting sustainable development in
landslide-prone regions.

5.2 Recommendations

1. Enhanced Data Integration: Future studies should integrate
additional conditioning and triggering factors, such as rainfall
intensity, soil moisture content, and seismic activity, to
improve the accuracy and predictive power of landslide
susceptibility models.

2. Monitoring and Early Warning Systems: Implementing real-
time monitoring systems and early warning mechanisms
in high-susceptibility areas can help mitigate landslide
susceptibility s and reduce the impact on vulnerable
communities.

3. Vegetative and Engineering Stabilization: Promote the use
of vegetation-based stabilization techniques and engineering
interventions (e.g., retaining walls, terracing) in steep and

high-susceptibility areas to reduce slope instability and
soil erosion.

4. Community Engagement and Education: Engage local
communities in landslide susceptibility reduction through
awareness campaigns, capacity building, and participatory
land-use planning initiatives.

5. Policy and Land-Use Planning: Incorporate landslide
susceptibility maps into regional and national land-
use planning frameworks, ensuring that infrastructure
development in high-susceptibility areas is minimized or
accompanied by appropriate mitigation strategies.

6. Interdisciplinary Collaboration: Foster collaboration between
geologists, hydrologists, engineers, and policymakers to
develop integrated, multidisciplinary approaches for landslide
susceptibility assessment and mitigation.

7. Long-Term Research and Modeling: Encourage long-term
studies and continuous refinement of FR and AHP models,
leveraging advancements in remote sensing,machine learning,
and big data analytics to enhance the reliability of landslide
susceptibility assessments.

By adopting these recommendations, stakeholders can reduce
the adverse impacts of landslides, protect communities and
infrastructure, and promote sustainable land management practices
in landslide-prone regions such as Debek, South Wollo. By adopting
these recommendations, stakeholders can reduce the adverse
impacts of landslides, protect communities and infrastructure, and
promote sustainable land management practices in landslide-prone
regions such as Debek, South Wollo.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

AA: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Supervision, Validation, Writing–original draft, Writing–review
and editing. DT: Conceptualization, Investigation, Methodology,
Writing–original draft. TS: Data curation, Investigation,
Supervision, Visualization, Writing–original draft. BM:
Conceptualization, Formal Analysis, Investigation, Methodology,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. Mekdela
Amba University is acknowledged for providing the complete
funding for this research.

Frontiers in Earth Science 24 frontiersin.org

https://doi.org/10.3389/feart.2025.1557860
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ali et al. 10.3389/feart.2025.1557860

Acknowledgments

We would like to thank Mekdela Amba University for full
funding of finance required for this research. We sincerely thank
the residents who graciously hosted us during our field work.
Their warm hospitality and support were invaluable and greatly
appreciated.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abay, A., Barbieri, G., andWoldearegay, K. (2019). GIS-Based landslide susceptibility
evaluation using analytical hierarchy process (AHP) approach: the case of tarmaber
district, Ethiopia. J. Sci 11, 14–36. doi:10.4314/mejs.v11i1.2

Ali, A. (2024). Landslide susceptibility mapping using modified frequancy ratio
method in Correb area, South Wollo, North-Western Ethiopia. Discov. Geosci. 2 (1),
45. doi:10.1007/s44288-024-00053-x

Ali, Y., Gugsa, T. H., and Raghuvanshi, T. K. (2024). GIS-based statistical analysis for
landslide susceptibility evaluation and zonation mapping: a case from Blue Nile Gorge,
Gohatsion-Dejen road corridor, Central Ethiopia. Environ. Challenges 16, 100968.
doi:10.1016/j.envc.2024.100968

Althuwaynee, O. F., Pradhan, B., and Lee, S. (2016). A novel integrated
model for assessing landslide susceptibility mapping using CHAID and
AHP pairwise comparison. Int. J. of Remo. Sens 37 (5), 1190–1209.
doi:10.1080/01431161.2016.1148282

Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in
mountainous terrain. Eng. Geol. 32 (4), 269–277. doi:10.1016/0013-7952(92)90053-2

Ayalew, L., andYamagishi, H. (2005).The application ofGIS-based logistic regression
for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.
Geomorphology 65 (1-2), 15–31. doi:10.1016/j.geomorph.2004.06.010

Ayele, N. A., Engda, E. M., Terefe, T. T., Leta, E., Reda, T. M., and Jothimani, M.
(2025). Geospatial analysis of landslide susceptibility and safe relocation zones: insights
from recent disasters in gofa zone, southern Ethiopia. Quat. Sci. Adv. 17, 100272.
doi:10.1016/j.qsa.2025.100272

Baral, N., Karna, A. K., and Gautam, S. (2021). Landslide susceptibility assessment
using modified frequency ratio model in Kaski District,Nepal. Int.J Eng. Manag.Res 11
(1), 167–177. doi:10.31033/ijemr.11.1.23

Batar, A. K., and Watanabe, T. (2021). Landslide susceptibility mapping and
assessment using geospatial platforms and weights of evidence (WoE) method in the
Indian Himalayan Region: recent developments, gaps, and future directions. ISPRS Int.
J. Geo-Information 10 (3), 114. doi:10.3390/ijgi10030114

Berhane, G., and Tadesse, K. (2021). Landslide susceptibility zonation mapping
using statistical index and landslide susceptibility analysis methods: a case study from
Gindeberet district, Oromia Regional State, Central Ethiopia. J. Afr. earth Sci. 180,
104240. doi:10.1016/j.jafrearsci.2021.104240

Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes.
Geotechnique 5 (1), 7–17. doi:10.1680/geot.1955.5.1.7

Calderón-Guevara, W., Sánchez-Silva, M., Nitescu, B., and Villarraga, D. F. (2022).
Comparative review of data-driven landslide susceptibility models: case study in
the Eastern Andes mountain range of Colombia. Nat. Hazards 113 (2), 1105–1132.
doi:10.1007/s11069-022-05339-2

Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V. (2013). Landslide susceptibility
estimation by random forests technique: sensitivity and scaling issues. Nat. Hazards
Earth Syst. Sci. 13, 2815–2831. doi:10.5194/nhess-13-2815-2013

Cemiloglu, A., Zhu, L., Mohammednour, A. B., Azarafza, M., and Nanehkaran, Y.
A. (2023). Landslide susceptibility assessment for Maragheh County, Iran, using the
logistic regression algorithm. Land 12 (7), 1397. doi:10.3390/land12071397

Chawla,A., Chawla, S., Pasupuleti, S., Rao,A.C. S., Sarkar, K., andDwivedi, R. (2018).
Landslide susceptibilitymapping in darjeelingHimalayas, India.Adv. Civ. Eng. 2018 (1),
6416492. doi:10.1155/2018/6416492

Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., et al. (2017).
Landslide susceptibility modelling using GIS-based machine learning techniques

for Chongren County, Jiangxi Province. China. Sci. Total Environ. 626, 1121–1135.
doi:10.1016/j.scitotenv.2018.01.124

Chiba, Y., Shaw, R., and Banba, M. (2017). Japan’s experiences of catastrophic
mountain disasters in wakayama. Land Use Manag. Disaster Risk Reduct. Pract. Cases a
Glob. Perspective, 215–235. doi:10.1007/978-4-431-56442-3_12

Chimidi, G., Raghuvanshi, T. K., and Suryabhagavan, K. V. (2017). Landslide
hazard evaluation and zonation in and around Gimbi town, western Ethiopia - a
GIS-based statistical approach. Appl. Geomat. 9, 219–236. doi:10.1007/s12518-017-
0195-x

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and Paudyal,
P. (2008). Predictive modelling of rainfall-induced landslide hazard in the Lesser
Himalaya of Nepal based on weights-of-evidence. Geomorphology 102 (3-4), 496–510.
doi:10.1016/j.geomorph.2008.05.041

Dai, F. C., and Lee, C. F. (2002). Landslide characteristics and slope instability
modeling using GIS, Lantau Island, Hong Kong. Geomorph 42, 213–228.
doi:10.1016/s0169-555x(01)00087-3

El Jazouli, A., Barakat, A., andKhellouk, R. (2019).GIS-multicriteria evaluationusing
AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). J.
geoenvi. Disa 6 (3), 3–12. doi:10.1186/s40677-019-0119-7

Food and Agriculture Organization (FAO) (1986). Soil map of the world: revised
legend. Rome, Italy: FAO. Available online at: https://www.fao.org/soils-portal/
(Accessed March 10, 2023).

Gariano, S. L., andGuzzetti, F. (2016). Landslides in a changing climate. Earth-science
Rev. 162, 227–252. doi:10.1016/j.earscirev.2016.08.011

Gautam, P., Kubota, T., Sapkota, L. M., and Shinohara, Y. (2021). Landslide
susceptibility mapping with GIS in high mountain area of Nepal: a comparison
of four methods. Environ. Earth Sci. 80 (9), 359. doi:10.1007/s12665-021-
09650-2

Geological Survey of Ethiopia (2010). Lithological data of Ethiopia. Geological Survey
of Ethiopia: Addis Ababa, Ethiopia. Available online at: https://www.mom.gov.et
(Accessed November 16, 2023).

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang,
K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science
Rev. 112 (1-2), 42–66. doi:10.1016/j.earscirev.2012.02.001

He, Q., Jiang, Z., Wang, M., and Liu, K. (2021). Landslide and wildfire susceptibility
assessment in Southeast Asia using ensemble machine learning methods. Remote Sens.
13 (8), 1572. doi:10.3390/rs13081572

Hosseini, K., Reindl, L., Raffl, L., Wiedemann, W., and Holst, C. (2023). 3D landslide
monitoring in high spatial resolution by feature tracking and histogram analyses using
laser scanners. Remote Sens. 16 (1), 138. doi:10.3390/rs16010138

Intarawichian, N., and Dasananda, S. (2011). Frequency ratio model based landslide
susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Earth. Sci.
64, 2271–2285. doi:10.1007/s12665-011-1055-3

Jaiswal, P., and van Westen, C. J. (2013). Use of quantitative landslide hazard and
risk information for local disaster risk reduction along a transportation corridor: a case
study from Nilgiri district, India. Nat. hazards 65, 887–913. doi:10.1007/s11069-012-
0404-1

Juliev, M., Mergili, M., Mondal, I., Nurtaev, B., Pulatov, A., and Hübl, J.
(2019). Comparative analysis of statistical methods for landslide susceptibility
mapping in the Bostanlik District, Uzbekistan. Sci. total Environ. 653, 801–814.
doi:10.1016/j.scitotenv.2018.10.431

Frontiers in Earth Science 25 frontiersin.org

https://doi.org/10.3389/feart.2025.1557860
https://doi.org/10.4314/mejs.v11i1.2
https://doi.org/10.1007/s44288-024-00053-x
https://doi.org/10.1016/j.envc.2024.100968
https://doi.org/10.1080/01431161.2016.1148282
https://doi.org/10.1016/0013-7952(92)90053-2
https://doi.org/10.1016/j.geomorph.2004.06.010
https://doi.org/10.1016/j.qsa.2025.100272
https://doi.org/10.31033/ijemr.11.1.23
https://doi.org/10.3390/ijgi10030114
https://doi.org/10.1016/j.jafrearsci.2021.104240
https://doi.org/10.1680/geot.1955.5.1.7
https://doi.org/10.1007/s11069-022-05339-2
https://doi.org/10.5194/nhess-13-2815-2013
https://doi.org/10.3390/land12071397
https://doi.org/10.1155/2018/6416492
https://doi.org/10.1016/j.scitotenv.2018.01.124
https://doi.org/10.1007/978-4-431-56442-3_12
https://doi.org/10.1007/s12518-017-0195-x
https://doi.org/10.1007/s12518-017-0195-x
https://doi.org/10.1016/j.geomorph.2008.05.041
https://doi.org/10.1016/s0169-555x(01)00087-3
https://doi.org/10.1186/s40677-019-0119-7
https://www.fao.org/soils-portal/
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1007/s12665-021-09650-2
https://doi.org/10.1007/s12665-021-09650-2
https://www.mom.gov.et
https://doi.org/10.1016/j.earscirev.2012.02.001
https://doi.org/10.3390/rs13081572
https://doi.org/10.3390/rs16010138
https://doi.org/10.1007/s12665-011-1055-3
https://doi.org/10.1007/s11069-012-0404-1
https://doi.org/10.1007/s11069-012-0404-1
https://doi.org/10.1016/j.scitotenv.2018.10.431
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ali et al. 10.3389/feart.2025.1557860

Kohno, M., and Higuchi, Y. (2023). Landslide susceptibility assessment in the
Japanese archipelago based on a landslide distribution map. ISPRS Int. J. Geo-
Information 12 (2), 37. doi:10.3390/ijgi12020037

Kumar, C., Walton, G., Santi, P., and Luza, C. (2023). An ensemble approach of
feature selection and machine learning models for regional landslide susceptibility
mapping in the arid mountainous terrain of Southern Peru. Remote Sens. 15 (5), 1376.
doi:10.3390/rs15051376

Kumar, R., and Anbalagan, R. (2015). Landslide susceptibility zonation in part of
Tehri reservoir region using frequency ratio, fuzzy logic and GIS. Sci 124 (2), 431–448.
doi:10.1007/s12040-015-0536-2

Kumar, R., and Anbalagan, R. (2016). Landslide susceptibility mapping using
analytical hierarchy process (AHP) in tehri reservoir rim region, uttarakhand. J. Geol.
Soc. india 87, 271–286. doi:10.1007/s12594-016-0395-8

Leonard, J. S., Whipple, K. X., and Heimsath, A. M. (2023). Isolating climatic,
tectonic, and lithologic controls on mountain landscape evolution. Sci. Adv. 9 (3),
eadd8915. doi:10.1126/sciadv.add8915

Leonardi, G., Palamara, R., Manti, F., and Tufano, A. (2022). GIS-multicriteria
analysis using AHP to evaluate the landslide susceptibility in road lifelines. Appl. Sci.
12 (4707), 2–19. doi:10.3390/app12094707

Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., and Wu, Y. (2016). A modified frequency
ratio method for landslide susceptibility assessment: landslide. Landslides 14 (2),
727–741. doi:10.1007/s10346-016-0771-x

Liu, Y., Deng, Z., and Wang, X. (2021). The effects of rainfall, soil type and slope on
the processes and mechanisms of rainfall-induced shallow landslides.Appl. Sci. 11 (24),
11652. doi:10.3390/app112411652

Luzon, P. K., Montalbo, K., Galang, J., Sabado, J. M., Escape, C. M., Felix, R., et al.
(2016). Hazard mapping related to structurally controlled landslides in Southern Leyte,
Philippines. Nat. Hazards Earth Syst. Sci. 16 (3), 875–883. doi:10.5194/nhess-16-875-
2016

Malet, J. P., Maquaire, O., and Calais, E. (2002). The use of Global Positioning System
techniques for the continuous monitoring of landslides: application to the Super-
Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43 (1-2), 33–54.
doi:10.1016/s0169-555x(01)00098-8

Mandal, S. P., Chakrabarty, A., and Maity, P. (2018). Comparative evaluation of
information value and frequency ratio in landslide susceptibility analysis along national
highways of Sikkim Himalaya. Spat. Inf. Res. 26, 127–141. doi:10.1007/s41324-017-
0160-0

Mao, Y., Li, Y., Teng, F., Sabonchi, A. K., Azarafza, M., and Zhang, M. (2024).
Utilizing hybrid machine learning and soft computing techniques for landslide
susceptibility mapping in a Drainage Basin. Water 16 (3), 380. doi:10.3390/
w16030380

Mekonnen, A. A., Raghuvanshi, T. K., Suryabhagavan, K. V., and Kassawmar, T.
(2022). GIS-based landslide susceptibility zonation and risk assessment in complex
landscape: a case of Beshilo watershed, northern Ethiopia. Environ. Challenges 8,
100586. doi:10.1016/j.envc.2022.100586

Mengstie, L., Nebere, A., Jothimani, M., and Taye, B. (2024). Landslide susceptibility
assessment in Addi Arkay, Ethiopia usingGIS, remote sensing, andAHP.Quat. Sci. Adv.
15, 100217. doi:10.1016/j.qsa.2024.100217

Mewa, G., andMengistu, F. (2022). Assessment of landslide susceptibility in Ethiopia:
distributions, causes, and impacts.

Mohammady, M., Pourghasemi, H. R., and Pradhan, B. (2012). Landslide
susceptibility mapping at Golestan Province, Iran: a comparison between frequency
ratio,Dempster–Shafer, andweights-of-evidencemodels. J. AsianEarth Sci 60, 221–236.
doi:10.1016/j.jseaes.2012.10.005

Mohammednur, R. S., Deribew, K. T., Moisa, M. B., and Gemeda, D. O. (2024).
Landslide susceptibility zonation mapping using geospatial technologies and multi
criteria evaluation techniques in the upperDidessa sub-basin, Southwest Ethiopia.Geol.
Ecol. Landscapes, 1–15. doi:10.1080/24749508.2024.2395205

Montgomery, D. R., and Dietrich, W. E. (1994). A physically based model for the
topographic control on shallow landsliding. Water Resour. Res. 30 (4), 1153–1171.
doi:10.1029/93wr02979

Nanehkaran, Y. A., Chen, B., Cemiloglu, A., Chen, J., Anwar, S., Azarafza, M., et al.
(2023). Riverside landslide susceptibility overview: leveraging artificial neural networks
and machine learning in accordance with the United Nations (UN) sustainable
development goals. Water 15 (15), 2707. doi:10.3390/w15152707

Nanehkaran, Y. A., Mao, Y., Azarafza, M., Kockar, M. K., and Zhu, H. H.
(2021). Fuzzy-based multiple decision method for landslide susceptibility and hazard
assessment: a case study of Tabriz, Iran. Geomechanics Eng. 24 (5), 407–418.
doi:10.12989/gae.2021.24.5.407

Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., et al.
(2019). Landslide susceptibility mapping using different GIS-based bivariate models.
Water 11 (1402), 1402–1422. doi:10.3390/w11071402

Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S. (2013). Landslide hazard assessment:
recent trends and techniques. SpringerPlus 2 (523), 523–611. doi:10.1186/2193-1801-2-
523

Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven, K.,
et al. (2007). Trends in landslide occurrence in Nepal. Nat. hazards 43, 23–44.
doi:10.1007/s11069-006-9100-3

Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., and Moradi, H.
R. (2013). Application of weights-of-evidence and certainty factor models and their
comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian J.
Geosciences 6, 2351–2365. doi:10.1007/s12517-012-0532-7

Pourghasemi, H. R., and Rahmati, O. (2018). Prediction of the landslide
susceptibility: which algorithm, which precision? Catena 162, 177–192.
doi:10.1016/j.catena.2017.11.022

Raghuvanshi, T. K., Negassa, L., and Kala, P. M. (2015). GIS based grid overlay
method versus modeling approach – a comparative study for landslide hazard zonation
(LHZ) in Meta Robi District of West Showa Zone in Ethiopia. Egypt. J. remo. Sens. space
sci 18 (2), 235–250. doi:10.1016/j.ejrs.2015.08.001

Rahman, G., Bacha, A. S., Ul Moazzam, M. F., Rahman, A. U., Mahmood,
S., Almohamad, H., et al. (2022). Assessment of landslide susceptibility, exposure,
vulnerability, and risk in shahpur valley, eastern hindu kush. Front. Earth Sci. 10,
953627. doi:10.3389/feart.2022.953627

Ramesh, V., and Anbalagan, S. (2015). Landslide susceptibility mapping along Kolli
hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic
models. Envi. Earth. Sci 73, 8009–8802. doi:10.1007/s12665-014-3954-6

Ray, R. L., and Lazzari, M. (2020). “Introductory chapter: importance of investigating
landslide hazards,” in Landslides-investigation and monitoring (London, United
Kingdom: IntechOpen).

Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R.,
Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and
weights-of-evidence models and their comparison in landslide susceptibility mapping
in Central Nepal Himalaya.Arab. J. Geosci. 7, 725–742. doi:10.1007/s12517-012-0807-z

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). A
review of statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60–91.
doi:10.1016/j.earscirev.2018.03.001

Rosi, A., Frodella, W., Nocentini, N., Caleca, F., Havenith, H. B., Strom, A., et al.
(2023). Comprehensive landslide susceptibilitymap of Central Asia.Nat. Hazards Earth
Syst. Sci. 23 (6), 2229–2250. doi:10.5194/nhess-23-2229-2023

Saaty, T. (1980).The analytical hierarchy process. New York: McGraw Hill, Text book,
350pp.

Saaty, T. (1990). How to make a decision: the analytic hierarchy process. Eur. J.
Operational Res. 48, 9–26. doi:10.1016/0377-2217(90)90057-i

Saaty, T. (2000). The fundamentals of decision making and priority theory with the
analytical hierarchy process. New York: McGraw Hill Publishers.

Schlögl, M., Spiekermann, R., and Steger, S. (2025). Towards a holistic assessment of
landslide susceptibility models: insights from the Central Eastern Alps. Environ. Earth
Sci. 84 (4), 113. doi:10.1007/s12665-024-12041-y

Schuster, R. L. (1986). Landslide dams: processes risk and mitigation. Am. Soc. Civ.
Engeneers Geothecnical Special Pubblication 3, 163.

Shano, L., Raghuvanshi, T. K., and Meten, M. (2022). Fuzzy set theory and pixel-
based landslide risk assessment: the case of Shafe and Baso catchments, Gamo highland,
Ethiopia. Earth Sci. Inf. 15 (2), 993–1006. doi:10.1007/s12145-022-00774-y

Shano, L., Raghuvanshi, T. K., andMeten, T. (2021). Landslide susceptibilitymapping
using frequency ratio model: the case of Gamo highland, South Ethiopia. Arab.J.of
Geosci. 14 (623), 623–718. doi:10.1007/s12517-021-06995-7

Sharma, A., and Sandhu, H. A. S. (2024). Investigating the dynamic nature of
landslide susceptibility in the Indian Himalayan region. Environ. Monit. Assess. 196 (3),
257. doi:10.1007/s10661-024-12440-5

Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F.
(2006). Erosion processes in steep terrain—truths, myths, and uncertainties related
to forest management in Southeast Asia. For. Ecol. Manag. 224 (1-2), 199–225.
doi:10.1016/j.foreco.2005.12.019

Sifa, S. F., Mahmud, T., Tarin, M. A., and Haque, D. M. E. (2019). Event-based
landslide susceptibility mapping using weights of evidence (WoE) and modified
frequency ratio (MFR) model: a case study of Rangamati district in Bangladesh.
Geol.Eco. landscapes 4, 222–235. doi:10.1080/24749508.2019.1619222

Silalahi, F. E. S. P., Arifanti, Y., and Hidayat, F. (2019). Landslide susceptibility
assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci. Lett.
6 (10), 1–17. doi:10.1186/s40562-019-0140-4

Tang, Y., Che, A., Cao, Y., and Zhang, F. (2020). Risk assessment of seismic landslides
based on analysis of historical earthquake disaster characteristics. Bull. Eng. Geol.
Environ. 79 (5), 2271–2284. doi:10.1007/s10064-019-01716-7

Tsangaratos, P., and Rozos, D.(2013). Producing landslide susceptibility
maps by applying expert knowledge in a GIS—based environment. Bull. Geol.
Soc.,47:1539–1549. doi:10.12681/bgsg.10993

Valdes Carrera, A. C., Mendoza, M. E., Allende, T. C., and Macías, J. L. (2023). A
review of recent studies on landslide hazard in Latin America. Phys. Geogr. 44 (3),
243–286. doi:10.1080/02723646.2021.1978372

Frontiers in Earth Science 26 frontiersin.org

https://doi.org/10.3389/feart.2025.1557860
https://doi.org/10.3390/ijgi12020037
https://doi.org/10.3390/rs15051376
https://doi.org/10.1007/s12040-015-0536-2
https://doi.org/10.1007/s12594-016-0395-8
https://doi.org/10.1126/sciadv.add8915
https://doi.org/10.3390/app12094707
https://doi.org/10.1007/s10346-016-0771-x
https://doi.org/10.3390/app112411652
https://doi.org/10.5194/nhess-16-875-2016
https://doi.org/10.5194/nhess-16-875-2016
https://doi.org/10.1016/s0169-555x(01)00098-8
https://doi.org/10.1007/s41324-017-0160-0
https://doi.org/10.1007/s41324-017-0160-0
https://doi.org/10.3390/w16030380
https://doi.org/10.3390/w16030380
https://doi.org/10.1016/j.envc.2022.100586
https://doi.org/10.1016/j.qsa.2024.100217
https://doi.org/10.1016/j.jseaes.2012.10.005
https://doi.org/10.1080/24749508.2024.2395205
https://doi.org/10.1029/93wr02979
https://doi.org/10.3390/w15152707
https://doi.org/10.12989/gae.2021.24.5.407
https://doi.org/10.3390/w11071402
https://doi.org/10.1186/2193-1801-2-523
https://doi.org/10.1186/2193-1801-2-523
https://doi.org/10.1007/s11069-006-9100-3
https://doi.org/10.1007/s12517-012-0532-7
https://doi.org/10.1016/j.catena.2017.11.022
https://doi.org/10.1016/j.ejrs.2015.08.001
https://doi.org/10.3389/feart.2022.953627
https://doi.org/10.1007/s12665-014-3954-6
https://doi.org/10.1007/s12517-012-0807-z
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.5194/nhess-23-2229-2023
https://doi.org/10.1016/0377-2217(90)90057-i
https://doi.org/10.1007/s12665-024-12041-y
https://doi.org/10.1007/s12145-022-00774-y
https://doi.org/10.1007/s12517-021-06995-7
https://doi.org/10.1007/s10661-024-12440-5
https://doi.org/10.1016/j.foreco.2005.12.019
https://doi.org/10.1080/24749508.2019.1619222
https://doi.org/10.1186/s40562-019-0140-4
https://doi.org/10.1007/s10064-019-01716-7
https://doi.org/10.12681/bgsg.10993
https://doi.org/10.1080/02723646.2021.1978372
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ali et al. 10.3389/feart.2025.1557860

Vargas, L. (1990). An overview of the analytic hierarchy process and its applications.
Eur. J. Operational Res. 48, 2–8. doi:10.1016/0377-2217(90)90056-H

Varnes, D. J. (1984). “Landslide hazard zonation: a review of principles and practice,”
in Natural hazards. Paris: UNESCO.

Wubalem, A. (2021). Landslide susceptibility mapping using statistical methods in
Uatzau catchment area, northwestern Ethiopia. Geoenvironmental Disasters 8 (1), 1.
doi:10.1186/s40677-020-00170-y

Wubalem, A., Getahun, B., Hailemariam, Y., Mesele, A., Tesfaw, G., Dawit, Z.,
et al. (2022). Landslide susceptibility modeling using the index of entropy and

frequency ratio method from Nefas-Mewcha to Weldiya Road Corridor, Northwestern
Ethiopia. Geotechnical Geol. Eng. 40 (10), 5249–5278. doi:10.1007/s10706-022-
02214-6

Youssef, K., Shao, K., Moon, S., and Bouchard, L. S. (2023). Landslide susceptibility
modeling by interpretable neural network. Commun. Earth and Environ. 4 (1), 162.
doi:10.1038/s43247-023-00806-5

Zhou, S., Zhou, S., and Tan, X. (2020). Nationwide susceptibility mapping of
landslides in Kenya using the fuzzy analytic hierarchy process model. Land 9 (12), 535.
doi:10.3390/land9120535

Frontiers in Earth Science 27 frontiersin.org

https://doi.org/10.3389/feart.2025.1557860
https://doi.org/10.1016/0377-2217(90)90056-H
https://doi.org/10.1186/s40677-020-00170-y
https://doi.org/10.1007/s10706-022-02214-6
https://doi.org/10.1007/s10706-022-02214-6
https://doi.org/10.1038/s43247-023-00806-5
https://doi.org/10.3390/land9120535
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Study area description
	3 Methodology
	3.1 Data acquisition and compilation
	3.2 Methodological outline
	3.3 Landslide inventory map: definition, purpose, and methodology
	3.4 Validation techniques
	3.5 Landslide conditioning and triggering factors: understanding the key determinants of landslide susceptibility in study area
	3.5.1 Topographic (geomorphic) factors
	3.5.2 Hydrologic influences on landslide triggering
	3.5.3 Geologic contributions to landslide occurrence
	3.5.4 Land use/land cover contributions to landslide occurrence

	3.6 Models for landslide susceptibility mapping
	3.6.1 Frequency ratio (FR) model
	3.6.2 Analytical hierarchy process (AHP) model


	4 Results and discussion
	4.1 Landslide susceptibility mapping using the frequency ratio (FR) model
	4.2 Landslide susceptibility mapping using the AHP model
	4.3 Validation of landslide susceptibility maps
	4.3.1 Relative landslide density index (R Index)
	4.3.2 Receiver operating characteristics (ROC) curve

	4.4 Comparison of FR and AHP models
	4.5 Implications for landslide susceptibility management and future research

	5 Conclusion and recommendations
	5.1 Conclusion
	5.2 Recommendations

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

