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Wellbore stability is a key factor in ensuring safe and efficient drilling operations.
The variation in Equivalent Circulating Density (ECD) has a significant impact on
safety, economics, and drilling progress. As unconventional resources like shale
gas and tight oil are explored, geological conditions and reservoir characteristics
have become more complex. These complexities lead to narrower density
windows, making precise ECD control essential. Proper control can prevent
incidents such as lost circulation, blowouts, and wellbore collapse. This study
establishes a new ECD calculation model. The model accounts for total
fluid pressure loss, formation temperature, and formation pressure. An ECD
prediction model based on drilling parameters and segmented reservoir layers is
also proposed. The model uses nonlinear regression algorithms to predict ECD
values for different members. It integrates real-time drilling data such as depth,
drilling pressure, displacement, and rotational speed, along with formation
temperature and pressure. The model also optimizes drilling parameters to
keep the ECD within the safe density window. Case studies from a high-
temperature, high-pressure volcaniclastic reservoir well in the Nanpu region
validate the models. The correlation coefficients (R?) of the calculation and
prediction models exceed 0.99. After optimization, the ECD for Ed2, Ed3, Esl,
and Es3' remains within the safe window. This significantly improves wellbore
stability and ensures operational safety. The results reveal notable differences in
regression coefficients across different members. This confirms the necessity of
using member-specific ECD prediction models. Additionally, the safe parameter
ranges provided by this study offer practical guidance for drilling design. These
models have broad application prospects, especially in complex geological
environments.
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1 Introduction

Maintaining wellbore stability is crucial for safe and efficient
drilling operations. ECD, a key parameter reflecting downhole
pressure and fluid behavior, directly impacts drilling safety and
economics. As petroleum exploration advances into unconventional
resources, geological conditions and reservoir characteristics
become more complex. Many oil and gas reservoirs exhibit high
heterogeneity. Variations in rock properties, porosity, permeability,
and stress distribution lead to significant changes in reservoir
conditions. These factors increase the complexity of formation
pressure, temperature, and fluid behavior. Adefemi et al. (2024)
explored the complex conditions of high-temperature high-pressure
(HPHT) drilling, summarizing a series of challenges present in
HPHT reservoirs. In high-temperature conditions, drilling fluids,
equipment, and materials can undergo thermal degradation,
increasing the risk of formation fluid influx and well control issues.
The corrosion and wear rates of downhole tools and equipment
are accelerated, and thermal expansion and contraction occur,
reducing the efficiency and reliability of drilling operations. In
high-pressure conditions, the risk of well leaks and well control
accidents is increased due to overburden pressure and formation
stress, compromising the stability and integrity of the wellbore, and
making it difficult to control the downhole pressure differential and
manage formation fluids. Rocha et al. (2003) presented insights into
Petrobras’s experiences with deepwater and ultra-deepwater drilling,
highlighting that geological hazards in deepwater environments
pose significant challenges. These hazards encompass active fault
lines, seabed erosion, overpressured sands at shallow depths,
landslides, steep and unstable slopes, gas hydrates, and ground
conditions that vary from weak, underconsolidated soils to solid
rock. Additionally, there are potentially corrosive soils that may
necessitate specially designed conductors. All these factors can
impact the stability and cost-effectiveness of drilling operations.
Therefore, in extreme environments such as HTHP, deepwater, and
deep wells, the challenges faced by drilling operations are even
more severe. Due to the uncertainty and variability of formation
conditions, ECD within the wellbore becomes more difficult to
control, and the safe density window becomes narrow, forming a
narrow density window. In actual drilling operations, variations
in ECD can pose significant challenges, especially under extreme
conditions such as HPHT wells. Instability in ECD may lead to
severe issues, such as kicks, wellbore collapse, or even blowouts.
Under narrow density window conditions, precise ECD control is
crucial for maintaining wellbore stability and ensuring the safety of
the drilling operation.

Traditionally, downhole tools have been used to monitor ECD
fluctuations and prevent well control problems such as formation
fractures, blowouts, and gas kicks. These tools rely on sensors
and data acquisition systems but often require high maintenance
costs and are affected by extreme downhole conditions. In some
HPHT wells, downhole tools may fail. With advancements in
sensing technology, data monitoring, and numerical simulation,
real-time ECD prediction has become a practical alternative. Using
collected drilling parameters and advanced mathematical models,
ECD values can be predicted to keep them within the safe
density window. Existing ECD prediction models integrate multi-
dimensional data, including drilling, geological, and engineering
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parameters. These models calculate ECD values to ensure they
remain within safe limits. Al-Rubaii et al. (2023) proposed novel
models for predicting ECD and mud weight (MW) by utilizing
Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Decision Trees (DT), with surface drilling parameters
serving as input data. The correlation coefficients (R?) were all
above 0.9, and these models are used for real-time prediction of
ECD and MW without the need for downhole tools, thereby saving
costs and time. Elzenary et al. (2018) introduced an innovative
approach to predict ECD values during drilling without relying on
downhole tools. This method employs ANN and Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) to evaluate ECD throughout the
drilling process, thereby minimizing the dependency on costly and
intricate downhole equipment. Chen et al. (2024) carried out a case
study on the Pengzhou X well in the Leikou slope formation of
Western Sichuan, investigating how varying mud densities affect
displacement rates and bottomhole pressures through numerical
simulation. They developed an optimal mud density model for
fractured formations with narrow density windows, concluding
that an increase in mud density results in a decrease in the
annular upward flow velocity. This change could capture fracture
gases in the upper annulus, with the ideal mud density lying
within this narrow range. Li et al. (2022) proposed an integrated
geomechanics approach that combines theoretical analysis with
numerical simulation. By collecting extensive geological, seismic,
drilling, and logging data, they selected appropriate theoretical
models to predict and calculate the in-situ stress, pore pressure,
fracture pressure, collapse pressure, and rock mechanics parameters
for Well A. They created a four-tier pressure profile for the formation,
which led to the determination of the safe drilling fluid density
window for the well. Furthermore, they conducted numerical
simulation of wellbore stability using the ABAQUS software. Li et al.
(2021) carried out a survey study, combining the actual situation of a
deep oil and gas reservoir in Northwest China, identifying formation
pressure segments in different regions and adjusting formation
fracture pressure based on actual leakage occurrences. They used
this to set the drilling fluid density as a standard for assessing the
risk of lost circulation, offering a method to define regional narrow
density windows through big data. Zhang et al. (2024b) developed
a mathematical model to simulate the temperature and pressure
calculations in the annulus during gas drilling in narrow density
window formations, considering the conservation of liquid mass,
gas mass, additional energy conservation of other components in the
wellbore annular formation system, and the gas-liquid slip velocity
equation, predicting the temperature and pressure in the annulus of
Well XX1. Wei et al. (2024) predicted the safe MW range and the
lower limit of mud density for the horizontal section of the Luzhou
block, using conventional logging data. They employed the Discrete
Element Method (DEM) to validate collapse pressure predictions
and explored the influence of in-situ stress, wellbore pressure,
natural fracture density and rock cohesion, on wellbore collapse.
Zhang et al. (2019) investigated the role of the mud seal barrier on
shale formations, incorporating a flow-diffusion coupling model to
develop a calculation method for determining the safe drilling mud
density. This model accounts for the combined effects of sealing,
inhibition, and back-osmosis actions of the drilling mud on shale.
Their analysis demonstrated that improving the sealing ability of
the mud can significantly reduce the transmission of pore pressure
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and the diffusion of solutes within the shale formation. Moreover,
they identified that the inhibition capability of the mud plays a
crucial role in determining the collapse pressure of shale sections
with notable hydration tendencies. Li et al. (2024) investigated
the impact of methane behavior in organic pores on fluid flow
and pressure distribution within the wellbore through molecular
simulations, providing scientific evidence for ECD control and
optimization of drilling parameters. Ekechukwu and Adejumo
(2024) utilized the Extreme Gradient Boosting (XGBoost) method
to forecast ECD values, employing performance metrics such as
the Root Mean Square Error (RMSE) and the R* to assess the
accuracy and reliability of their prediction model. The use of RMSE
provided insight into the model’s error magnitude, while R? helped
determine the proportion of variance in the data explained by
the model, offering a comprehensive evaluation of its predictive
capabilities. Their results showed that for the training data, R? was
1.00 and RMSE was 0.0005, while for the test/blind dataset, R* was
0.989 and RMSE was 0.023. These findings demonstrated that the
proposed model outperformed those developed with other common
machine learning methods. They also concluded that hook weight,
standpipe pressureand and MW were the most significant factors
in predicting ECD values. Ma et al. (2019) developed a model
for horizontal well drilling and ECD management, incorporating
seabed conditions, temperature, drill pipe rotation, drill pipe
eccentricity, and the cutting bed. By analyzing how ECD responds
to drilling parameters, they identifled sensitive factors such as
mud density and viscosity. A real-time correction method for ECD
under varying conditions was suggested through non-dimensional
factor comparisons. Kandil et al. (2023) utilized three machine
learning algorithms—ANN, Passive-Aggressive Regressor (PAR)
and K-Nearest Neighbors (KNN), —to predict ECD. These models,
based on 14 key operational parameters from downhole sensors
during drilling operations, including annular temperature, annular
pressure, and rate of penetration (ROP), demonstrated that the ANN
model achieved very high accuracy, with R? values close to 0.999
for training, validation, and testing. The RMSE values for overall,
training, validation, and testing datasets were 0.000211, 0.000253,
0.00293, and 0.00315, respectively. Alsaihati and Elkatatny (2021)
used real field data from Well 1 to estimate ECD in horizontal
wells, applying SVM, Functional Networks (FN),and Random Forest
(RF) methods. They also demonstrated how Principal Component
Analysis (PCA) could be used to reduce the dimensionality of
the dataset without sacrificing essential information. Gao and
Fan (2024) established an ECD prediction model using the RE,
considering 11 parameters (e.g., well depth, ROP, mud density,
pump rate, mud pit gain, etc.), which has the ability to ensure that
the bottomhole pressure is within a safe range, avoid dangerous
accidents, and minimize non-productive time. However, these
prediction models often fail to fully consider the property changes
of different members, especially in complex reservoirs with multiple
members, where a single prediction model may have certain
limitations.

Therefore, this study aims to propose an ECD prediction model
based on drilling parameters and members, optimizing various
parameters in the drilling process segment by members to ensure
that ECD values are controlled within a safe range. By accurately
simulating ECD changes in different members, further improve the
safety and precision of drilling operations.
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2 Methods and principles
2.1 Parameter selection for the ECD model

Currently, ECD prediction models typically incorporate a
variety of drilling, geological, and engineering parameters as input
parameters to accurately predict changes in ECD within the
formation. Among these parameters, ECD prediction models that
take drilling parameters as inputs exhibit significant advantages.
Badrouchi et al. (2022) explored the use of Mechanical Specific
Energy (MSE) for optimizing hole cleaning and managing ECD,
proposing a novel model to predict ECD in vertical and inclined
wells. This model incorporates factors such as fluid and formation
properties, drill string geometry and wellbore, and drilling operation
parameters, ensuring that ECD stays within the safe density
range. Gamal et al. (2021) applied machine learning methods,
including ANN and Adaptive Network-based Fuzzy Inference
Systems (ANFIS), to drilling data from horizontal well sections.
They used parameters like drilling speed, rotation speed, torque, bit
weight, suction speed, and standpipe pressure to predict ECD from
drilling data with high precision. Abdelgawad etal. (2019) developed
a novel method for evaluating ECD using artificial intelligence
techniques, with MW, drill pipe pressure, and ROP as parameters.
In the oil well design process, empirical correlations developed
for the ANN model can be used to select the appropriate MW
based on expected drilling parameters to safely drill. This approach
also minimizes drilling issues related to ECD. Yang et al. (2024)
employed a Generalized Regression Neural Network (GRNN) to
build a model based on time series data of drilling parameters.
They used intelligent optimization algorithms to fine-tune the
model’s parameters and tested its generalization capability and
accuracy by comparing it with actual and simulated data, enabling
real-time prediction of bottomhole ECD in deepwater drilling.
Drilling parameters can provide multifaceted information about the
reservoir (such as depth, pressure changes, drill bit performance,
etc.), and taking these factors into account comprehensively can
more accurately predict fluid behavior and density changes in
various reservoirs. For unconventional reservoirs, data collected
during drilling helps capture the heterogeneity and complexity of
the reservoir, thereby improving the prediction accuracy of the
equivalent circulating density. ECD prediction models that take
drilling parameters as input parameters, combined with a large
amount of real-time data obtained during the drilling process, can
more accurately predict ECD values.

2.2 ECD prediction for different member

In petroleum engineering, due to the differences in formation
lithology, reservoir burial depth, and formation pressure, direct
simulation calculations for the entire area are often challenging
to perform accurately. The division of strata provides us with
lithological and lithofacial characteristics; utilizing geological
stratification for simulation not only considers the distribution of
various parameters in different strata but also facilitates an in-
depth exploration of the mechanisms related to these parameters
in different strata. This type of stratified simulation has been
extensively used in multiple areas of the petroleum industry.
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Wang (2016) took Well Dong 11 as an example, considering
many potential complexities during the drilling process, such as
the loosely cemented upper formations and high risk of hole
collapse, leakage in the Cretaceous formations, mudstone slumping
in the Jurassic, and the possible existence of high-pressure saline
zones and hydrocarbon zones in the Sanguhe Formation. In the
upper section of the well, PDC bits were used, and in the lower
section, PDC bits combined with spiral drilling technology were
applied. The feasibility of the plan was verified through good hole
size maintenance. Li (2015) took the key risk exploration well,
Anshun No.1, as an example, determined engineering difficulties
based on the analysis of geological information, optimized well
structure, selected appropriate drilling methods and mud systems,
and supported drilling technical measures to form a drilling
technical plan suitable for the marine formations in that block.
Yavari et al. (2023) proposed an innovative method for optimizing
controllable drilling parameters using electric downhole tools
in specific geological formations. This approach combines data
mining techniques with mathematical modeling to create a
multi-objective optimization framework, designed to pinpoint
the most effective drilling parameters. The methodology was
applied to the drilling data collected from the Dariyan Formation,
where the data mining technique successfully identified a well-
distributed dataset, encompassing both the ideal and less-optimal
drilling conditions. This comprehensive dataset allowed for a more
accurate identification of the key drilling variables that influence
performance, providing valuable insights into the factors that govern
the drilling process in these specific formations. Wang et al. (2023)
focused on eliminating or reducing stick-slip vibrations in drill
string torsional vibrations to enhance the ROP. They developed a
multi-dimensional torsional vibration model for the drill string,
incorporating a stick-slip vibration model that considers drilling
speed. Through simulation analysis, the model was validated, and
the characteristics of stick-slip vibrations were studied in steady,
slip, and stick phases. Based on this analysis, they established
a relationship between drilling parameters and ROP, optimizing
parameters for soft, medium-hard, and hard formations. Zhang et al.
(2015) took into account a variety of reservoir characteristics and
employed a combination of finite element analysis (FEA) and
discrete element methods (DEM) to develop a comprehensive model
for simulating hydraulic fracture propagation in tight oil reservoirs.
The model incorporated several key factors, including variations in
horizontal stress, the number and spacing of perforation clusters,
injection rates, and the density of natural fractures within the
reservoir. By integrating these variables, the model was able to
more accurately represent the complex behavior of hydraulic
fractures in tight formations. Rao et al. (2024) developed a new
numerical formula for modeling two-phase flow in fractured
reservoirs, based on reservoir characteristics. The formula was
created using a mixed finite difference and streamline (MFD-SL)
method, where the pressure equation was discretized with the
simulated finite difference (MFD), and the saturation equation was
solved using the streamline (SL) method. This hybrid formula was
implemented in a discrete fracture model (DFM) and operated
similarly to IMPES. Yin et al. (2023) improved the coupled
fluid-solid model in PFC2D for shale reservoirs by incorporating
mechanical parameters obtained from laboratory experiments. They
developed a Discrete Element Method (DEM) model specifically for
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hydraulic fracturing in shale reservoirs, aiming to explore the factors
that influence the propagation of hydraulic fractures. Zhan et al.
(2024) utilized numerical simulation methods to combine a multi-
stage fracturing horizontal well non-steady seepage model with
a dilation-recompaction model to develop the DG model. This
model used segmented logging and production data to construct
a geological model of shale reservoirs, enabling history matching
on a multi-stage basis, and provided a detailed analysis of the
entire reservoir, replicating the distribution relationship between
reconstructed areas and overall productivity. Zhang et al. (2024a)
conducted true triaxial fracturing experiments on three horizontal
wells with large specimens (400 mm x 400 mm x 400 mm), studying
hydraulic fracture propagation in multi-well fracturing processes in
conglomerate reservoirs. They examined the effects of in-situ stress,
fracturing sequence, vertical well spacing, and fracture initiation
position on fracture evolution. Tang et al. (2024) developed a
comprehensive numerical model to simulate the entire fracturing-
production process in shale gas wells. This model was based
on the displacement discontinuity method combined with the
discrete fracture unified network model. By employing a sequential
iterative numerical approach, they incorporated the influence of
natural fractures and matrix characteristics on the fracturing
process. Additionally, the model utilized post-fracturing formation
pressure and water saturation distribution as inputs for subsequent
simulations. The result was a more precise representation of
fracturing and production dynamics, highlighting the crucial role
of reservoir properties in fracture propagation.

In recent years, although there has been relatively little
research on ECD prediction models by drilling parameters for
different members, the research outcomes of the aforementioned
scholars demonstrate that it is indeed feasible to optimize
drilling parameters and maintain wellbore stability by establishing
ECD prediction models by drilling parameters for different
members.

2.3 Drilling process and tripping process

The drilling process and the tripping process are two distinct
operational phases in drilling operations, each involving different
tasks and steps. The drilling process involves the rotation of the
drill bit to cut through underground rock formations, gradually
forming a wellbore. The purpose is to provide a passage for the
extraction of oil or natural gas, ensure the stability of the wellbore,
prevent wellbore collapse, and prepare for subsequent operations
such as completion or fracturing. The tripping process, on the other
hand, involves operations such as changing or inserting drill strings
and maintenance during the drilling process, specifically referring
to the process of extracting or inserting drill pipes or tools into
the wellbore. In short, the tripping process mainly refers to the
entry and exit of drilling tools in the wellbore. In this process,
trip-out speed and vibration pressure are key influencing factors.
The trip-out speed determines the rate at which the drilling tools
are lowered into the wellbore, while vibration pressure is caused
by the vibration or impact of the drilling tools, often stemming
from the interaction between the tools and the wellbore walls.
Proper control of trip-out speed and vibration pressure is crucial for
wellbore stability. Shan et al. (2023) carried out an extensive study to
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TABLE 1 Part of the relevant data of a HTHP well in the NanPu area.

10.3389/feart.2025.1558550

P ps APtotal
(g/cm3) (g/cm3) ()]
1.40 2.50 0.48 12 3900 147.5 67
1.40 2,51 0.48 12 3964 152.0 71
141 2.50 0.32 2.0 4494 167.7 87
1.42 2.50 0.33 2.0 5076 1735 155
1.55
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1.5 Ed2 R2=(.9959 g
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s e RI=0.9959 ..
1.2
1.12 1.17 1.22 1.27 1.32 1.37 1.42 1.47
Observed Value (g/em?)
FIGURE 1
Fitted Curve for each member.

TABLE 2 Drilling parameters of a HTHP well in a volcaniclastic reservoir
in Nanpu area.

H Q N ROP w P
(m) (/s) | (r/min)  (m/h) (KN) (MPa)
1900~2500 50 50 13.9 60 20
2500~2576 30 50 8.11 60 20
2576~3216 30 50 12.31 60 20
3216~4400 30 50 9.14 60 20

understand how drill string vibrations influence wellbore stability.
They created a flexible simulation model for drill string dynamics
using finite element analysis and collected real drilling vibration
data through a downhole vibration measurement device. This data
was then used to validate the accuracy of the simulation model.
By establishing critical conditions for potential wellbore damage,
they developed a method to evaluate wellbore stability, examining
how different drilling parameters and drill string configurations
impact stability. Their findings revealed that vibrations in the drill
string during the drilling process play a significant and sometimes
decisive role in maintaining wellbore stability, highlighting the need
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to carefully manage these vibrations to prevent wellbore damage.
Wang et al. (2021) employed the finite element analysis software
ADINA to build a model simulating drill string stress changes
after collisions with the wellbore under various conditions. The
study demonstrated that certain factors, such as drilling fluid with
higher viscosity, reduced rotation and self-rotation speeds of the
drill string, and a larger annular space, contribute to lowering the
stress caused by drill string-wellbore collisions. These conditions
were found to enhance both the safety and overall stability of the
drill string, suggesting practical measures to mitigate stress and
reduce the risk of damage during drilling operations. Yan et al.
(2014) performed a thorough analysis of geological and engineering
data from the Fergana Basin, revealing that wellbore instability
is a key factor hindering drilling efficiency in the region. The
study pointed out that in formations with complex bedding
structures and multiple high-pressure systems, wellbore instability
often leads to frequent and severe issues such as sticking, wellbore
collapse, lost circulation, and well kicks. These problems pose
significant challenges to maintaining drilling progress and safety,
particularly in such geologically complex environments, making
it essential to develop strategies that address wellbore stability in
these areas.

Therefore, when establishing different members ECD prediction
model based on drilling parameters, it is essential to fully consider
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- Predicted ECD,value

Predicted ECD value

FIGURE 2
Predictive model calculation process.

Safety drilling parameters
and tripping parameters

TABLE 3 ECD prediction model parameters for each member during drilling.

Member \|
(r/min)

122.3242 7.8040 12.3399 3.7919 14.6079 5.5360 a,

Ed2
0.9964 0.9964 0.9964 0.9964 0.9964 0.9964 R?
200.9332 7.8096 12.3493 3.7942 14.6192 5.5397 a,

Ed3
0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 R?
203.8825 7.6867 12.1445 3.0372 14.3734 5.4578 a,

Esl
0.9942 0.9942 0.9942 0.9942 0.9942 0.9942 R?
-1688.0000 19.0000 31.0000 0.1000 37.1000 -0.4000 a,

Es3!
0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 R?

the different states of the drilling process and the tripping process to
ultimately achieve accurate ECD prediction.

2.4 ECD calculation model

In the current state, there is no direct calculation formula
between ECD and drilling parameters. Therefore, it is necessary
to first establish an ECD calculation model to predict based on
the calculated values of ECD. It is assumed that the density of the
drilling fluid is uniformly distributed throughout the wellbore, and
the effects of temperature and pressure variations on the density
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are not considered. The pore pressure difference is assumed to
have a linear relationship with depth. The height of the liquid
column is considered constant, and the flow of the drilling fluid
is assumed to be in a steady-state condition. Typically, the ECD
value is calculated using the following formula (Bybee, 2009;
Wu et al., 2022):

_ ESD(1 4p
ECD = ESD(1 Ca)+<psCa+gH)a )
2
Ap-pghz=(Cp+ Ki)pT @
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TABLE 4 ECD prediction model parameters for each member
during tripping.

Psw (m/s)
2.146 0.0085 I
Ed2
0.9951 0.9951 R?
2.354 0.0073 I
Ed3
0.9927 0.9927 R?
0.9184 -0.011 I
Esl
0.9985 0.9985 R?
22165 0.0601 c,
Es3!
0.9923 0.9923 R?
fL
CL = D_ (3)
h
1
2 12
f=8 8 + S S (4)
Re 2
(A+B)2
9 K 16
A= [—2.4571n<(1)1°+o.27<—5>>] (5)
Re Dh
3735016
- ( Re ) ©

In the formula, Ca represents the solid concentration in the
annular space, %; p, is the density of the cuttings, g/cm?; Ap is the
pressure loss of the fluid passing through the wellbore, MPa; a is
the unit conversion coefficient, which is equal to 8.345; Az is the
height of the wellbore, m; v is the fluid velocity, m/s; p is the fluid
density, g/cm®; g is the acceleration due to gravity, s/m% f is the
friction factor, which is calculated and related to the fluid Reynolds
number; L is the length of the wellbore, m; K; is a loss coefficient
related to the direction in the wellbore; D), is the hydraulic diameter,
m; Reis the fluid Reynolds number; K, is the roughness of the
wellbore, mm.

The 1-6
approximates the pressure loss of drilling fluid flow as the pressure

calculation model derived from Equations
consumption in the annulus, which facilitates the computation
of the model, but reduces its accuracy. The total pressure loss of
the drilling fluid flow should also take into account the pressure
loss during the process of the drilling fluid flowing through the
surface lines and the riser (drill pipe) after it emerges from the
drilling pump. Ashena et al. (2021) modified the Bingham Plastic
model and applied a correction factor of 1.08-1.12 to the turbulent
pressure loss equation, establishing a model for the total pressure
loss of the drilling fluid. It is assumed that the fluid has a fixed
yield stress and plastic viscosity, and that the fluid exhibits linear
rheological properties once the shear stress exceeds the yield
stress. The effects of temperature and pressure variations on the
yield stress and viscosity are neglected. It is also assumed that
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the shear rate remains constant throughout the flow process, and
the time-dependent effects in the flow are ignored. The formula is

as follows.
APtotal = APsurf + APbit + z APlam.Bing + Ct X Z APturb (7)
In the formula: AP, is the total pressure loss, MPa; AP is

the pressure drop in the surface lines, in MPa; APy is the pressure
drop at the bit, MPa; APy, ;,, is the sum of the laminar pressure
drops based on the Bingham Plastic model, MPa; C, is the correction
factor, with a value ranging from 1.08 to 1.12 (depending on the
size of the borehole and the type of mud); AP, is the sum of the
turbulent pressure drops in the drill string, MPa.

On this basis, taking into account the effects of formation
pressure and temperature, the final ECD calculation model is
derived as shown below.

AP total

ECD=ESD(1-C,)+ (psCa + (8)

>“+APT,P
In the formula: Ap;p represents the change in density due to
temperature and pressure.
This formula can more accurately simulate the flow of
drilling fluid in complex environments, especially suitable for
the HTHP environment of volcaniclastic reservoirs in the

Nanpu area.

2.5 ECD computational model validation

Compare the calculation results of the ECD calculation model
with the measured ECD data to verify the accuracy of the ECD
calculation model. The ECD field data used in this study were
obtained from on-site measurements in the Nanpu region. Outliers
were removed through pre-processing to ensure consistency in
the analysis. Verification is carried out with relevant data from a
HTHP well in the Nanpu area. Some data of this well are shown
in Table 1.

Figure 1 presents the fitting results between the calculated ECD
values and the actual values for a total of 13,000 data points from
the Ed2, Ed3, Esl, and Es3'. The four sets of data points in the
figure represent the data from the Ed2, Ed3, Es1, and Es3! members,
respectively. Each set of data points has a corresponding fitted curve,
which is used to show the relationship between the calculated and
observed values. The equations of the fitted curves and their R?
values are also labeled in the figure. It can be observed that the
R’ value for the Ed2 is 0.9959, for the Ed3 it is 0.9980, for the
Esl section it is 0.9959, and for the Es3! it is 0.9873. These results
confirm the accuracy of the ECD calculation model and underscore
the necessity of incorporating formation pressure, temperature,
and solid concentration in the annular space into the ECD
calculations.

2.6 ECD prediction model

Establishing an ECD prediction model is an effective means
of controlling the ECD range within a safe density window. In
addition to the various factors considered in the calculation model,
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when establishing the prediction model, other drilling parameters
such as weight on bit and pump pressure must also be included as
input parameters to enhance the accuracy of the prediction model.
Through multivariate nonlinear regression, an ECD prediction
model for drilling is established:

)

ECD; =2, *HP1 +a2*Qb2 +a3*nb3 +a4*ROPb4 +a5*wb5 +a§*PbG + a7*Tb7 + ag*be8
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In the formula: Q is the displacement, I/s; n is the rotation speed,
r/min; ROP is the rate of penetration, m/h; w is the weight on bit, KN;
P is the pump pressure, MPa; T is the formation temperature, °C; Pf
is the formation pressure, MPa; a, and b, (wheren=1,2,3, ..., 8) are
regression coefficients, dimensionless.

Based on Equation9, the predicted value of ECD during
drilling can be derived. Using this predicted value to optimize the
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TABLE 5 The optimal parameter range of each member of a HTHP well
in Nanpu area.

n
(r/min)

Ed2 19.4~25.2 31.7~41.6 8.4~10.6 0.69~0.72

Ed3 19.7~27.2 31.2~452 83~11.3 0.61~0.66

Esl 20.7~29.2 27.1~48.5 57~11.6 0.67~0.76

Es3! 22.8~30.0 37.7~49.9 547~82 0.45~0.54

combination of drilling speed, rotation speed, and displacement
during drilling can effectively enhance the stability of the wellbore
and the safety of drilling operations.

ECD = ¢, *Py + ¢, * VA (10)

In the formula: Psw represents the vibration pressure, KPa; Vp is
the trip-out speed, m/s; c, and d,, (n = 1,2) are regression coefficients,
which are dimensionless.

2.7 ECD prediction model validation

The results obtained from the ECD prediction model, which was
developed using multivariate nonlinear regression, are compared
against those produced by a traditional ECD calculation model
to assess the accuracy and reliability of the prediction model. To
validate the model, drilling parameters from a HTHP well located
in the volcaniclastic reservoir of the Nanpu region are utilized,
as detailed in Table 2. The step-by-step process for the model
calculation is illustrated in Figure 2, providing a clear depiction
of how the model processes the data to predict ECD under these
specific conditions.

To further improve the accuracy of the model, during the
prediction process when running in hole, the prediction result
of the ECD during drilling can be used as an output parameter.
In this way, multiple factors considered in the prediction model
of the ECD during drilling are incorporated into the calculation,
achieving the correlation between the two ECD prediction
models. The specific calculation process of the model is shown
in Figure 2.

According to Figure 2, the model is implemented using the
following computational steps: First, relevant parameters during
drilling and tripping are input, and the drilling and tripping
ECD prediction equations are established using a multivariate
nonlinear regression algorithm. Based on the regression equations
and the input parameters, the predicted ECD values for both
drilling and tripping are calculated. Then, these predicted ECD
values are used to optimize the related parameters, ensuring that
the ECD values remain within the safe range, thereby preventing
potential risks such as wellbore instability. Finally, the model
provides safe drilling and tripping parameters to ensure the safety
and stability of the operation.
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Following the calculation procedure, ECD predictions were
made for different sections of the well. Table 3 presents the an values
and R? for the ECD prediction models during drilling in the Ed2,
Ed3, Es1, and Es3'. It can be observed that the R* for the Ed2, Ed3,
Esl, and Es3' are 0.9964, 0.9916, 0.9942, and 0.9973, respectively,
which indicates that the established prediction models are accurate
and reliable.

In Table 3, the R? of the input parameters vary across different
members, which underscores the necessity of conducting simulation
predictions for each members separately. By comparing the a, of
different members, it can be concluded that among these four
members, a;>a;>az>a,>a5>a,.

Table 4 presents the ¢, values and R* for the ECD prediction
models during tripping in for the Ed2, Ed3, Esl, Es3'. It can be
observed that the R* for the Ed2, Ed3, Esl, and Es3' are 0.9951,
0.9927, 0.9985, and 0.9923.

Based on the derived ECD prediction values, a comparison was
made with the calculation results obtained from the ECD calculation
model, as shown in Figure 3.

From Figure 3, it can be observed that the ECD prediction model
results derived from the relevant parameters of this well have a high
degree of conformity with the results of the ECD calculation model,
with an R? value of 0.9947, which verifies the accuracy of the ECD
prediction model.

3 Instance calculations and results

Taking the HTHP well in the volcaniclastic reservoir of
the Nanpu area, which was used in the model validation
process, as an example, relevant calculation parameters were
applied to optimize the drilling parameters during drilling and
tripping in for the Ed2, Ed3, Esl, and Es3! to ensure that
the final ECD prediction values fall within the safe density
window range, in response to wellbore collapse and leakage
situations.

To achieve parameter optimization under a narrow
density window, it is first necessary to establish a safe
density window. Figure 4 shows the collapse pressure equivalent
circulating density (Pwh) and loss pressure equivalent circulating
density (Plh) curves for Well X. Based on the changes in Pwh and
Plh values, the depth region is divided into the loss zone, safe
zone, and caving zone. In the loss zone, the ECD value increases
significantly, indicating that the pressure caused by fluid entering
the formation may lead to leakage. In the safe zone, the ECD value
remains stable, with no risk of leakage or wellbore collapse. In
the caving zone, the ECD value is lower than in the safe zone,
which could potentially cause wellbore damage or collapse due
to excessively low pressure. Using this information, the risks of
wellbore instability or fluid loss during drilling can be assessed,
thus providing necessary safety parameter references for drilling
operations. The parameter optimization for this well targets the
safe zone, and by selecting the situation where the safe density
window is negative, the ECD prediction model is used to optimize
drilling parameters and tripping speed for the Ed2, Ed3, Es1, and
Es3' members.
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To ensure the safety of field operations, the ECD prediction
values are aimed to be at the midpoint between Pwh
and Plh during the forecasting process. This approach can
effectively prevent issues arising from potential errors or
fluctuations when adjusting parameters in practice, which
could lead to exceeding the safe density window. Table5
displays the results of parameter optimization for the Ed2, Ed3,
Esl, and Es3'.

The results indicate that for the Ed2, the safe displacement
range is 19.4 L/s to 25.2 L/s, the safe rotation speed is 31.7 r/min
to 41.6 r/min, the safe ROP is 8.4 m/h to 10.6 m/h, and the
safe tripping speed is 0.69 m/s to 0.72 m/s. For Ed3, the safe
displacement range is 19.7 L/s to 27.2 L/s, the safe displacement
is 31.2 r/min to 45.2 r/min, the safe ROP is 8.3 m/h to 11.3 m/h,
and the safe tripping speed is 0.61 m/s to 0.66 m/s. For the Esl,
the safe displacement range is 16.7 L/s to 29.2 L/s, the safe rotation
speed is 27.1 r/min to 48.5 r/min, the safe ROP is 5.7 m/h to
11.6 m/h, and the safe tripping speed is 0.67 m/s to 0.76 m/s.
For the Es31, the safe displacement is 22.8 L/s to 30.0 L/s, the
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safe rotation speed is 37.7 r/min to 49.9 r/min, the safe ROP is
5.47 m/h to 8.2m/h, and the safe tripping speed is 0.45m/s to
0.54 m/s. This demonstrates that the safe parameter ranges vary for
different members, highlighting the necessity of different member
simulation.

After obtaining the safe parameter ranges, the ECD prediction
model is used to plot the ECD prediction curves, which allows for
a direct observation of whether the predicted values exceed the safe
density window boundaries. Figure 5 illustrates the ECD prediction
values for each member after parameter optimization for the X well.

Figure 5 indicates that after parameter optimization, the ECD
prediction values for the X well are generally maintained within
the safe density window limits, demonstrating the reliability of
the ECD prediction model and effectively controlling the ECD
values between the safe density window. For cases where the
previously screened safe density window values are too small or
even negative, it is necessary to first expand the safe density window
using means such as plugging agents before proceeding with the
prediction.
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4 Discussion

This study proposes a new ECD calculation model and a drilling
parameter-based ECD prediction model, which takes into account
the stratigraphic member of the reservoir. The effectiveness of
these models in HTHP drilling environments has been verified.
By optimizing drilling parameters for Ed2, Ed3, Esl, and Es3!
members, the issue of wellbore instability in the narrow density
window of the volcanic clastic reservoir in the Nanpu area has been
addressed.

Compared with some of the currently improved Bingham
Plastic (Liu 2014; Adams 2023),
temperature- and pressure-dependent Herschel-Bulkley models
(Magnon and Cayeux, 2021), and Modified Cross models
(Mahmood et al., 2022; Hauswirth, 2020), which require extensive

models et al, et al,

laboratory data to fit and adjust parameters, the calculation model
presented in this study relies on field-measured data, enabling it to
reflect actual conditions in real-time and avoiding the time and cost
associated with laboratory testing. The model is more adaptable to
practical conditions, accurately reflecting the complex downhole
environment, and offers greater flexibility and operability in field
applications, allowing for dynamic adjustments and optimization of
model outputs based on site conditions. The model demonstrates
higher accuracy under HTHP conditions (R? reached 0.99) and is
relatively more streamlined, making it particularly suitable for rapid
on-site calculations.

Traditional ECD prediction models (Al-Rubaii et al., 2023;
Elzenary et al, 2018; Ekechukwu and Adejumo, 2024) often
rely on uniform well parameters for prediction, which cannot
account for geological variations. In contrast, the prediction
model in this study further considers the variations across
different members within the wellbore, especially in complex
geological environments such as volcanic clastic reservoirs,
achieving high-precision predictions for different members (R?
reached 0.99). Additionally, the prediction model optimizes drilling
parameters, dynamically adjusting key parameters during the
drilling process to maintain ECD values within the safe density
window, effectively avoiding potential risks such as wellbore collapse
or fluid influx, ensuring the safety and stability of the drilling
operation.

5 Conclusion and future work

This study proposed and validated an ECD prediction model
based on drilling parameters and members. By analyzing a
high-temperature and high-pressure well in the volcaniclastic
rock reservoir of the Nanpu area, the following results were
obtained:

(1) Models were established for drilling and tripping, with
correlation coefficients exceeding 0.99 for all members.
This confirmed the accuracy of the models. Differences
in regression coefficients across members highlighted

the necessity of separate simulations. While the model

performed well in the Nanpu region, additional calibration
may be required for heterogeneous formations, fractured

zones, or extreme conditions like deepwater wells. The
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model’s reliability also depends on the quality of input
data, which
regions.

could affect predictions in data-scarce

(2) The model was applied to HTHP wells in the Nanpu area.
It provided safe parameter ranges for different members,
including optimized displacement, rotation speed, ROP,
and tripping speed. By optimizing these parameters, ECD
stayed within the safe density window during drilling
and tripping. This improved drilling safety and wellbore
stability. The study offers a theoretical basis for complex
reservoir drilling and guidance for similar operations in the
Nanpu area.

Although focused on the Nanpu region, the model could
apply to other areas with similar geological conditions. Its
logic, based on universal parameters like ECD and formation
pressure, makes it useful for pressure window predictions
in sandstone or shale formations. Future research could
integrate real-time drilling data for dynamic adjustments. This
would improve predictive accuracy and assess its feasibility
in extreme environments, such as deepwater and ultra-deep
wells.
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