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The Motianling pluton represents a characteristic U-bearing granite pluton in
South China. Biotite serves as an indicator for the mineralization of metals
such as Cu, Sn, and W in granite. Previous studies have extensively investigated
the U metallogenic potential of the Motianling pluton, but research on the
indicative role of biotite geochemistry in U mineralization remains limited. This
study selected biotite from the coarse-grained and medium-grained granites
of the Motianling pluton as the research subject. Utilizing optical microscopy,
electron probe microanalysis (EPMA), and other techniques, a petrographic and
geochemical study was conducted, supplemented by a comprehensive analysis
of the geochemical data of biotite from typical U-bearing granites in South
China. The analytical results reveal that the biotite in the coarse-grained granite
is Fe-biotite (FeOt: 22.88 to 26.15 wt%, Al2O3: 16.62 to 17.76 wt%, MgO: 4.52
to 6.99 wt%, TiO2: 1.37 to 3.04 wt%), while in the medium-grained granite, it is
siderophyllite (FeOt: 27.96 to 30.02 wt%, Al2O3: 17.78 to 18.50 wt%, MgO: 1.41 to
2.01 wt%, TiO2: 1.43 to 2.03 wt%). Additionally, the biotite in the mediumgrained
granite exhibits higher concentrations of Fe and Al but lower levels of Mg and
Ti compared to the coarsegrained granite. The geochemical characteristics of
biotite indicate that the Motianling granite is S-type granite, characterized by
relatively low temperature and low oxygen fugacity ( fO2). The geochemical
properties of biotite have certain indicative significance for U enrichment. Biotite
from the medium-grained granite exhibits higher U concentrations, a lower
Th/U ratio, and lower crystallization temperatures and oxygen fugacity relative
to the coarsegrained granite, suggesting enhanced U mineralization potential in
the medium-grained granite.
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1 Introduction

South China is amajor region for granite-type uranium deposits
in China, with the Motianling, Changjiang, Fucheng, Jintan,
Douzhashan, and Zhuguangshan plutons examples of typical U-
bearing plutons. The uranium deposits in the Motianling pluton are
characterized by high-grade (with major deposits have an average
grade >0.3%) and large reserves (>1000t U) (Wang et al., 2024a).The
study of the Motianling pluton is conducive to mineral exploration
in the region and also helps to enrich the theoretical research on
granite-type uranium deposits in South China.

Granite is intrinsically linked to the formation of granite-
type metal (such as U) deposits (Zhang et al., 2021). Researchers
often use methods such as rock geochemistry, geochronology,
and isotopic analysis to discuss the genesis of granites and
their metal mineralization (Kong et al., 2018; Li et al., 2018;
Madayipu et al., 2023; Li et al., 2024). Biotite is a common
dark-colored rock-forming mineral in granite that remains stable
across a wide range of temperatures and pressures. The chemical
composition of biotite is influenced by the magma’s composition
(Chen X. et al., 2024). Additionally, it is re-equilibration with
late-stage subsolidus magma or hydrothermal fluids (Rasmussen
and Mortensen, 2013). This makes biotite an ideal mineral for
preserving geochemical information regarding the late-stage of
magmatic crystallization processes. As a result, biotite’s chemical
composition is widely employed to infer factors such as rock
genesis and the physicochemical conditions of diagenetic processes
(Henry et al., 2005; Zhang et al., 2017b; Wan et al., 2022).
These physicochemical conditions include temperature and oxygen
fugacity, and other parameters, with oxygen fugacity being related
to the redox conditions of the environment. The geochemical
composition of biotite is often used to discuss its indicative role
in granite ore enrichment and mineralization. (Rasmussen and
Mortensen, 2013; Maydagán et al., 2016; Azadbakht et al., 2017).
Furthermore, extensive arguments have been made for its role
in Cu-, Sn-, and W-bearing granites (Sarjoughian et al., 2015;
Tang et al., 2019; Yin et al., 2019). However, studies on U-bearing
granites are still limited, andwhether biotite can serve as an indicator
mineral for U-bearing granites requires further investigation.

Previous studies have identified significant geochemical
differences in biotite between U-bearing and non-U-bearing
granites in South China, highlighting their relevance to U
mineralization potential (Chen et al., 2010; Zhang et al., 2011;
Chen et al., 2012; Gao et al., 2014; Hu et al., 2014; Zhao K. D. et al.,
2016; Zhang et al., 2017a; Zhang et al., 2017b; Zhong et al., 2017;
Li et al., 2021; Wan et al., 2022). Biotite in U-bearing granites is
typically characterized by lower crystallization temperatures and
reduced oxygen fugacity, conditions that promote U enrichment.
Despite its significance as a representative U-bearing granite in
South China, the Motianling pluton has received limited systematic
investigation with regard to the geochemical characteristics
of its biotite. The Motianling pluton is generally considered
to have formed around 825 to 800 Ma (Zhao et al., 2013;
Song et al., 2015; Xu et al., 2019). It is intriguing to explore whether
the U mineralization potential differs between the coarse-grained
and medium-grained granites, which represent different magmatic
facies within the Motianling pluton.

FIGURE 1
Simplified geological map of South China (Wang et al., 2006).

This study focuses on biotite from the coarse-grained and
medium-grained granites, which constitute the dominant lithologies
of the Motianling pluton. Through comprehensive petrographic
observations and geochemical analyses, the study aims to
elucidate the prospecting significance of biotite geochemistry for
assessing uranium metallogenetic potential within the pluton.
Furthermore, by comparing the geochemical characteristics of
biotite from the two types of granites, the study investigates
variations in their U mineralization potential, thereby providing
deeper insights into the metallogenetic mechanisms of the
Motianling pluton.

2 Geological setting

The Motianling pluton is situated at the southwest edge of the
Jiangnan orogenic belt, at the intersection of the Yangtze Block
and the Cathaysia Block (Figure 1). It belongs to the Jiyang domal
anticline core within the JiuWanDashan uplift.

The Jiangnan orogenic belt has experienced multiple phases
of tectonic orogeny, including the Sibao Orogeny, the Caledonian
Orogeny, the Hercynian - Indosinian Orogeny, and the Yanshanian
Orogeny - Himalayan Orogeny, among others (Zhang et al., 2013).
The study area is strongly influenced by theCaledonianOrogeny and
the Yanshanian Orogeny (Qiu et al., 2020).

During the late stage of the Paleproterozoic, the South China
region gradually evolved into two continental blocks, the proto-
Cathaysia and the proto-Yangtze, with the Paleo-South China
Ocean situated between them (Wang et al., 2024b). During the
Sibao Orogeny, the Nanyang terrane subducted toward the Yangtze
Plate, forming the Jiangnan Proterozoic trench-arc-basin tectonic
system (Yao et al., 2019; Chen F. L. et al., 2024). Due to the
nearly north-south compression between the Cathaysia Plate and
the Yangtze Plate, the Sibao Group strata underwent axial near
east-west folding deformation and thrusting, accompanied by a
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series of metamorphic processes, migmatization, and magmatic
activities (Shu et al., 2021). This region developed an island arc
accretionary belt, where mantle-derived magma mixed with crustal
source materials to form subduction island arc-type hybridized
magmatic rocks, while large-scale post-collisional granite intrusions
produced plutons such as Motianling (Sanfang) and Yuanbaoshan
(Yao et al., 2019). Subsequently, through tectonic evolutions such as
theCaledonian andYanshanianOrogeny, the fold orientations in the
region shifted to a NNE-trending structures (Meng et al., 2024).

The basement in the Motianling pluton area consists of
Proterozoic formations (including the Sibao Group, Danzhou
Group, Nanhua System, and Sinian System) and Early Paleozoic
strata (Cambrian, Ordovician, and locally exposed Silurian).
The overlying strata, composed predominantly of Devonian
sandy conglomerates and carbonate rocks, exhibit discontinuous
sedimentary facies (Zhao et al., 2018).Moreover, in some local areas,
continental extensional basins have developed, where Cretaceous
conglomerates and mudstones were deposited. The Motianling
pluton intrudes the Sibao Group and partially penetrates the lower
DanzhouGroup (Figure 2).The SibaoGroup underlies theDanzhou
Group, exhibiting angular or parallel unconformity. It is composed
of meta-sandstone and mudstone interbedded with intermediate
to basic lava, volcanic clastic rocks, and layered or quasi-layered
mafic-ultramafic rocks. The Sibao Group outcrops around the
Motianling pluton, with a thickness exceeding 5,700 m. The overall
attitude of the strata is that they dip away from the pluton, and
from bottom to top, they are divided into the Jiuxiao, Wentong,
and Yuxi groups (Wang et al., 2024a). The lithology of the Danzhou
Group comprises metasandstone and metamudstone, with a small
proportion of carbonate rock. It is distributed on the northeastern
periphery of the Motianling pluton, near the Cuili area, as well as in
the southwestern and southeastern parts, with a thickness ranging
from approximately 963–4,780 m, and is divided into the Baizhu,
Hetong, and Gongdong groups (Wang et al., 2024a). Magmatic
rocks are widely distributed in the area, primarily consisting of
intrusive and extrusive rocks from the Middle Proterozoic Sibao
orogeny, Neoproterozoic Xuefeng orogeny, andCaledonian orogeny.
The area is characterized by developed fault systems, including
NE-trending and NW-trending structures. Four major NNE-
trending transpression faults, arranged in an east-to-west sequence
as follows: the Wuzhishan fault, Gaowu fault, Zishanping fault,
and Mamuling fault. The NW-trending faults, which are smaller in
scale and later in time, are more numerous and primarily consist of
transtensional fault.

The exposed surface area of the pluton in the region spans
approximately 955 km2, presenting a NNE-trending elliptical shape.
The pluton is clearly zoned into facies and exhibits gradual zoning.
Based on previous studies, the pluton can be divided into the
central facies, transitional facies, transitional edge facies, and
marginal facies (Xu et al., 2019). The central phase is located at the
core of the pluton and is characterized by coarse-grained biotite
granite. The transitional phase occurs at the edges of the pluton,
adjacent to faults and depressions, and is predominantly composed
of mediumgrained biotite granite. The transitional edge phase is
distributed between the core and the periphery of the pluton,
covering the largest area, and ismainly composed ofmedium to fine-
grained biotite granite.Themarginal phase occupies the periphery of
the pluton and the peaks of the highmountains, consistingmainly of

fine-grained biotite granite. Additionally, in localized areas, gneissic
coarse-to medium-coarse-grained porphyritic biotite granite can be
observed within the pluton.

More than 20 uranium deposits (mineralization points) have
been discovered within theMotianling pluton, primarily distributed
in its eastern and southwestern parts, all aligned along the fault
trends within the pluton (Figure 2), with the Xincun deposit and the
Daliang deposit being the most typical. Within the coarse-grained
granite of the Motianling pluton at the Xincun deposit, economic U
mineralization bodies are concentrated along the Wuzhishan Fault;
in parts of the mining area, fine-grained granite from the Sibao
orogeny and banded remnants of biotite-quartz schist are exposed.
In total, there are 81 mineralization bodies, ranging from 10 to
306 m in length, with considerable variations in scale, exhibiting
vein-like and lenticular forms (Wang et al., 2024a). Its genesis is
generally considered to be a hydrothermal uranium deposit, formed
against the backdrop of lithospheric extension and thinning during
the Cretaceous–Paleogene (Qiu et al., 2018; Wang et al., 2024a).
The Daliang deposit is located along the contact zone between the
granite body at the southwestern margin of the Motianling pluton
and lightly metamorphosed rocks, primarily occurring within the
medium-grained biotite granite, with the outcropping strata in
the deposit area belonging to the Jiuxiao Group of the Sibao
Group. There are over 100 mineralization bodies, each less than
1 m thick, extending 40–80 m along strike and reaching depths of
60–200 m, exhibiting stringer-type, vein-type, and lenticular forms
(Qiu et al., 2015). The genesis of the Daliang deposit is analogous
to the Xincun deposit, and it is categorized as a hydrothermal
uranium deposit (Qiu et al., 2018).

3 Sample characterization and
methods of analysis and testing

3.1 Sample characteristics

The samples analyzed in this study were carefully selected
from fresh, representative granite specimens collected from the
Motianling pluton. The coarse-grained granite sample exhibits a
grayish-white, coarse-grained, porphyaceous texture with block-
like features (Figures 3A, C). Its primary minerals consist of K-
feldspar, plagioclase, quartz, and biotite. In the coarse-grained
granite, biotite appears as subhedral to euhedral, sheet-like crystals,
with perfect cleavage, positive and moderate relief, ranging in
color from yellowish-green to brown, and displaying strong
pleochroism. It occurs in symbiotic intergrowth or embayment
relationships with muscovite, while hosting accessory minerals
such as zircon (Figure 3E). The medium-grained granites exhibit
a grayish-white, medium-grained, subhedral granular texture with
block-like features (Figures 3B, D). The predominant minerals in
these granites consist of K-feldspar, quartz, biotite, muscovite, and
a minor amount of tourmaline. Biotite in the medium-grained
granites appears subhedral, sheet-like, with perfect cleavage, positive
andmoderate relief, typically yellowish-brown in color, and showing
strong pleochroism. There is no evident inclusion relationship with
accessory minerals (Figure 3F).
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FIGURE 2
Geological map of the Motianling area (Xu et al., 2019).

3.2 Analysis methods

Grind all selected rock samples into probe sections. Following
detailed microscopic observation, fresh and unaltered biotite grains

were selected for electron microprobe analysis (EMPA). Sample
testing was completed byWuhan Shangpu Analysis Technology Co.,
Ltd. The instrument used was the JXA-8230 electron microprobe,
and the testing conditions were: accelerated voltage of 15kV, probe
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FIGURE 3
Field outcrops (a, b), hand specimens (c, d), and microscopic features (e, f) of the Motianling granite pluton Bt: Biotite; Q: Quartz; Mus: Muscovite; Pl:
plagioclase; Kf: K-feldspar.

current of 1 × 10-8 A, counting time of 15s, beam spot diameter of
5 μm. The standard sample adopts the silicate mineral and oxide
standard sample from SPI Company in the United States, and the
calibration method is the ZAF correction method.The biotite probe
data is calculated based on 22 oxygen atoms to calculate their cation
numbers and related parameters. Fe2+ and Fe3+ values were derived
using the method of Lin and Peng (1994). The EMPA results and
calculated parameters are presented in Tables 1, 2.

4 Results

The study obtained a total of 41 valid data points. Among these,
21 valid data points were obtained from biotite in coarse-grained

granite. And 20 valid data points were obtained from biotite in
medium-grained granite (Table. 1 and 2). It is evident that the
biotite samples from Motianling pluton exhibit elevated levels
of Al (16.62–18.5wt%) and Fe (22.88–30.02wt%), with relatively
low concentrations of Ti (1.37–3.04wt%) and Mg (1.41–6.99wt%).
In coarse-grained granite biotite, compositional ranges are: Fe
(22.88–26.15 wt%; average 24.15 wt%), Al (16.62–17.76 wt%;
average 17.30 wt%), Mg (4.52–6.99 wt%; average 5.79 wt%), and
Ti (1.37–3.04 wt%; average 2.43 wt%). And in mediumgrained
granite biotite compositional ranges are: Fe (27.96–30.02 wt%;
average 29.02 wt%), Al (17.78–18.50 wt%; average 18.05 wt%), Mg
(1.41–2.01 wt%; average 1.53 wt%) and Ti (1.43–2.03 wt%; average
1.82 wt%). Based on biotite compositional variation diagram
(Figure 4), the elemental ranges in biotite are generally relatively
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concentrated; only the Ti, Mg, and Fe content ranges in biotite from
coarse-grained granite are relatively wide, while in mediumgrained
granite, only the Fe content range is relatively wide. The Ti, Al, Mg,
K, and Fe contents in biotite differ significantly between the two
types of granite. Medium-grained granite biotite is enriched in Fe
and Al, but poor in Ti and Mg compared to coarse-grained granite
biotite. According to the biotite classification diagram (Foster, 1960).
The biotite in coarse-grained granite primarily falls within the
domain of Fe-biotite, while the biotite in medium-grained granite
predominantly falls within the domain of siderophyllite (Figure 5).
Significant compositional divergence in biotite is found between the
two granite lithologies.

5 Discussion

5.1 Biotite genesis types

Based on genetic classification, biotite can be categorized into
magmatic biotite, hydrothermal metasomatic biotite (recrystallized
biotite), and hydrothermal neobiotite (Jacobs and Parry, 1976;
Tang et al., 2017; Wan et al., 2022). There are significant differences
in petrographic and mineral chemistry between magmatic biotite
and hydrothermal biotite. In terms of petrography, the biotite
found in the granite of the Motianling pluton typically occurs
in sheet-like euhedral to Subhedral form, exhibiting serrated and
fractured features, and often enclosing early accessory minerals
(Figures 3E, F). This biotite is classified as magmatic biotite (Selby
and Nesbitt, 2000; Tang et al., 2017). Magmatic biotite has a
moderate Ti ion number (0.20<Ti < 0.55) in terms of mineral
chemical properties, with XMg values ranging from 0.30 to 0.55
(Liu et al., 2010). Other studies indicate that the Mg/Fe ratio of
magmatic biotite is less than 1.0, whereas that of altered biotite is
more than 1.5 and Fe3+/Fe2+is less than 0.3 (Beane, 1974).The Ti ion
number of biotite in the coarse-grained granite ofMotianling ranges
from 0.16 to 0.36 (average 0.28), with XMg values ranging from 0.24
to 0.35 (average 0.30), and Mg/Fe values ranging from 0.31 to 0.54
(average 0.43). For the medium-grained granite, the Ti ion number
of biotite ranges from 0.17 to 0.25 (average 0.22), with XMg values
ranging from 0.08 to 0.11 (average 0.09), and Mg/Fe values ranging
from 0.09 to 0.12 (average 0.0.9). Besides, the Fe2+/(Fe2++Mg2+)
ratio in biotite from coarse-grained granite ranges from 0.62 to 0.74;
in medium-grained granite, it ranges from 0.88 to 0.91. The narrow
range of these ratios suggests that these biotites are less affected
by later hydrothermal events (Stone, 2000). And they are similar
to the characteristics of biotite in typical uranium-bearing granites
in South China (>0.65) (Chen et al., 2012; Zhang et al., 2017a).
Based on the petrographic andmineral chemical analysis, the biotite
in both coarse-grained and medium-grained granites is considered
magmatic biotite.

5.2 Comparison of biotite types and biotite
in granite of different origins

Geochemical characteristics of biotite (such as Mg, Fe and
Al content) can provide important information for the material
source and genesis of granite magma (Abdel and Abdel, 1994;
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FIGURE 4
Biotite element characteristic diagram The whisker lines in the
diagram represent the range from the maximum to the minimum
values, and the numbers indicate the mean values.

FIGURE 5
Biotite classification diagram (Foster, 1960).

Wan et al., 2022). Research has indicated that the mafic components
of biotite are closely related to the material source of granite magma.
The rock type diagram (Figure 6) can be utilized to estimate the
type of granite, demonstrating that data points for both coarse-
grained and mediumgrained granite biotite are situated within the
peraluminous suites area (Abdel and Abdel, 1994). This indicates
that the Motianling granite belongs to the peraluminous granite
category. Research has shown that the geological environment
of biotite origin can be determined by the source identification
diagram (Figure 7) (Zhou, 1986). The diagram indicates that the
biotite from coarse-grained granite and medium-grained granite
is located in the crust source region. The iron magnesium index
(MF) of biotite, MF = Mg/(Mg + Fe2++Fe3++Mn), can be used to
distinguish granite genesis (Zhao et al., 1983). In the transformation
type granites (S-type granites), the MF of biotite is less than 0.38.
In the coarse-grained granite, the MF of biotite ranges from 0.23
to 0.34 (average 0.30). In the medium-grained granite, the MF
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FIGURE 6
Rock type diagram (Abdel and Abdel, 1994).

FIGURE 7
Source identification diagram (Zhou, 1986).

of biotite ranges from 0.08 to 0.11 (average 0.08). This suggests
that the source rocks of the Motianling granite is pelitic rocks.
During the crystallization of coarse-grained granite, the magma
incorporated some Mg-rich material, implying that the source
region may contain some sandstone. The medium-grained granite
is richer in Fe, indicating more extensive magma evolution. In the
modified granites (S-type granites), biotite exhibits low magnesium
and high iron, aluminum, and lithium content. The types of
biotite include Fe-biotite, siderophyllite, and Fe-muscovite (Liu,
1984). The biotite in the Motianling granite is also characterized
by high Fe content and low Mg content. The predominant
types of biotite are Fe-biotite and siderophyllite. All these
characteristics also confirm that the Motianling granite belongs
to S-type granite.

Based on the major and trace element characteristics of granite
from the Motianling pluton, researchers have concluded in recent
years that it is S-type granite (Xu et al., 2019; Wang et al., 2020).
Furthermore, studies that combine zircon geochronology with trace
element data have discussed the tectonic evolution of theMotianling
pluton and concluded that it formed during the late collisional
phase of the orogenic process (Wang et al., 2006; Song et al., 2015).
These studies indicate that, Motianling pluton genesis should be
attributed to the upwelling of deep mantle material during the late
collision stage between the Cathaysia-Yangtze Block, resulting in
partial melting of the overlying lithosphere and continental crust.
The characteristics of biotite reflected in this study are consistent
with the rock genesis identified in previous research.

5.3 Physical and chemical conditions of
magma crystallization reflected by biotite

5.3.1 Temperature
Henry et al. (2005) found a linear relationship between Ti

content, temperature, and XMg, and summarized the empirical
formula for temperature: t = [ln (Ti)-a-c (XMg)3/b]0.333

Where t is temperature (°C), Ti is the number of atoms after the
number of cations calculated in 22 O atoms, XMg = Mg/(Mg + Fe),
a = −2.3594, b = 4.6482 × 10−9, c = -1.7283. The application ranges
of XMg, Ti, and t are 0.27–1.000, 0.040 to 0.600, and 400°C–800°C,
respectively. AlthoughHenry suggested that this formula be used for
metamorphic rocks, in recent years, several studies have applied it to
igneous rocks (such as granite) (Tang et al., 2019; Azadbakht et al.,
2020; Zhang et al., 2021; Taghavi et al., 2022; Zhang et al., 2023).

In the coarse-grained granite, the XMg value of biotite ranges
from 0.24 to 0.35 (average 0.30), while the Ti content ranges from
0.16 to 0.36 (average 0.28). In the medium-grained granite, the
XMg value of biotite ranges from 0.08 to 0.11 (average 0.09), and
the Ti content ranges from 0.17 to 0.25 (average 0.22). The results
obtained from the coarse-grained granite meet the prerequisites for
the application of this formula, whereas those from the medium-
grained granite can only serve as a reference. According to the
calculations, the crystallization temperature of the coarse-grained
granite ranges from 501°C to 661°C (average 618°C), while that of
the medium-grained granite ranges from 507°C to 586°C (average
562°C).These results are consistent with temperature estimates from
the crystallization temperature diagram (Figure 8), suggesting that
the overall crystallization temperature of the Motianling granite is
relatively low, with the coarse-grained granite exhibiting slightly
elevated crystallization temperatures compared to the medium-
grained granite.

5.3.2 Pressure
Based on the good linear relationship between granite biotiteAlT

and diagenetic pressure, Uchida proposed a formula for calculating
pressure using biotite AlT (Uchida et al., 2007):

P (kbar) = 3.03×A1T − 6.53 (±3.33)

Wherein AlT is the total number of Al cations calculated based
on 22 oxygen atoms of biotite.
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FIGURE 8
Crystallization temperature estimation diagram (Henry et al., 2005).

According to the formula, the solidification pressure range for
the coarse-grained granite is estimated at 2.84–3.32 kbar (average
3.07 kbar). For the medium-grained granite, the solidification
pressure range is estimated at 3.70–4.08 kbar (average 3.86 kbar).
The diagenetic pressure of the medium-grained granite in the
Motianling pluton is greater than that of the coarse-grained granite.

5.3.3 Oxygen fugacity
During the crystallization process of magmatic biotite, biotite

formed in high oxygen fugacity environments tends to have a
higher Mg content, while biotite formed in low oxygen fugacity
environments tends to have a higher Fe content (Henry et al.,
2005). The six-coordinated aluminum AlVI of biotite is an indicator
of the oxygen fugacity of magma crystallization, and a low AlVI

value suggests a high oxygen fugacity in the rock formation
environment (Buddington and Lindsley, 1964). The biotite in the
coarse-grained and medium-grained granites exhibit high Fe and
low Mg characteristics (Table 2). Considering that the coarse-
grained granite of biotite exhibits an AlVI (apfu) range from 0.59
to 0.74 (average 0.68), and the medium-grained granite of biotite
exhibits an AlVI (apfu) range from 0.75 to 0.89 (average 0.82), it
can be inferred that the oxygen fugacity of the Motianling granite
was generally low, but that the oxygen fugacity of the coarse-grained
granite was higher than that of the medium-grained granite.

Previous studies have shown that Fe3+, Fe2+, and Mg2+

values in biotite coexisting with magnetite and potassium feldspar
can be used to estimate oxygen fugacity during crystallization
(David and Hans, 1965). According to the biotite oxygen fugacity
estimation diagram (Figure 9), all biotite samples from the coarse-
grained granite fall near the NNO (Ni-NiO) buffer line, while all
biotite samples from the medium-grained granite fall near the FMQ
(Fe2SiO4-SiO2-Fe3O4) buffer line.

Based on the empirical formula for oxygen fugacity established
by previous studies, it is possible to quantify the oxygen fugacity
of plutons (Burkhard, 1991):

‐1/2 log fO2 = 4819/T+ 6.69+ 3logXFe2+‐ log fH2O

‐logasan‐logamt‐0.011(P‐1)/T,

Among the variables, T represents temperature in Kelvin, P is
measured in bar, asan denotes the activity of potassium feldspar,

FIGURE 9
Biotite oxygen fugacity estimation diagram (David and Hans, 1965).

and amt indicates the activity of magnetite. The equation logfH2O
= 2.45 + 0.001T (P = 4.5 kbar) is also used, where logfH2O is the
logarithm of the fugacity of water. As ilmenite-series granite lacks
magnetite minerals, amt is assumed to be 0.2 (Czamanske et al.,
1981). Whenever the temperature exceeds 600 °C, asan must be at
least 0.75. By applying the above formula, the oxygen fugacity of
the coarse-grained granite ranges from −18.91 to −16.38 (average
−17.14). Conversely, the oxygen fugacity of the medium-grained
granite ranges from −19.63 to −18.29 (average −18.71).These results
are consistent with the biotite six-fold coordination aluminum
(AlVI) properties and the biotite oxygen fugacity estimation diagram
results, indicating that the oxygen fugacity of theMotianling granite
magma is generally low and that the oxygen fugacity of the coarse-
grained granite is higher than that of the medium-grained granite.

5.4 Comparison of biotite temperature and
pressure, oxygen fugacity, and uranium
producing granite

Uranium-producing granites in South China are mainly
distributed in the Jintan pluton, Yangtze River pluton, Douzhashan
pluton, Zhuguangshan pluton, Longyuanba pluton, Fucheng pluton,
Dafushan pluton, and Xiazhuang pluton.

(Chen et al., 2010; Zhang et al., 2011; Gao et al., 2014; Hu et al.,
2014; Gao, 2016; Zhao Y. D. et al., 2016; Zhang et al., 2017b;
Zhong et al., 2017; Tao et al., 2020; Pei, 2022). Previous studies
on biotite in South China U-bearing granites have shown that the
biotite in these granites is enriched in Fe, Al, and F, and that its
types include Fe-biotite and siderophyllite, with the latter being
predominant.Thebiotite characteristics of theMotianling pluton are
consistent with those of biotite in South China U-bearing granites.
The biotite in U-bearing granites in South China (Table 3) has
revealed that the crystallization temperature ranges from 499°C
to 722°C, the pressure ranges from 0.84 to 5.91 kbar, and the
oxygen fugacity ranges between −19.67 and −16.58. It is evident
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TABLE 3 Characteristics of temperature, pressure, and oxygen fugacity of uranium producing granite in South China.

Granitic mass P (kbar) T (°C) logfO2

Coarse-grained granite of the Motianling rock mass 2.84∼3.32 501∼661 −18.91∼-16.38

Medium-grained granite of the Motianling rock mass 3.70∼4.08 507∼586 −19.63∼-18.29

Jintan rock mass (Tao et al., 2020) 2.86∼3.69 629∼691 −18.30∼-17.02

Yangtze River rock mass (Zhang et al., 2017b) 3.61∼4.41 599∼653 −19.23∼-18.44

Douzhashan rock mass (Hu et al., 2014; Pei, 2022) 2.23∼5.00 576∼696 −19.23∼-17.89

Longyuanba rock mass (Zhong et al., 2017) 0.84∼1.96 652∼704 −18.62∼-17.94

Fucheng rock mass (Zhao et al., 2016b; Gao, 2016) 2.95∼5.91 499∼697 −18.84∼-17.74

Zhuguangshan rock mass (Gao et al., 2014; Zhang et al., 2011) 1.50∼4.16 585∼673 −19.67∼-18.27

Dafushan rock mass (Zhang et al., 2011) Average 4.95 Average 596 Average −19.07

Xiazhuang rock mass (Chen et al., 2010; Gao, 2016) 2.65∼2.87 565∼660 −19.59∼-17.95

The pressure value is estimated based on the cited probe data; Temperature (T), pressure (P), and oxygen fugacity (logfO2) are estimated in Section 4.2.

that U-bearing granites in South China exhibit a wide range of
temperature, pressure, and oxygen fugacity, but the ranges for
each pluton are relatively concentrated. Overall, the temperature,
pressure, and oxygen fugacity of theMotianling pluton are consistent
with the ranges in U-bearing granites in South China. Furthermore,
they closely resemble the characteristics of the Fucheng pluton in
terms of temperature, pressure, and oxygen fugacity, aligning with
the low-temperature and low-oxygen fugacity features typical of
U-bearing granites.

The crystallization temperature of the coarse-grained granite in
the Motianling pluton ranges from 501°C to 661°C, pressure ranges
from 2.84 to 3.32 kbar, and oxygen fugacity ranges from −18.91
to −16.38. On the other hand, the crystallization temperature of
the medium-grained granite ranges from 507°C to 586°C, pressure
ranges from 3.70 to 4.08 kbar, and oxygen fugacity ranges from
−19.63 to −18.29.The characteristics of themedium-grained granite
are more consistent with the typical temperature, pressure, and
oxygen fugacity features observed in most South China U-bearing
granite formations.

5.5 Enlightenment on U enrichment in
granite

Research has determined that Motianling granite is classified as
an S-type granite, resulting from partial mudstonemelting (Li, 1999;
Wang et al., 2006; Fang et al., 2012; Song et al., 2015). Argillaceous
rocks are known to contain high levels of organic matter, which
under reduced conditions, the organic matter and clay minerals
within mudstone often absorb substantial amounts of uranium,
illustrating uranium-rich characteristics (Zhao K. D. et al., 2016).
This indicates that the Motianling granite has conditions conducive
to U enrichment. Partial melting of metapelitic rocks.

After organizing the geochemical data of the two types of
granites from the Motianling pluton (Table 4) (Fang et al. 2012,

Xu et al., 2019). The U content in the coarse-grained granite ranges
from 4.84 × 10−6 to 58.20 × 10−6 (average 19.57 × 10−6), with a
Th/U ratio ranging from 0.25 to 2.52 (average 1.69); the U content
in the medium-grained granite ranges from 5.37 × 10−6 to 127.00 ×
10−6 (average 36.85 × 10−6), with a Th/U ratio ranging from 0.09
to 2.53 (average 1.08). U-enriched granites are often considered
the primary source of uranium for the formation of granite-type
uranium deposits (Bonnetti et al., 2018). The U content in both
types of granite is several to tens of times higher than the average
U content in the upper continental crust worldwide (2.8 × 10−6),
suggesting that these granites have the potential to serve as uranium
source rocks for uranium deposits. The Th/U ratio plays a crucial
role in determining which U-bearing accessory minerals crystallize
from the magma (Cuney, 2014). High U content and low Th/U
ratios favor the crystallization of crystalline uranium minerals,
which are considered a potential source of uranium in granite-type
uranium deposits (Hu et al., 2012). The medium-grained granite
of the Motianling pluton has higher U content and lower Th/U
ratios compared to the coarse-grained granite (Figure 10), indicating
that the medium-grained granite has greater potential as a uranium
source than the coarse-grained granite.

The oxygen fugacity duringmagma crystallization inMotianling
granite falls below the Fe3O4-Fe2O3 (HM) buffer line (Figure 9).
Under such conditions, uranium mainly exists in the form of U4+.
In an F-rich system, U4+ tends to combine with F to form complexes
that migrate and enrich in the magma system (Chen et al., 2010).
In the later stages of magma evolution, U4+ mostly combines with
lithophile elements to form U-rich minerals (Ling, 2011; Hu et al.,
2014). Under relatively low-temperature (<1,000°C) conditions, the
solubility of U4+ in magma is lower, making it easier to precipitate.

(Hazen et al., 2009). Because U4+ has ionic radii and
electronegativity similar to those of Th4+, REE3+, Zr4+, Ce4+, and
Ca2+, during magmatic differentiation—where uranium, being
highly incompatible, is continuously enriched in the residual
melt—it is incorporated into accessory minerals such as monazite,
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TABLE 4 Th and U characteristics of granites in the Motianling rock mass.

Sample Lithology Th U Th/U

M029-1 Coarse-grained granite 12.20 4.84 2.52

M029-4 Coarse-grained granite 15.60 8.57 1.82

M038-1 Coarse-grained granite 14.40 6.68 2.16

Zk2-7 Coarse-grained granite 14.40 58.20 0.25

M044 Medium coarse-grained granite 12.60 6.36 1.98

M041 Medium coarse-grained granite 13.60 5.37 2.53

M078-6 Medium coarse-grained granite 12.80 77.60 0.16

M078-7 Medium coarse-grained granite 11.20 16.40 0.68

M078-1 Medium coarse-grained granite 12.90 10.00 1.29

M078-5 Medium coarse-grained granite 11.70 127.00 0.09

ZK1-5 Medium-grained granite 12.40 15.20 0.82

Data for samples M029–1, M044, M041, M078–6, M078–7, M078–1, M078-5, and ZK1-5 are from reference (Xv et al., 2019), while data for samples M029–4, M038-1, and ZK2-7 are from
reference (Fang et al., 2012).

FIGURE 10
Th-U content relationship diagram.

allanite, xenotime, zircon, and apatite via isomorphic substitution
(Zhang, 1990; Cuney, 2014). The remaining U combines with
free oxygen O2−, resulting in the formation of uraninite. Previous
research has shown that granites may act as a possible source of U in
granite-type U deposits (Hu et al., 2012). An environment with low
oxygen fugacity, corresponding to relatively reducing conditions,
is conducive to the preservation of U-rich minerals. Furthermore,
studies have shown that uraniummigration occurs at relatively high
temperatures (Hazen et al., 2009). The cooling of magma facilitates
the retention of uranium in granite, thereby providing an ample
uranium source for subsequent mineralization (Wang et al., 2022).

Coarse-grained granite, as a product of the early phase of
late stage magmatic evolution, may be significantly influenced
by source-rocks characteristics. The U enrichment observed
in coarse-grained granite likely reflects the contribution of U
adsorption by argillaceous rocks within the source area. In contrast,
medium-grained granite, which crystallizes at a late phase of
late stage magmatic, exhibits higher U content than coarse-
grained granite. This suggests that relatively low oxygen fugacity
and elevated concentrations of the volatile component F play a
crucial role in U enrichment during the later stages of magmatic
evolution. These findings underscore the indicative significance of
biotite’s geochemical characteristics in evaluating the U enrichment
potential of granites.

Based on the discussion above, the Motianling granite exhibits
favorable source and physical conditions for U enrichment.
However, the overall low F content in biotite within the Motianling
granite may affect U migration and enrichment, and it may also
suggest that U complexes are not the primary mechanism for U
enrichment in the.

Motianling pluton. Within the Motianling pluton, the
medium-grained granite, compared to the coarse-grained granite,
demonstrates higher U content, lower Th/U ratios, lower
crystallization temperatures and oxygen fugacity, and higher F
content.This implies that themedium-grained granite inMotianling
pluton is more likely to enrich U.

6 Conclusion

By conducting geochemical analysis and in-depth discussion of
biotite in the Motianling pluton, we have obtained the following
insights.
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(1) In the Motianling coarse-grained granite, biotite is
predominantly Fe-biotite, while in the medium-grained
granite, it is predominantly siderophyllite. Genetically, biotite
in both the coarse- and medium-grained granites of the
Motianling pluton is classified asmagmatic biotite. Chemically,
the biotite in the medium-grained granite exhibits relatively
higher Al and Fe content but lower Mg and Ti content
compared to that in the coarse-grained granite.

(2) The geochemical characteristics of biotite indicate that
the Motianling granite belongs to the peraluminous
suite, with granite originating from a crustal source.
The crystallization environment is characterized by low
oxygen fugacity and low crystallization temperatures, which
provides indicative meaning into the U enrichment potential
of the granite.

(3) Biotite in the medium-grained granite of Motianling
pluton exhibits higher U content, lower Th/U ratios, lower
temperature and lower oxygen fugacity compared to biotite
in the coarse-grained granite. This indicates that the medium-
grained granite is more conducive to U enrichment, suggesting
a higher U mineralization potential.
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