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Matrix factorization techniques, such as principal component analysis (PCA) and
independent component analysis (ICA), are widely used to extract geological
processes from geochemical data. However, their effectiveness in accurately
identifying geological processes remains uncertain due to the heuristic nature
of these methods. This study introduces a synthetic data-based framework to
evaluate the validity of matrix factorization for geochemical process extraction.
By constructing a forward model that simulates geochemical weathering, we
generated synthetic datasets replicating real-world geochemical compositions,
incorporating both the elemental leaching during fluid-rock interactions
and the compositional heterogeneity of the original rocks. These datasets
were analyzed using PCA and ICA, with preprocessing steps that included
standardization and log-ratio transformation to address the challenges posed
by compositional data. The results indicate that PCA and ICA effectively
extracted the two key geological processes -elemental leaching and original
rock heterogeneity-from the synthetic datasets. Among these methods, ICA
combined with log-ratio transformation provided the most accurate separation
of independent geochemical processes, particularly under ideal conditions with
sufficient samples. To quantitatively validate the extracted basis vectors, we
estimated elemental mobility parameters during weathering and compared
themwith known values in the synthetic dataset, demonstrating the applicability
of our approach in quantifying geological processes. This study highlights
the advantages of a bilateral approach that integrates forward modeling
and inversion analysis to enhance the reliability of geochemical process
interpretation. The proposed framework offers a systematic methodology
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for identifying and quantifying underlying geological processes from high-
dimensional geochemical data, with potential applications in geochemistry,
environmental science, and resource exploration.

KEYWORDS

matrix factorization, geological interpretation, forward, inversion, weathering,
geochemical data

1 Introduction

Geological processes are critical in shaping the Earth’s surface,
influencing natural resource distribution, environmental stability,
and ecosystem dynamics. For example, chemical weathering is
a key process in soil formation, substantially impacting Earth’s
surface dynamics and regional geological history (e.g., Bland and
Rolls, 2016). Understanding weathering is crucial for assessing
environmental issues, such as heavy metal contamination in
soils and tracking element distribution in geological processes
from engineering and scientific perspectives. However, advanced
analytical methods are required to interpret the underlying patterns
due to the complexity of these processes and the presence ofmultiple
overlapping processes.

Matrix factorization, or matrix decomposition, is a vital
inversion method for extracting geological processes from
geochemical data. Various matrix factorization methods have
been applied to the geochemical datasets of soil as well as
sedimentary, igneous, and metamorphic rocks. These include
principal component analysis (PCA) (e.g., Kuwatani et al., 2014;
Ueki and Iwamori, 2017; Nakamura et al., 2018; Nishio et al.,
2022; Chen et al., 2024; Zhao et al., 2024), independent component
analysis (ICA) (e.g., Iwamori and Albarède, 2008; Yasukawa et al.,
2016; Miki et al., 2025), non-negative matrix decomposition (e.g.,
Yoshida et al., 2018; Zekri et al., 2019), and other sophisticated
methods (e.g., Liu et al., 2016; Liu et al., 2019). Moreover, in
matrix factorization, the factors responsible for controlling the
compositional variability of rocks are considered to be separable,
with each attributed to a different geological process (e.g.,
Le Maitre, 1982; Davis and Sampson, 1986).

Although matrix factorization is effective in practical
geochemical analyses, it is heuristic, relying on empirical insights,
and exploratory, seeking to uncover underlying patterns: it remains
unclear how these methods extract relevant processes or which
method is the most effective. Moreover, interpreting the obtained
basis vector is a qualitative procedure that relies on the intuition
and experience of researchers. Furthermore, it is difficult to evaluate
whether these methods appropriately extract geological processes as
basis vectors, as they are typically applied to real-world geochemical
datasets in which verifying the true geological processes is nearly
impossible in many cases.

The only quantitative method for verifying the effectiveness
of an inverse analysis technique is synthetic-data analysis. In
this approach, synthetic observation data that mimics real-world
physical processes are generated and used to examine whether the
original processes and parameters can be reconstructed. Although
this framework is common in mathematical sciences, it has rarely
been applied in Earth-material-science fields such as geochemistry

and geology, with a few notable exceptions (e.g., Yang and
Cheng, 2015).

This study aims 1) to introduce a framework that integrates
forward modeling and inversion analysis to assess the effectiveness
of matrix decomposition in geochemical-process extraction and
2) to demonstrate that PCA and ICA can separate and extract
geological processes from the synthetic chemical compositional
data of weathered rocks. In the following sections, a forward
model simulating the chemical weathering of rocks is constructed,
and a synthetic dataset is generated in Section 2.1. Next, the
fundamental concepts and mathematical procedures of matrix
factorization as an inversion analysis technique for geochemical
process extraction are explained in Section 2.2. Thereafter, PCA
and ICA are applied to the synthetic data, and their effectiveness
is verified by comparing the results with those of the assumed
true model and its parameters in Section 3. It is important to note
that our objective is not solely to demonstrate the effectiveness
of PCA and ICA for general geochemical weathering problems;
instead, we aim to present a framework for assessing effectiveness
in a specific case study. In the discussion section, we provide a
quantitative interpretation of the extracted basis vectors, compare
the performance of PCA and ICA, discuss applications to real-world
datasets, and propose integrated bilateral approaches for addressing
complex geochemical processes.

2 Methods

2.1 Forward modeling

By constructing a forward model of geochemical weathering,
we can generate synthetic data that simulate the chemical
composition of weathered rocks in natural systems. The factors
controlling chemical composition are assumed to consist of two
primary processes: 1) leaching, which results from chemical
interactions between water and rock, and 2) the compositional
heterogeneity of the original rock. Limiting the analysis to these two
processes enables a simplified yet effective modeling and evaluation
framework, ensuring that the results remain comprehensible and
visually intuitive.

Although this assumption is simplified, it captures the
fundamental processes necessary for extracting information about
chemical weathering from geochemical datasets. Furthermore,
the constructed forward model is a generalized framework for
understanding elemental migration within geological materials.
Given its foundation in geochemical mass transfer, this approach
broadly applies to other geological processes, such as hydrothermal
alteration, sediment diagenesis, and magmatic differentiation,
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all involving element mobility under varying physicochemical
conditions.

2.1.1 Leaching process during weathering
The chemical composition of an altered sample is assumed

to result from the elemental leaching of a fresh, original rock.
Parameters related to element mobility during leaching are
introduced following Anderson and Hawkes (1958) and Ichikuni
(1992). For element i, the following equation defines the relationship
between its concentration Cf

i in the aqueous fluid and its content Cs
i

in the rock or soil.

Cf
i = γi ⋅C

s
i , (1)

where γi represents the relative mobility of element i, quantifying
its tendency to migrate from the solid phase into the aqueous phase
during leaching processes. The value of γi varies depending on the
element’s chemical properties and the prevailing physicochemical
conditions, such as pH and temperature.

In general, TiO2, FeO, and Al2 O3 are low-solubility elements
with low mobility and, therefore, tend to remain in the rock.
In contrast, K2O, Na2O, and CaO are highly soluble elements
with high mobility and thus readily leach from the rock.
According to Equation 1, elemental components dissolve into the
aqueous solution in proportion to their rock content in the rock,
representing the simplest approach to modeling leaching.

If the original rock sample reacts with water and undergoes
weathering, the mass-conservation law of the closed system can be
expressed as:

Cf
i ⋅ϕ
′ +Cs,alt

i ⋅m
alt
total = C

s,ori
i ⋅m

ori
total. (2)

where ϕ′ denotes the mass of water involved in the system,
mori

total represents the total mass of the original rock, Cs,ori
i

is the concentration of element i in the original rock, malt
total

signifies the total mass of the altered (weathered) sample, and
Cs,alt
i is the concentration of element i in the altered sample.

Although weathering in nature is rarely a truly closed system,
ϕ′ can be regarded as the effective amount of water that reacts
with rocks during leaching. By substituting Equation 1 into
Equation 2, we obtain:

Cs,alt
i (γi ⋅ϕ+ r) = C

s,ori
i . (3)

where ϕ represents the normalized effective amount of water,
defined as ϕ ≡ ϕ′/mori

total, and r denotes the total mass change ratio,
defined as r ≡malt

total/m
ori
total. By solving the system of equations

consisting of Equation 3 for all components i = 1,…,n, under the
constant-sum constraint of compositional data (Cs,alt

1 +C
s,alt
2 +⋯+

Cs,alt
n = 1) for unknown variables, Cs,alt

1 ,C
s,alt
2 ,…,C

s,alt
n and r, it is

possible to model the leaching of element i from the original rock
with composition Cs,ori

i based on the amount of water entering and
reacting with the system, ϕ.

Figure 1 illustrates the chemical composition changes in the
altered samples as a function of the water amount ϕ, calculated
using Equation 3. The chemical composition of the original rock
used in this study is based on that of granite rocks reported by
Takahashi and Arakawa (1988), and the relative mobility γi follows
the values reported by Ichikuni (1992) and Yamada et al. (1968)

(Table 1). As ϕ increases, the composition of highly soluble elements
with a large γi, such as CaO, Na2O, and K2O, decreases. In contrast,
the composition of low-solubility elements with a small γi, such as
TiO2, Al2 O3, and FeO, increases. This occurs because composition
is expressed relative to total mass malt

total. In other words, the
elemental content decreases as mass is lost during leaching, causing
the proportion of low-solubility elements remaining in the soil to
increase relative to the total mass. Since natural weathering involves
complex chemical reactions in open, non-equilibrium systems,
the simplified mathematical model (Equation 3) does not strictly
hold in natural environments. However, it provides a fundamental
framework formodeling the leaching process, allowing us to develop
an understanding of the underlying causal relationships.

2.1.2 Compositional heterogeneity in original
rocks and synthetic data

The compositional heterogeneity of original rocks can be
modeled as follows:

Cori,[j]
i =

mori
i + βi ⋅ χ

[j]

mori,[j]
total

, (4)

where Cori,[j]
i represents the content of element i in the original rock

of sample j; mori
i and βi denote the mass and the compositional

variation factor of element i, respectively; and χ[j] is the intensity of
factor βi for sample j. The total mass of the original rock, mori,[j]

total ,
is given by mori,[j]

total ≡ ∑i (m
ori
i + βi ⋅ χ

[j]). In this study, we assume
that the modal variation of biotite contributes to compositional
heterogeneity and that βi can be calculated using the simplified
chemical formula K(FeMg)3AlSi3O8(OH). By incorporating the
above two factors-the leaching process (Equation 3) and original
heterogeneity (Equation 4) under the assumption that they have
no coupling effect, the synthetic chemical composition for the
weathered sample j can be expressed as follows:

C[j]i =
mori

i + βi ⋅ χ
[j]

mori,[j]
total (γi ⋅ϕ

[j] + r[j])
, (5)

where r[j] is the total mass change ratio of sample j and ϕ[j] is its
water amount.

In this study, the chemical compositions of 1,000 synthetic
weathered rocks are generated by randomly varying the amount of
waterϕ and the inhomogeneity of the original granite rock χ, thereby
simulating the composition of natural samples. We consider eight
major elements: SiO2, TiO2, Al2O3, FeO, MgO, CaO, Na2O, and
K2O. Figure 2A presents the assumed true parameters, indicating
that ϕ and χ are independently distributed.Figures 2B–H display
Harker diagrams for the synthetic compositions of 1,000 weathered
rocks. This compositional distribution closely resembles soil in the
Tsukuba area in the Kanto district, Japan (Nakamura et al., 2018),
indicating that our simplifiedmodeling approach can approximately
reproduce seemingly complex natural weathering processes.

In this study, we analyze this synthetic dataset using matrix
factorization methods. However, when applying our model to other
practical problems, it is essential to appropriately adjust parameters
and refine the weathering model to account for various geological
environments and weathering processes. The synthetic dataset has
been uploaded as a CSV file in the Supplementary Materials.
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FIGURE 1
Compositional changes in weathered rock due to the leaching process. The right panel provides a magnified view of the left panel. Elemental symbols
for cations, such as ‘Si’, represent their corresponding oxides (e.g., Si refers to SiO2).

TABLE 1 Relative mobility of element i, γi, assumed in this study. The
values are normalized such that γSi equals 1. These values were estimated
by Ichikuni (1992) using a dataset on the weathering of
quartz diorite (Yamada et al., 1968).

SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O

1.00 0 0.33 0.25 0.89 2.36 2.22 1.83

2.2 Inversion analysis

In the inversion analysis, geological processes are extracted
from the synthetic dataset using matrix factorization. By doing
so, we can evaluate the effectiveness of the proposed method
by comparing the extracted processes and their intensities with
the assumed ones. In this study, we use PCA, the most widely
representative matrix-factorization method and widely used in
geochemistry (e.g., Le Maitre, 1982; Ueki and Iwamori, 2017),
and ICA, a more sophisticated technique commonly employed for
geochemical-process extraction (e.g., Iwamori and Albarède, 2008;
Yasukawa et al., 2016; Akamatsu et al., 2025). Figure 3 shows the
flowchart of the inversion analysis.

2.2.1 Overview of matrix factorization
Geochemical data for a sample, represented as the vector y,

which consists of p dimensional geochemical properties, can be
regarded as a linear combination of multiple geochemical processes
and formulated as:

y = a1x1 + a2x2 +⋯+ aqxq, (6)

where the vector ak represents the p× 1 basis vector corresponding
to each geochemical process; xk denotes the intensity of
the geochemical process associated with ak; and q is the
number of processes. For multiple samples, geochemical
data can be represented as a p× n observation data matrix:

Y(≡ [y[1],y[2],…,y[n]]). Thus, the essence of geochemical-
process extraction can be formulated as the following matrix
decomposition problem:

Y = AX, (7)

where the p× q matrix A consists of the basis vectors ak and is
defined as A ≡ [a1,a2,…aq], and q× n matrix X consists of the
correction of n× 1 score vectors and is defined asX ≡ [x1,x2,…xq]⊤.
In xk, each component j represents the intensity of vector ak for each
sample j, denoted as x[j]k .

The obtained vector a represents the direction of compositional
change corresponding to a geological process. As discussed in the
following sections, the process can be inferred from the basis-vector
structure and its intensities x[j]k by comparing them with a priori
geochemical knowledge and analyzing spatial distributions.

Since the observational dataset consists of chemical-
composition data, isotopic ratios, or other chemical properties, the
value range of each element may vary substantially—sometimes by
several orders of magnitude. Additionally, when using chemical-
composition data, the constant-sum constraint complicates
rigorous quantitative statistical analysis in Euclidean space
(Aitchison, 1986; Filzmoser et al., 2018).Therefore, appropriate data
preprocessing is crucial formaximizing the extraction ofmeaningful
information from high-dimensional datasets.

In this study, we employ two representative data preprocessing
methods: standardization and log-ratio transformation.
Standardization is a widely used normalization technique that
adjusts the distribution of each dimension to have a mean of 0 and a
variance of 1, ensuring equal treatment of all dimensions regardless
of their value ranges. Its main advantage lies in its simplicity, as
it involves an interpretable and computationally efficient linear
transformation. However, a key drawback is the introduction of
pseudo-correlation due to the constant-sum constraint. The log-
ratio transformation maps compositional data to Euclidean space,
addressing the constant-sum constraint and enabling the application
of statistical methods based on Euclid geometry (e.g., Aitchison,
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FIGURE 2
(A) Distribution of the assumed true parameters ϕ and χ. (B)–(H) Harker diagrams for the synthetic compositional data of 1,000 weathered soil samples.
The elemental symbols for cations, such as ‘Si’, represent their corresponding oxides (e.g., Si refers to SiO2), while ‘F2′ denotes ‘FeO’.

FIGURE 3
Flow charts of PCA and ICA analyses using two data preprocessing methods: (A) standardization and (B) isometric log-ratio (ilr) transformation.
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1986; Pawlowsky-Glahn et al., 2015; Filzmoser et al., 2018). Log-
ratio transformations are commonly used as preprocessing steps
for matrix decomposition techniques such as PCA and ICA (e.g.,
von Eynatten et al., 2003; von Eynatten, 2004; Ohta and Arai, 2007;
Filzmoser et al., 2009) Among the family of log-ratio transformation
methods, such as additive log-ratio (alr) and centered log-ratio (clr)
transformations (Aitchison, 1986), we adopt the isometric log-
ratio (ilr) transformation, proposed by Egozcue et al. (2003). The
ilr transformation provides a bijection mapping from a simplex to
real space, preserving distances through isometric mapping. This
allows compositional data in the simplex to be transformed into
an orthogonal basis in Euclidean space, making it highly suitable
for Euclidean-based data analysis. However, the ilr transformation
has a limitation—low interpretability—since transformed values
cannot be intuitively understood. We always perform an inverse
transformation after matrix decomposition to present the results in
the original compositional space to address this.

The main features of PCA and ICA are outlined below. For
detailed descriptions of each method, please refer to the existing
literature (e.g., Hyvärinen and Oja, 2000; Hyvärinen, 2001; Ueki
and Iwamori, 2017; Iwamori et al., 2017). On one hand, PCA
decomposes the matrix A into uncorrelated (orthogonal) basis
vectors a, with a gradual decrease in variance from principal
components (PC1, PC2, …, PCp) based on the number of data
dimensions p. By disregarding PCs with small variances, PCA
enables the extraction of a lower-dimensional subspace, known
as dimensionality reduction. On the other hand, ICA identifies
statistically independent basis vectors. Data preprocessing steps
such as centering and whitening are essential to apply ICA
effectively. Centering adjusts the data to have a zero mean, while
whitening transforms the data into uncorrelated variables with unit
variance. For high-dimensional geochemical datasets, it is common
first to reduce dimensionality using PCA before applying ICA.

2.2.2 Mathematical procedure of PCA and ICA
First, data preprocessing is performed on a geochemical dataset

C, p× n datamatrix representing n samples, eachwith p dimensional
geochemical properties. Each element of C, c[j]i , represents the
i-th component of the j-th sample. In this study, we employ
two representative preprocessing methods: standardization and
isometric log-ratio (ilr) transformation. Standardization involves
normalizing the data by the standard deviation for each dimension
while centering to the arithmetic mean. The transformed data is
commonly referred to as the z-score.

Y std = zscore (C) , (8)

where Y std is p× nmatrix whose elements are standardized for each
row as y[j]i = (c

[j]
i − ̄ci)/σi. Here, ̄ci = ∑jc

[j]
i /n represents the arithmetic

mean, and σi denotes the standard deviation of the i-th component.
In contrast, compositional data are subject to a constant-sum

constraint, which induces spurious correlations and dependencies
among components, complicating statistical analyses. The ilr
transformation is applied to address this issue. This transformation
maps compositional data from the constrained simplex space to
the unconstrained Euclidean space, enabling the use of standard
statistical methods (Egozcue et al., 2003). The ilr transformation for

compositional data is given by:

Y ilr = ilr (C) , (9)

where the operator ilr(⋅) represents the ilr transformation
(Egozcue et al., 2003) Applied to each sample (column), resulting in
Y ilr, a (p− 1) × nmatrix. In this transformation, the composition of
each sample (column) is converted into a real vector in Euclid space.
Each component is expressed as:

y[j]i = (√
i

i (i+ 1)
ln

c[j]1 ⋅ c
[j]
2 ⋯c
[j]
i

c[j]i+1
),

i = 1,2,…,p− 1. (10)

If C consists solely of chemical composition data, a closure
operation should be performed before applying the ilr
transformation to ensure that the sum of all components equals 1.0.

PCA is based on the singular value decomposition of the
variance-covariance matrix of the dataset, Cov(Y), as follows:

Cov (Y) = APCΛ(APC)⊤, (11)

where APC is a p× q orthogonal matrix consisting of q eigenvectors
a, andΛ is a q× q diagonalmatrix. Eigenvectors are called PCs (PC1,
PC2, …, PCq), ordered in descending order of their corresponding
eigenvalues λ, which are also called latent factors. Using the set of
eigenvectors APC, the PC scores can be computed as

XPC = (APC)⊤ (Y −T (Y)1⊤) , (12)

where XPC is a collection of the PC score vectors, T(⋅) represents
the operator that computes the arithmetic mean of each row
of the matrix, and 1 denotes an n-dimensional vector in which
all components are equal to 1. Subtracting T(Y)1⊤ is commonly
referred to as centering. Thus, PCA decomposes observational data
matrices that have been preprocessed using standardization or ilr
transformation as follows.

Y std = A
PC
stdX

PC
std, (13a)

Y ilr = A
PC
ilr X

PC
ilr +T (Y ilr)1⊤, (13b)

where the subscripts std and ilr indicate standardization and
ilr transformation, respectively. Since standardization involves
centering each variable by subtracting its mean, the mean of Y std
becomes zero. Therefore, the term T(Y std)1⊤ is omitted in the
decomposition.

ICA requires whitening, a preprocessing step that ensures
the variables are uncorrelated and have equal magnitudes before
determining the independent component (IC) vectors. Whitening
is achieved using matrices obtained from PCA, as follows:

Xwhite = √Λ−1XPC, (14)

where Xwhite represents a collection of PC score vectors in the
whitened space, and √⋅ denotes the element-wise square root
operation on the matrix components. The operation ensures that
the variables in XPC, which are uncorrelated, are also scaled to have
equal magnitudes.
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ICA determines the mixing matrix W by maximizing the non-
Gaussianity of the variables:

WXwhite = SIC, (15)

where SIC represents the variables in the independent basis. Using
the expression for the collection of intrinsic IC vectors BIC, defined
as BIC ≡W−1, the equation can be rewritten as:

Xwhite = BICSIC. (16)

Since the vectors in the whitened space are not directly interpretable,
we transform them back to the real space. Using Equations 12,
14, 16, we obtain:

Y = APCBIC√ΛSIC +T (Y)1⊤. (17)

If we define XIC ≡ √ΛSICilr and AIC ≡ APCBIC, we obtain the
fundamental matrix decomposition form for ICA, which is
structurally similar to PCA, as follows.

Y std = A
IC
stdX

IC
std, (18a)

Y ilr = A
IC
ilrX

IC
ilr +T (Y ilr)1⊤. (18b)

Since values in the ilr-transformed space are not directly
interpretable, the obtained matrices must be inverse-transformed to
the original compositional space for process interpretation.

G = ilr−1 (Gilr) , (19)

where the constituents of G correspond to vectors in the original
compositional space. The process matrix, in which each constituent
represents a basis vector corresponding to a geological process,
can be interpreted using the inverse-ilr transformation. Notably,
the score vector matrix X ilr can also be transformed back to the
compositional space (e.g., Filzmoser et al., 2009)when the intensities
are considered to behave as compositional data.

3 Results

We apply PCA and ICA to the synthetic compositional data
generated in Section 2.1. Figures 4A, B show the eigenvalues of each
PC vector obtained using standardization and ilr transformation,
respectively. These eigenvalues indicate the proportion of variance
explained by each PC vector in the high-dimensional dataset.
In both cases, only two PC vectors can explain most of the
compositionalvariationintheeight-dimensionalcompositionalspace.
In contrast, real-world datasets often exhibit a gradual decrease in
eigenvalues across all dimensions. This indicates that the number
of processes initially assumed in the forward model has been
successfully reconstructed.

Figure 5 presents the basis vector obtained by PCA and ICA, from
which we can infer correlations among the elements. Since the order
of the basis vectors obtained by ICA (i.e., IC1, IC2) is arbitrary, we
rearrange them to match the PC vectors (i.e., PC1, PC2) in this study.
Regarding standardization (Figure 5A), the loading of SiO2 is set to
be negative for all vectors to ensure that positive scores correspond to
positive values of ϕ and χ.We observe similar vector patterns between

PC1 and IC1 and between PC2 and IC2 for standardization and ilr
transformation (Figures 5A, B). In Figure 5B, PC1 and IC1 show a
strong negative correlation between the element group SiO2, CaO,
Na2O, and K2O and the group TiO2, Al2 O3, and FeO. Additionally,
PC2 and IC2 exhibit strong positive correlations within the element
group FeO,MgO, andK2Owhile showingweaker inverse correlations
with SiO2, TiO2, Al2 O3, CaO, and Na2O. In Figure 5B, all elements
display a positive correlation for all PCs and ICs, which arises from
the simplex structure of compositional space. However, the relative
magnitudes among element groups approximately correspond to the
positive and negative relationships observed in Figure 5A.

Figure 6 presents the distributions of PC and IC
scores, representing the intensity of PC and IC vectors
for each sample. For both standardization and ilr
transformation methods (Figures 6A, B), the distribution of PC
scores appears as a rotated and distorted rectangle, resulting from
the orthogonal transformation.This shape’s longer and shorter sides
align with the PC1 and PC2 axes, respectively, visually confirming
that PCA effectively captures the directions of maximum variance in
the data. In contrast, the IC score distributions form an approximate
square with sides nearly perpendicular to the IC axes, indicating that
ICA successfully extracts statistically independent components.

Figure 7 presents the PC and IC vectors and sample data points
in the actual compositional space. For both standardization and
ilr transformation methods, the direction of PC and IC vectors
is generally consistent with the compositional variation caused by
the leaching process and the heterogeneity of the original rock
composition. The score distributions (Figure 6) and the vector
direction in actual compositional space (Figure 7) indicate that the
two key basis vectors have been successfully extracted from the high-
dimensional compositional dataset. Notably, the shape of IC vectors
in the ilr transformation method (Figure 7B) aligns accurately with
each element’s external boundaries of sample distributions. This
indicates that ICA with ilr transformation achieves high accuracy
in geological process extraction.

Figure 8 illustrates the scatter plots showing a correlation
between PC/IC scores and the variation of the assumed true
parameters. For both standardization and ilr transformation, PC1
and IC1 scores exhibit strong positive correlations with the leaching
process (ϕ), while PC2 and IC2 scores are strongly correlated with
the biotite mode (χ). Additionally, PC1 and IC1 show weak or very
weak correlations with the biotite mode, just as PC2 and IC2 exhibit
weak correlations with leaching for both standardization and ilr
transformation (Figure 8). These results indicate that PCA and ICA
effectively separate the two geological processes. In particular, IC
vectors show stronger correlations with the corresponding processes
than PC vectors, indicating that ICA outperforms PCA for both
standardization and ilr transformation.

4 Discussion

4.1 Interpretation of basis vectors

In the previous section, we validated our method by comparing
estimates with assumed true values. However, we must infer
geological processes from the estimated results when analyzing
real-world (natural) datasets where true processes are unknown.
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FIGURE 4
Eigenvalues of PC vectors representing data variance. (A) Standardization. (B) Ilr transformation.

FIGURE 5
Basis vectors extracted by PCA (blue bars) and ICA (red bars) in the
cases of (A) standardization and (B) ilr transformation. The order of IC
vectors has been rearranged to match the PC vectors.

FIGURE 6
Distributions of scores (x[j]1 ,x

[j]
2 ) for PCs (blue points) and ICs (red

points). (A) Standardization. (B) Ilr transformation.

Multi-element correlations, derived from the composition
vector’s shape (Figure 5), play a crucial role in this inference.

For instance, in the standardized preprocessing, PC1 and IC1
exhibit a strong inverse correlation between TiO2 and Al2 O3 (low
solubility) and K2O and Na2O (high solubility) (Figure 5A). The
relative increase in low-solubility elements, due to the constant-
sum constraint (Aitchison, 1986), indicates that this basis vector
represents element leaching by water. Similarly, PC2 and IC2 exhibit
a strong positive correlation among FeO, MgO, and K2O, indicating
increased biotite content.
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FIGURE 7
Extracted PC and basis vectors in the actual compositional space. (A) Standardization: Red and blue lines represent PC and IC vectors, respectively. (B)
Ilr transformation: Red, magenta, blue, and light blue lines represent PC1, PC2, IC1, and IC2 vectors. The starting points are set to the average
compositions, and the length of each vector is scaled to three times the unit vector for better visualization.

FIGURE 8
Scatter plots between PC/IC scores and assumed true parameters for (A) standardization and (B) ilr transformation methods. Bold letters a, b, c, and d
indicate PC1, IC1, PC2, and IC2, respectively. Green points represent the intensity of the leaching process, while red points represent the intensity of the
biotite mode. The values of the true parameters are normalized from −1 to 1.

Vector directions further aid interpretation compared
with sample datasets in chemical composition spaces, such as
Harker diagrams (Figure 7). Additionally, analyzing the spatial
distribution of ICA and PCA scores, in combination with
existing geological knowledge, enhances our understanding of
natural samples.

4.2 Estimation of relative mobility

If the corresponding processes can be inferred, constructing a
forward model allows for quantitative insights into these processes.
For example, if the leaching model (Equation 3) aligns with the
extracted basis vectors, we can estimate the elemental mobility
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TABLE 2 Relative mobility of element i, γi, assumed in this study. Data are based on the weathering of quartz diorite by Yamada et al. (1968) and
normalized such that γSi becomes 1.00.

SiO2 TiO2 Al2 O3 FeO MgO CaO Na2O K2O

True 1.0 0 0.33 0.25 0.89 2.36 2.22 1.83

PCA w./std 1.00 0 0.34 0.10 0.71 2.09 2.00 1.59

ICA w./std 1.00 0 0.31 −0.11 0.45 2.14 2.04 1.48

PCA w./ilr 1.00 0 0.30 −0.10 0.44 2.31 2.19 1.54

ICA w./ilr 1.00 0 0.36 0.36 1.03 2.19 2.08 1.83

parameters, γ, through optimization. From Equation 3, the relative
mobility for element i is expressed as:

γi =
crefi /(c

alt
i ⋅ r) − 1

Δϕ
, (20)

where crefi represents the average composition of all samples, and calti
denotes the composition altered by leaching, obtained by adding the
unit PC1 and IC1 vectors to the average composition. The term r
represents the total mass change due to leaching, while Δϕ indicates
the difference in water content relative to the reference.

In general, the total mass change ratio r cannot be directly
determined from chemical compositions, necessitating the
assumption of a reference frame (i.e., a conserved quantity)
(e.g., Gresens, 1967; Grant, 1986; Kuwatani et al., 2020). Based
on geological knowledge, if TiO2 is assumed to be immobile
(γTi = 0), we can determine r for altered rocks and estimate the
relative mobility of other elements (γi). The estimated values,
presented in Table 2, indicate that all methods approximate the
relative differences in elemental mobility, with ICA combined with
ilr transformations providing the most accurate estimates. This
estimation of physicochemical parameters enables a quantitative
interpretation of geological processes.

4.3 Difference between PCA and ICA

Process extraction has been found to be generally feasible for
the synthetic data generated in Section 2.1, using both PCA and
ICA, with standardization and ilr transformation as preprocessing
methods. This implies that the conditions—such as sample size
and assumed parameters—are optimal for PCA and ICA. Here, we
examine the differences between PCA and ICA, employing the ilr
transformation, a standardmethod for handling compositional data.
Each method has its advantages and disadvantages, depending on
the problem settings. Since synthetic-data tests allow for arbitrary
modifications to problem settings, it is possible to evaluate and
compare the performances of different methods under specific
assumed conditions.

Figure 9 presents the relationship between the assumed
parameters, ϕ and χ, and the estimated PC and IC scores for a new
synthetic dataset, where variations in the biotite-mode parameter
(χ) are twice as large as those in the synthetic data generated in
Section 2.1. Regarding ICA, as in the previous case (Figure 8),

FIGURE 9
Scatter plots between PC/IC scores and assumed true parameters
with the ilr transformation. Bold letters (a–d) indicate PC1, IC1, PC2,
and IC2, respectively. The values of the true parameters are
normalized from −1 to 1.

the true and estimated parameters exhibit a strong correlation
for each process (Figures 9b, d). The correlation between the true
parameter and the PC1 score is weak regarding PCA. Furthermore,
the false parameter also shows a weak correlation with the PC1
score (Figure 9a). Additionally, no correlation is observed between
the corresponding true parameter and PC2 score (Figure 9c). This
indicates that PCA fails to separate the process in this case. This can
be attributed to PCA’s tendency to extract the direction ofmaximum
variance (the diagonal direction of a square-like distribution) as
the PC axis, mistakenly capturing a combined direction of both
processes rather than separating them.

Figure 10 illustrates the case using only 15 samples from the
synthetic data in Section 2.1. In Figures 10a, b, the data points align
approximately along a straight line, indicating that each process
and its corresponding PC score exhibit a strong correlation. This
suggests that PCA successfully captures the relationships between
the extracted components and the true geological processes. No
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FIGURE 10
Scatter plots between PC/IC scores and assumed true parameters
with the ilr transformation. Bold letters (a–d) indicate PC1, IC1, PC2,
and IC2, respectively. The values of the true parameters are
normalized from −1 to 1.

FIGURE 11
Schematic diagram of the geochemical process extraction framework
using forward modeling and inversion analysis.

clear alignment is observed in Figures 10b, d, indicating that the
correlation between each process and its corresponding IC score
is weak. This indicates that ICA struggles to extract meaningful
components when the sample size is small. In general, ICA requires
a larger sample size because it relies on the distribution pattern of
data to extract independent components. In contrast, PCA depends
on fewer statistical parameters related to correlation.

This highlights the robustness of PCA in small-sample scenarios,
where PCA scores maintain a reasonable correlation with the true
parameters, while ICA performance deteriorates.

While PCA demonstrates robustness in small-sample scenarios,
it has a notable limitation: its tendency to extract mixed processes,

mainly when their intensities are similar or overlapping. Conversely,
despite its higher accuracy in process separation, ICA requires a
sufficient number of samples for reliable results. These findings
underscore the importance of selecting an appropriate matrix
factorization method based on sample size constraints and the
nature of the dataset.

4.4 Application of matrix factorization to
real-world datasets

While our previous discussion focused on synthetic data, real-
world datasets often exhibit sample size, noise levels, and complexity
variability. As noted earlier, ICA is generally effective for process
extraction under ideal conditions with sufficient samples. However,
in practical geochemical problems, where samples are limited and
noise levels are higher, PCA demonstrates robustness and efficacy
in process extraction. As illustrated in Figure 3, PCA can be a
preliminary step to ICA analysis. Therefore, when analyzing real-
world data, it is advisable to examine the robust results of PCAbefore
proceeding with ICA.

In this study, we have focused on PCA and ICA; however,
depending on the specific problem, other matrix factorization
methods may also be effective. These include non-negative matrix
factorization (NMF) (Lee and Seung, 2000) and positive matrix
factorization (PMF) (Paatero and Tapper, 1994). These methods
directly estimate end-members and their contributions, making
them particularly useful in geochemical and environmental science
applications (Yoshida et al., 2018; Yazman et al., 2024). To
understand the advantages and disadvantages of each method,
conducting synthetic-data experiments that simulate real-world
conditions is a critical approach.

Real geochemical datasets often contain zero or negative
values and missing data due to detection limits of analytical
methods, measurement noise, or unmeasured elements. Log-
ratio transformation methods cannot directly handle data with
zeros or negative values. In such cases, common approaches
include substituting small positive values and employing statistical
imputation methods. However, applying log-ratio transformations
to such data can introduce substantial bias, and in some cases,
standardization may be a more appropriate approach. Given these
considerations, while log-ratio transformations are valuable, it is
essential to be aware of their limitations and carefully assess whether
they are suitable for a given dataset.

4.5 Bilateral approach to real-world
problems

In real-world data analysis, different problem settings must be
considered: in some cases, the geological process may be partially
known, while in others, it may be completely unknown before
analysis. When prior knowledge about geological processes is
available, synthetic data analysis can be beneficial by constructing
a simple forward model. This approach clarifies the characteristics
of the matrix-factorization method and the basis-vector structure
of the geological processes under study. Such insights are highly
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valuable for evaluating the validity of natural data analysis and
enhancing geological interpretation of the obtained results.

If the geological process is entirely unknown, matrix
factorization is performed for exploratory purposes. In this
case, synthetic-data analysis remains essential for assessing the
effectiveness of the matrix-factorization method in inversion
analysis. Accordingly, synthetic data are generated using a forward
model, which is constructed based on the extracted processes from
natural datasets.

By iterating these steps, forward modeling and inversion
methods are continuously redefined and improved, enabling
better representation of complex geological processes. This
systematic bilateral approach (Figure 11), which integrates
both data-driven and model-driven methodologies, provides a
fundamental framework for geochemical process extraction and
interpretation.

5 Conclusion

This study proposed a framework to evaluate the effectiveness
of matrix factorization techniques in extracting geological processes
from geochemical data. To achieve this, we constructed a forward
model of chemical weathering that incorporates both the leaching
process and the compositional heterogeneity of original rocks. Using
this model, we generated synthetic datasets that simulate natural
geochemical variations.

We applied PCA and ICA to these synthetic datasets and
examined their performance, separating independent geochemical
processes. In doing so, we introduced and evaluated two
representative preprocessing methods: z-score standardization
and log-ratio transformation. The results showed that ICA,
combined with log-ratio transformation, was particularly
effective in accurately identifying independent geochemical
processes under ideal conditions with sufficient samples.
At the same time, PCA demonstrated robustness, making
it a valuable approach for analyzing datasets with limited
sample sizes.

Furthermore, we quantitatively validated the extracted basis
vectors by estimating elemental mobility parameters, confirming
that matrix factorization can provide qualitative insights and
quantitative interpretations of geochemical processes. This study
provides a structured approach to evaluating geochemical data
interpretation by integrating forward modeling with inversion
analysis. The proposed bilateral framework offers a systematic
methodology applicable to real-world geological and environmental
studies, serving as a robust tool for extracting and interpreting
complex geochemical processes.
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