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The increasing presence of igneous rocks in hydrocarbon-bearing basins are
drawing more attention. While the roles they play during the hydrocarbon
generation and reservoir formation remain poorly understood, yet a detailed
inspection of their geochemical features within the corresponding tectonic
context is lacking. This study compiles comprehensive geochemical data,
including major and trace elements, as well as the isotopic composition of
igneous rocks spanning from 147 to 40 Ma at the Santos Basin and adjacent
area. Based on their geochemical signatures and tectonic settings, the igneous
rocks are classified and analyzed. During 147–40 Ma, the studied location had
a complex tectonic background which demonstrated a transition from the
mantle plume to continental rift, then to mantle plume, corresponding to the
discovered geochemical characteristics. This progression corresponds to the
breakup of the West Gondwana and the opening of the South Atlantic Ocean.
The findings highlight the potential positive role of igneous rocks in hydrocarbon
systems, revealing their potential favorable roles. These results provide a robust
foundation for future exploration and research in analogous basins.
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1 Introduction

The exploration of petroleum resources traditionally focused on sedimentary strata;
however, recent research underscores the significant role of igneous rocks in hydrocarbon
systems. Studies reveal that volcanic activities can influence hydrocarbon generation and
reservoir formation through processes including modifying depositional environments
and catalyzing hydrocarbon generation and so on. Globally, igneous rocks’ presences
in hydrocarbon reservoirs are increasingly recognized for their potential, with major
discoveries in regions such as Bohai Bay Basin, Sichuan Basin, and Northern JiangSu
Basin (Guo et al., 2022; Luo et al., 2019; Mu and Ji, 2019; Wang et al., 2015;
Jiang et al., 2011; Jin and Zhai, 2003). While the role igneous rocks played was historically
overlooked, their importance has been validated by discoveries such as those in the
Daqing Oilfield and the Dongying Sag, where volcanic rocks provide ideal reservoir
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spaces, pivotal age information and catalysts in hydrocarbon
generation (Chen et al., 2018; Song, 2009; Jin et al., 2006; Zhai et al.,
2004; Jin and Zhai, 2003; Wan et al., 2003). The presence of
igneous rocks in petroleum systems generally indicates destruction,
making them unfavorable. But these cases challenge the traditional
perspective of avoiding igneous rocks in petroleum exploration.
On the contrary, these igneous rocks offer critical insights into
the interplay between magmatism and basin tectonics, even the
hydrocarbon systems.

The Santos Basin, located on the passive continental margin
of Brazil, presents an ideal case study for exploring the role of
igneous rocks in the rift basin along the continental margin. As
a petroleum-producing basin, it features a significant presence
of igneous rocks. Additionally, the multiple episodes of igneous
rocks interbed with the sedimentary layers make it unique for
understanding the relationship between oil generation and rift
basin development (Mohriak et al., 2012). In previous research,
geophysical studies have classified the basin’s tectonic stages and
coeval magmatic movements, while geochronological analyses of
igneous rocks have established their different periods. However,
a detailed investigation into the geochemical features and their
tectonic implications remains insufficient.

In this study, we collected the geochemical and geochronological
data of igneous rocks from the Santos Basin and adjacent areas
at various ages. We compiled the data and classified the igneous
rocks into different periods based on their age information and
correlated tectonic backgrounds. Through the geochemical analysis
on each episode of igneous rock, their unique features and tectonic
implications are revealed. An overlook of the tectonic history in the
studied areas is also proposed.

2 Geological background

The Santos Basin is a large sedimentary basin located on
southeastern Brazil’s coast, recognized as part of the South Atlantic
passive margin. The Santos basin is bounded by Cabo Frio High
to the north and Florianópolis to the south, covering an area of
approximately 350,000 km2. So far, the Santos Basin, has become
one of the many major locations for global oil and gas exploration,
with more than 15 blocks that each have petroleum reserves over
1.0 × 109 bbl, shedding insight into ultra-deep water and pre-salt
exploration technologies. Next to the Santos Basin, there also are
localities that develop large amounts of igneous rocks, including
Campos Basin and Paraná Basin (Figure 1). The Campos Basin,
situated north of the Santos Basin, is bounded by the Vitória High
to the north and lies adjacent to it in the southern direction, and
has coverage of 100,000 km2 with yet-to-discovered recoverable oil
and gas resources of about 3.3 × 109 bbl. The Paraná Basin, on the
other hand, recognized as the largest in Brazil, stands as one of the
most significant oil-bearing basins in South America. (Anjos et al.,
2024; Yu et al., 2022; Zhang et al., 2020; Buckley et al., 2015;
Moreira et al., 2007; Liu and Liu, 2006).

Formed as basins along the passive continental margin, the
abundance of magma movements must be correlated to the process
of West Gondwana breaking and the South Atlantic Opening. In
the Neoproterozoic era, West Gondwana formed primarily through
the collision between Brasiliano-Pan African orogeny (Feng et al.,

2024; Suárez et al., 2021). In the Mesozoic era, the West Gondwana
started breaking along with the opening of the South Atlantic Ocean
(Eagles and Eisermann, 2020; Feng et al., 2024). Both the continental
drift and seafloor spreading led to the further separation of the
continental masses and shaped the ocean formation. As a result,
multiple episodes of volcanic activities closely tied to the tectonic
movements happened along the continentalmargin, just as recorded
in these locations (Eagles, 2007; Torsvik et al., 2009; Gao, 2022).

Having outlined the tectonic and sedimentary history of the
basin, it is crucial to investigate the stratigraphy of the Santos
Basin, as it reflects the basin’s evolutionary stages and sedimentary
processes through lithological features, particularly the presence
of igneous rocks. Developed on the pre-Cambrian crystalline
basement, the Santos Basin has been classified into three distinct
evolution phases based on tectonostratigraphic evidence: rift, post-
rift, and drift, as proposed byMoreira et al. (2007).The rift sequences
contain Camboriu, Picarras, and Itapema Formations, consisting
of volcanic rocks (Camboriu), lake sediments (Picarras), coquinas
and dark shales (Itapema). The post-rift sequences include Barra
Velha and Ariri Formations, comprising microbialites, stromatolites
(Barra Velha), and evaporites (Ariri). The drift sequences are
composed of Florianópolis, Guarujá, Itanhaém Formations, mainly
carbonate rocks and sandstones. In general, the geological sequences
in the area feature igneous rockswithin the rift sequences, alongwith
interlayering of igneous and sedimentary strata, showing a complex
interplay of different rock types.

3 Geochronology

TheSantos Basin and adjacent areas containmultiple episodes of
igneous rocks belonging to different magmatic durations, ranging
from 147 Ma to 40 Ma. Rock types contain lamprophyre, basalt,
diabase, andesite, kimberlite, syenite and phonolite. The dividing of
these magmatic activities is still in debated.

Cheng et al. (2019) distinguished Santos Basin igneous rocks
into three periods based on fault activities. (1) Rift phase
(125–120 Ma). Determined by the borehole samples from drilled
igneous rocks, the rift phase was dated to 125–120 Ma through
40Ar/39Ar isotopic analysis, indicating severe magmatic activities
in the Early Cretaceous era. (2) Sag phase (∼110 Ma). Judged by
sagging movements and Rift-Sag transition, less active than the Rift
phase, the Sag phase was dated to ∼110 Ma through volcanic rock
40Ar/39Ar isotopic analysis. (3) Drift phase (90–70 Ma). With fault
intensity close to the Sag phase, the Drift phase marked another
episode ofmagmaticmovement, dated back to 90–70 Ma by volcanic
rock 40Ar/39Ar isotopic analysis.

Some studies introduced refined classifications by integrating
geochronological, geochemical, and geophysical data. For example,
Wang et al. (2018) concluded the basin-wide magmatic activities
into four periods, followed as (1) Valanginian-Hauterivian
(139–129 Ma), (2) Aptian (125–113 Ma), (3) Santonian-Campanian
(86–72 Ma), (4) Eocene (56–33.9 Ma). In this research, instead
of using exact age information, the igneous rocks were classified
into different episodes based on chronostratigraphic periods,
combining evidence from geophysical studies, including seismic
profiles, distribution of fracture zones as well as gravity anomalies.
Similarly, Gordon et al. (2023) adjusted the magmatic framework by
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FIGURE 1
The geological map of the study area and locations of data points in Southeast Brazil. Modified from He et al. (2025).

integrating isotopic age data (including 40K/40Ar, 40Ar/39Ar, U-Pb
age information) with tectonic contexts, identifying phases such as
the Pre-Rift phase (135–132 Ma), the Rift phase (130–123 Ma), the
Post-Rift phase (123–112 Ma), the Drift phase (112–23.3 Ma).

Recently, Liu et al. (2023) added emplacement-based
distinctions and further divided the igneous rocks into more
periods: (1) Valanginian-Hauterivian extrusive rock, (2) Barremian-
Aptian extrusive rock, (3) Aptian extrusive rock, (4) Campanian
intrusive rock, (5) Eocene extrusive rock, (6) Eocene intrusive rock.

The exact geochronological information based on raw 40Ar/39Ar
data in combination with a comprehensive interpretation of
geochemical features are provided (He et al., 2025). The intrusive
rocks have ages of 126–121 Ma based on whole rock and plagioclase
40Ar/39Ar isotope analysis, and the extrusive rocks are generally
older than extrusive ones but belong to the same episode.

In summary, existing classifications of magmatic activity in the
Santos Basin vary widely, reflecting differences in methodologies
and focal points, including tectonic phases, chronostratigraphy,

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1560988
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Su et al. 10.3389/feart.2025.1560988

FIGURE 2
TAS discrimination diagram and Nb/Y vs. Zr/TiO2 diagram of igneous rocks from 147 Ma to 40 Ma. Classification after Bas et al. (1986) and Winchester
and Floyd., (1977) respectively. All data are provided in Supplementary Material.

isotopic dating, and emplacement locations. While these studies
provide valuable insights, discrepancies remain in defining precise
time spans and linking magmatic episodes to geochemical and
tectonic contexts.

Building on these foundations and based on rock geochemistry
and petrological principles, variations in igneous episodes are
usually expected to represent comprehensive changes in magma
genesis and geochemical characteristics.Therefore, after the analysis
of geochemical characteristics, including major, trace elements and
isotopic compositions, the magma sources and geochronological
information are compared with the regional tectonic background.
Based on the above process, the tectonic movements corresponding
to each period reveal a transition from mantle plume activity,
continental rift, and mantle plume. Such a progression reflects an

igneous rock sequence that was first initiated by the mantle plume
dynamic, then the expansion of continental rift, and lastly, the
reactivation of another mantle plume process. Thus, we suggest that
the igneous rocks from Santos basins and adjacent areas should
be divided into five episodes: (1) 147–127 Ma; (2) 126–121 Ma;
(3) 120–112 Ma; (4) 87–66 Ma; and (5) 55–40 Ma. Furthermore,
the geochemical characteristics, encompassing major, trace, and
isotopic compositions, correspond closely with the tectonic context
of each episode. This refined temporal classification not only offers
a more precise adjustment, but also incorporates the geological
evolutionary history of the region within its tectonic context,
thereby providing a scientific basis for a deeper understanding of
the formation of the igneous rocks and their tectonic control in
southeastern Brazil.
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FIGURE 3
Chondrite normalized rare earth elements spidergram of igneous rocks from 147 Ma to 40 Ma. Chondrite data are from Sun and McDonough (1989).
All data are provided in Supplementary Material.

4 Geochemical characteristics of
multiple episodes of igneous rocks

4.1 147–127 ma igneous rocks’
characteristics

During this period, the main lithotypes include basalt, diabase,
basaltic andesite and dacite. The dominant lithology comprises
basic rocks exhibiting pronounced alkaline characteristics, with
trace element and isotopic signatures suggesting a potential
association with mantle plume activity. Both Total Alkaline vs
Silica discrimination (TAS) and Zr/Ti vs Nb/Y diagram (Figure 2)
indicate that the majority of rocks at this period plot into the basalt
and basaltic fields with alkaline series and subalkaline series both
present, and only a small portion is scattered in intermediate and
acidic rock fields. The 147–127 Ma igneous rocks exhibit strong
enrichment in Light Rare Earth Elements (LREEs) and depletion
in Heavy Rare Earth Elements (HREEs) (Figure 3). The Large-ion
Lithophile Elements (LILE) also enriched over the High Field-
Strength Elements (HFSE), with enrichment in Ba, U, Ta, and
depletion in Th (Figure 4). The initial 87Sr/86Sr values show a

wide range, varying from 0.703,596 to 0.717,578, with the majority
showing enriched signature. Similarly, they also show enriched
Nd isotopic compositions, with 143Nd/144Nd values ranging from
0.511,384 to 0.512,777, with negative εNd(t) values for majority
samples (−0.7 to −21.21) (Figure 5).

4.2 126–121 ma igneous rocks’
characteristics

Between 126 and 121 Ma, basalts, diabases and a small portion
of dacites were emplaced in both Paraná and Santos Basin
(Figure 2). Compared with igneous rocks from Santos Basin, the
126–121 Ma igneous rocks from Paraná Basin have higher SiO2
content (48.70%–57.60% vs 36.92%–47.54%). Rocks emplaced in
these two areas displayed enriched LREE and depleted HREE
(Figure 3), and LILE enriched over HSFE (Figure 4). Meanwhile,
they showdecoupled Sr-Nd isotopes.The initial 87Sr/86Sr values have
a rather wide range, from 0.704,609 to 0.709,684, whereas the initial
143Nd/144Ndvalues are 0.512,706–0.512,834, with εNd(t) +1.9 to +4.5
(Figure 5; He et al., 2025).
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FIGURE 4
Primitive mantle normalized trace elements spidergram of igneous rocks from 147 Ma to 40 Ma. Primitive mantle data are from Sun and McDonough
(1989). All data are provided in Supplementary Material.

4.3 120–112 ma volcanic rocks’
characteristics

From 120 to 112 Ma, rocks are mainly subalkaline basaltic
andesite and basalts (Figure 2). The MgO content varies from 2.10%
to 8.05%, with one exception reaching 20.53%. This group of
volcanic rocks has Na2O + K2O from 2.90% to 8.84%. The REE
displays a pattern that LREE are more enriched than the HREE
and have a narrower distribution range than earlier volcanic rocks
(Figure 3). Strong enrichments exist in the Ba, U, and Ta, and
depletion in Th (Figure 4). Both Sr and Nd isotopic compositions
suggest an enriched characteristic, with 87Sr/86Sr values range from
0.705,804 to 0.706,804, and initial 143Nd/144Nd values ranging from
0.512,174 to 0.512,289 (Figure 5).

4.4 87–66 ma volcanic rocks’
characteristics

During the interval of 87–66 Ma, rocks are mainly syenite,
lamprophyre, tephrite, phonolite and foidite. The acidic rocks

emerge as the predominant lithotype, with most samples classified
as alkaline (Figure 2). Compared with the earlier groups, the
87–66 Ma volcanic rocks display higher LREE enrichment
over HREE, showing a greater degree of inclination in the
diagram (Figure 3). Also, a distribution pattern where a more
obvious enriched LILE and depleted HFSE, with depletion in
Ba and Sr can be observed (Figure 4). They show enriched
characteristics in Sr and Nd isotopic compositions, with
initial 87Sr/86Sr values ranging from 0.704,530 to 0.708,250,
and 143Nd/144Nd system varying from 0.512,370 to 0.512,550
(Figure 5).

4.5 55–40 ma volcanic rocks’
characteristics

Between 55 and 40 Ma, the igneous rocks are phonolite
and tholeiitic dykes. They predominantly consist of basic
compositions with subalkaline characteristics. The MgO contents
are 0.01%–12.98%, and the Na2O + K2O contents are from 1.38%
to 18.51%. The 55–40 Ma volcanic rocks share similar inclination
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FIGURE 5
Whole-rock Sr-Nd isotopic composition of igneous rocks at 147-112 Ma (A) and 87-40 Ma (B). All data are provided in Supplementary Material. MORB
and OIB data are from the Pet DB database (https://search.earthchem.org/).

trends with early rocks, with LREE enriched and HREE depleted
(Figure 3). They also display a similar pattern that LILE enriched
over HSFE and depletions in Ba, Sr (Figure 4). The initial 87Sr/86Sr
values are from 0.704,010 to 0.711,326, with most falling between
0.704,010 and 0.706,130. And the initial 143Nd/144Nd values
range from 0.512,250 to 0.512,760, most of which show depleted
signatures (Figure 5).

5 Discussion

5.1 Fractional crystallization and crustal
contamination

Understanding the geochemical characteristics of igneous rocks
is crucial for unraveling their formation processes and tectonic
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FIGURE 6
Variations in Na2O (A), FeOT (B), K2O (C), CaO (D), Al2O3 (E), TiO2 (F) vs MgO for igneous rocks from 147 Ma to 112 Ma. All data are
provided in Supplementary Material.

settings. In this context, two key processes play a significant
role: fractional crystallization and crustal contamination. Fractional
crystallization appears to shape the geochemical characteristics of
these rock at different levels. Whereas crustal contamination has
likely influenced the geochemical signatures of rocks at different
periods, as evidenced by the discrepancies of certain trace element
ratios. Therefore, it is important to assess the influence of fractional
crystallization and crustal contamination on the composition of
these volcanic rocks.

In 147–127 Ma, the samples are mostly emplaced at the Paraná
Basin and identified as continental flood basalts. The collected
data indicate that the 147–127 Ma igneous rocks show strong
correlations between MgO and other major oxides. As the MgO

content decreases, the Na2O, K2O and Al2O3 contents increase,
but the FeO, CaO, and TiO2 decrease (Figure 6). The decrease
of CaO and FeO is indicative of the early crystallization of
Olivine and Pyroxene. Meanwhile, Na and K being incompatible
elements, remain concentrated in the residuals, aligning with the
negative correlations between Na2O, K2O, and MgO. Subsequently,
the decline in TiO2 suggests the crystallization of Ilmenite,
corresponding to the decrease of FeO. In the later stage, the
crystallization of Plagioclase crystallization became evident, as
demonstrated by the negative correlation between Al2O3 and MgO.
Before evaluating the presence of the crustal contamination, it needs
to be pointed out that different elements are mobile during these
processes (e.g., Sr, K), yet others remained relatively stable (e.g., Ti,
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FIGURE 7
Major and trace element ratios relationship (Nb/Th vs MgO (A), Nb/Zr vs MgO (B), Hf/Th vs Nb/Zr (C), Nb/Th vs Nb/La (D)) of igneous rocks from
147 Ma to 112 Ma. Modified from He et al. (2025). All data are provided in Supplementary Material. The crustal contamination line is from Marques et al.
(2018). Lava flow are from the Walvis Ridges and the ocean islands of Tristan da Cunha and Gough Hoernle et al. (2015), Salters and Sachi-Kocher,
(2010), Willbold and Stracke, (2006), Salters et al. (2011), Willbold and Stracke, (2010), and Weaver et al. (1987). The three locality are members of the
Tristan mantle plume (Homrighausen et al., 2019; O’Connor and Jokat, 2015; Gibson et al., 2005).

Zr, Y,Nb,Th, andNd) (Adriano et al., 2022; Bea, 2009; Kuritani et al.,
2005; Smith and Smith, 1976). Thus, Nb, Th, Zr, Hf, La are selected
here to verify the crustal contamination process as they are strongly
incompatible LILEs and HFSEs which tend to remain in the melts
other than minerals. Additionally, certain ratios such as Nb/Th,
Nb/Zr,Hf/Th,Nb/La have generally distinct features (for the igneous
rocks from mantle plume, Nb/Th: 5–15, Nb/Zr: 0–0.4, Hf/Th:
0.5–4.5, Nb/La: 0.4–1.5) and changes if contaminated by the crustal
materials. The 147–127 Ma igneous rocks show clear signs of crustal
contamination, evidenced by the progressive decrease in Nb/Th
and Nb/Zr ratios co-occurring with the decline in MgO content,
alongside the relatively low Hf/Th and Nb/La ratios (Figure 7).
Within the lithosphere, Th exhibits significant enrichment over
Nb and Hf, while Nb and Zr concentrations remain relatively
stable in the mantle. Moreover, La preferentially remains in
the melt phase rather than being incorporated into minerals,
unlike Nb, which tends to be partitioned into specific mineral
phases. Consequently, the incorporation of crustal materials

causes decreases in Nb/Th and Nb/Zr ratios, and low Hf/Th
and Nb/La ratios.

In 126–112 Ma, correlations between MgO and other major
oxides are not found, indicating no fractional crystallization
happened. The 126–121 Ma reveals no crustal material mixing as
the absence of correlations between MgO, Nb/Th, Nb/Zr, and the
high ratio of Hf/Th and Nb/La (He et al., 2025). Similarly, the
absence of correlations between MgO and other major oxides of
igneous rocks in 120–112 Ma indicates no fractional crystallization.
Further analysis of trace elements can be taken into consideration.
On the other hand, the igneous rocks at 120–112 Ma display more
complicated characteristics; samples that overlap the mantle plume
composition have crustal contamination signatures, while others
proved none. The group overlaps with the mantle plume are also
from the Paraná Basin dated to different periods and the reasons of
crustal contamination are discussed above.

In 87–66 Ma, strong correlations are observed in the
igneous rocks (Figure 8), where the Na2O, K2O, Al2O3 contents
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FIGURE 8
Variations in Na2O (A), FeOT (B), K2O (C), CaO (D), Al2O3 (E), TiO2 (F) vs MgO for igneous rocks from 87 Ma to 40 Ma. All data are
provided in Supplementary Material.

increase, while FeO, CaO, TiO2 decrease with decreasing MgO.
The reduction in CaO and FeO signals the formation of olivine
and pyroxene. Concurrently, Na2O and K2O, being incompatible
elements, are concentrated in melts, which corresponds to the
inverse relationships observed between them and MgO. Following
this, the drop in TiO2 indicates the crystallization of Ilmenite,
which is associated with the decrease in FeO. In the final stage,
the crystallization of Plagioclase becomes apparent, as evidenced by
the negative correlation between Al2O3 andmagnesium oxideMgO.
Only a weak correlation between Hf/Th and Nb/Zr can be found,
suggesting little or no crustal contamination.

In 55–40 Ma, strong linear correlations are shown between
Al2O3, FeO, CaO, TiO2, and MgO, unlike earlier rocks, the
correlations between Na2O, K2O, and MgO are less obvious. The
positive relations of FeO, CaO, and MgO indicate the crystallization
of Olivine and Pyroxene. Also, the variation of FeO and TiO2

shows the crystallization of Ilmenite. Lastly, the linear trend
of Al2O3 reveals the crystallization of plagioclase. During this
period, relatively strong crustal contamination is indicated by the
decreasing trends between Nb/Th, Nb/Zr and MgO, Hf/Th and
Nb/Zr of samples from this period reveal crustal contamination
at a lower level (Figure 9). Different from earlier rocks, only no
correlation displayed between Nb/Th and Nb/La. This could be
attributed to different sources of crustal material where elements
are enriched at various levels. Still, other correlations proved crustal
contamination during this period.

At 147–127 Ma, 87–66 Ma, and 55–40 Ma, all or portions of
the sample show evidence of fractional crystallization and varying
degrees of crustal contamination, posing challenges to further
analysis.On the other hand, for the igneous rocks at 126–121 Ma and
120–112 Ma, direct analysis of the source region is more feasible, as
these rocks likely represent primary magma.
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FIGURE 9
Major and trace element ratios relationship (Nb/Th vs MgO (A), Nb/Zr vs MgO (B), Hf/Th vs Nb/Zr (C), Nb/Th vs Nb/La (D)) of igneous rocks from 87 Ma
to 40 Ma. Modified from He et al. (2025). All data are provided in Supplementary Material. The crustal contamination line is from Marques et al. (2018).
Lava flow are from the Walvis Ridges and the ocean islands of Tristan da Cunha and Gough are from Hoernle et al. (2015), Salters and Sachi-Kocher,
(2010), Willbold and Stracke, (2006), Salters et al. (2011), Willbold and Stracke, (2010), and Weaver et al. (1987). The three locality are members of the
Tristan mantle plume (Homrighausen et al., 2019; O’Connor and Jokat, 2015; Gibson et al., 2005).

5.2 Influence of the mantle plume and
continental rift

Igneous rocks emplaced at different periods fromSantosbasin and
adjacent areas show variable geochemical and isotopic compositions,
indicating different source regions and evolutional paths.

Basalts emplaced during 147–127 Ma are coeval with the Tristan
mantle plume at ∼135–132 Ma (Hoernle et al., 2015; Rohde et al.,
2013; Renne et al., 2011; Renne et al., 1996; Segev, 2002) in Paraná
Basin. The geochemical characteristics of igneous rocks during this
period are similar to magmas with mantle plume origin. Firstly,
the low Nb/Zr, Nb/Th and Nb/La ratios of igneous rocks display
similarity to the rocks generated by the Tristan mantle plume
system (Figure 7). Moreover, the wide range of initial 87Sr/86Sr
and negative εNd(t) (Figure 5) point to potential similarity to the
Tristanmantle plume characteristics as discussed in previous studies
(Zhou et al., 2022; Homrighausen et al., 2019). Seismic evidences
(P-wave finite-frequence traveltime, Rayleigh-wave phase

velocity and receiver function) and geophysical modeling also
confirm the existence of the Tristan mantle plume system
and its influence (Geissler et al., 2020; Bonadio et al., 2018;
Yuan et al., 2017; Schlömer, 2016). As the mantle plume ascends, it
inevitably interacts with and incorporates lithospheric mantle and
crustal materials, resulting in geochemical and isotopic signatures
indicative of fractional crystallization and crustal contamination.
Such a process is consistent with the observed geochemical features
of this period, provides a reasonable explanation for their evolution,
and discloses their mantle plume origin.

The trace elements of basalts and diabases emplaced at
126–112 Ma show high Nb/Th, Nb/Zr, Nb/La, whose trace elements
characteristics plot all away from the mantle plume composition,
excluding their mantle plume origin (Figure 7). Enriched Sr
and Nd isotopic compositions show similar characteristics to
Continental Rift basalts instead of Ocean Island Basalts (OIB)
(Figure 10), and can be divided into two groups based on their
ages, 126–121 Ma and 120–112 Ma. The REE fraction modeling
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FIGURE 10
Variations in La/Sm vs Sm/Yb for igneous rocks from 147 Ma to 112 Ma. Modified from He et al. (2025). All data are provided in Supplementary Material.
The field of global continental rift basalt (CRB) and Ocean Island basalts (OIB) are from the PetDB database (https://search.earthchem.org/). DMM,
depleted mid-ocean ridge basalt mantle; PM, primitive mantle, N-MORB, normal mid-ocean ridge basalt, E-MORB, enriched mid-ocean ridge basalt.
The white-doted numbers stand for different partial melting degrees.

FIGURE 11
Variations in La/Sm vs Sm/Yb for igneous rocks from 87 Ma to 40 Ma. Modified from He et al. (2025). All data are provided in Supplementary Material.
The field of global continental rift basalt (CRB) and Ocean Island basalts (OIB) are from the PetDB database (https://search.earthchem.org/). DMM,
depleted mid-ocean ridge basalt mantle; PM, primitive mantle, N-MORB, normal mid-ocean ridge basalt, E-MORB, enriched mid-ocean ridge basalt.
The white-doted numbers stand for different partial melting degrees.
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FIGURE 12
The modal diagrams of the proposed tectonic evolution of the studied area, modified from He et al. (2025).

suggests basalts at 126–121 Ma originated from the Spinel + Garnet
(Spinel/Garnet>1) lherzolite face with 1%–5% partial melting.
The high La/Sm ratios of the rocks display similarity to the rift
basalts other than OIB. Whereas basaltic rocks at 120–112 Ma,
modeling results show a deeper source region, from Spine + Garnet
(Spinel/Garnet<1) lherzolite face with evidently higher partial
melting degree (5%–10%), the rather low Sm/Yb ratios still point
to similarity to the rift basalts. Lastly, the isotopic composition
discloses the source region from the depleted mantle to the slightly
enriched mantle, which is explained as the involvement of crustal
materials during 120–112 Ma (He et al., 2025). Therefore, the
origin of mafic rocks during 126–112 Ma are generated from the
continental rift, and the rift extended from shallow to deeper
asthenosphere (He et al., 2025).

Igneous rocks emplaced at 87–40 Ma show completely
different geochemical characteristics from rocks emplaced during
127–112 Ma. Although modeling result shows samples have higher

La/Sm and Sm/Yb ratios, and plot into Spinel + Garnet lherzolite
facies (Figure 11), which is similar to the continental rift basalts,
it contradicts the area history that rift activity ends at ∼113 Ma
(Moreira et al., 2007; Mohriak and Rosendahl, 2003). The relative
low ratios of Nb/Th, Nb/La, and the wide range of Nb/Zr prove a
connection between their source and the mantle plume (Figure 9).
Moreover, the initial Nd values resemble the OIB (Figure 5).
Previous geochemical and geochronological evidence also confirm
existence of the mantle plume at this period (Santos et al., 2021;
Gibson et al., 2005; Gibson et al., 1995). Hence, from 87 to 40 Ma,
the igneous rocks are derived from mantle plume.

Combining the major, trace element and isotopic compositions,
the tectonic context of each episode can be revealed. In 147–127 Ma,
the igneous rocks are from mantle plume source, carrying
characteristics from the lithosphere inevitably incorporated during
ascending. Then, magmatism occurred within a continental rift
setting from 126 to 112 Ma. Lastly, during 87–40 Ma, the igneous
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rocks are under the influence of mantle plume. It is important to
note that these tectonic activities have the potential to facilitate
hydrocarbon generation. The mantle plume and continental rifting
significantly influenced hydrocarbon generation in the Santos Basin
by introducing heat that matured organic-rich source rocks like the
Itapema Formation shales. Magmatic activity, including Aptian and
Santonian-Campanian phases, created igneous complexes and local
paleohighs, which acted as reservoirs or traps for hydrocarbons.
The combined effects of the plume and rifting enhanced the basin’s
hydrocarbon potential (Yan et al., 2024; Ismail-Zadeh et al., 2024;
Zhao et al., 2023; Brune et al., 2023).

5.3 Geodynamic

Southeast Brazil’s passive continental margin and adjacent
areas suffered a complex tectonic background from 147 to 40 Ma,
including mantle plume, rifting, extension, and drift (He et al., 2025;
Pinheiro and Cianfarra, 2021; Cogné et al., 2012; Assumpção et al.,
2004; Assumpção., 1998).TheTristan daCunhamantle plume began
to uplift since ∼135 Ma, a process that is associated with the breakup
of Gondwana and the subsequent opening of the South Atlantic
Ocean during the Lower Cretaceous period (Chang et al., 1992;
Cainelli and Mohriak, 1999). Around 85 Ma, the Trindade mantle
plume became active, generating a series of alkaline rocks, with its
influence persisting into the Eocene (Maia et al., 2021; Rocha et al.,
2011; Thompson et al., 1998; Gibson et al., 1995).

The Tristan da Cunha mantle plume rose and formed huge
amounts of flood basalts with crustal signatures. The thermal effects
brought by the mantle plume heated and softened the overlying
strata, leading to significant uplifting. From 126 to 112 Ma, the
mantle plume’s contribution only exists in heat conduction. The
magmas are sourced from Spinel + Garnet (Spinel/Garnet>1)
lherzolite face and then shifted to Spine + Garnet (Spinel/Garnet<1)
lherzolite face, which is from shallow asthenosphere to deeper
asthenosphere. In the meantime, the partial melting degree of this
period’s igneous rocks increased from 1%–5% to 5%–10%. At this
stage, the geochemical characteristics correspond to the onset of
rift activity, where the mantle plume-induced heating, combined
with thinning and stretching of the lithosphere, deepened the source
region. Such a process facilitated the mixing of crustal material,
and altered the pressure, thereby allowing for a higher degree of
partial melting. After the disclosure of rift activity, the igneous rocks
are then sourced from the ascending mantle plume, with crustal
material signature caused by up-welling (Figure 12).

6 Conclusion

This study compiled the geochemical data of the Santos Basin
and adjacent areas, whose age ranges from 147 Ma to 40 Ma. The

geochemical features and their tectonic implications bringnew insight
into the magmatic movements on the passive margin. The source
composition varies from the mantle plume to different depths of the
asthenosphere, with mixing of crustal material at certain periods.The
geological model indicates that themantle plume initiated the rift and
heated the overlying lithosphere, resulting in continental thinning and
stretching.The research providesmore perspectives in understanding
the correlations between magmatism and basin dynamics.
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