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Fault surface construction plays an important role in seismic structural
interpretation and building structural models. Significant research studies have
been carried out regarding fault surface extraction in the past few years. In
these studies, the main challenges include the following: some fault samples
are locally missing, the noise and the geological discontinuity features, some
fault surfaces may form complicated intersections with each other, and some
adjacent faults with similar directions are difficult to classify. In this paper,
we propose a point cloud surface reconstruction method to automatically
construct and classify the fault surfaces from a 3D seismic image so that the
fault surfaces are constructed completely and accurately. In this method, we first
use the fault-scanning method to smooth the fault attribute image and thin the
smoothed fault attribute image. We then pick the seed points from the thinned
attribute image as control points and use the random sample consensus method
to compute the optimal surface that passes through these seed points. Finally,
we construct the complete fault surfaces by merging all these optimal surface
patches and use moving least square (MLS) to reconstruct the fault surfaces to
smooth them and interpolate possible holes. With fitting the fault surfaces by
MLS, we can also accurately estimate fault orientations. We demonstrate the
efficiency and effectiveness of the method by using model seismic data and
open access seismic data that are complicated by intersecting faults and noise.

KEYWORDS

fault scanning method, fault surface construction, optimal surface, random sample
consensus, moving least square, point cloud surface reconstruction

Introduction

Faults are important discontinuous geological structures in analysis of underground
oil reservoirs. Therefore, fault interpretation is an important part of seismic interpretation.
To construct fault surfaces from seismic data, we often compute a fault attribute volume,
in which the faults are the most prominent. Various approaches have been proposed to
calculate fault attribute images to detect faults, such as semblance (Marfurt et al., 1998;
Lou et al., 2019a), coherency (Marfurt et al., 1999 Qi et al., 2017a), variance (Van Bemmel
and Pepper, 2000; Randen et al., 2001), curvature (Roberts, 2001; Al-Dossary and Marfurt,
2006), and gradient magnitude (Aqrawi and Boe, 2011). However, these attributes are
sensitive to the discontinuous features unrelated to faults, such as stratigraphic features or
noise. With the rise of artificial intelligence, researchers have shown research interest in
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using  artificial  intelligence  techniques for  automatic
identification of faults, such as convolutional neural networks
(Huang et al, 2017; Di et al, 2018; Wu et al., 2019b) and
transfer learning (Zhou et al., 2021).

Constructing fault surfaces from fault attribute images often
requires additional processing. Lees (1999) built triangulated
surfaces from the point cloud obtained by voxel tracking from
semblance volumes. Pedersen et al. (2002) proposed an ant-tracking
method to extract fault surfaces, which significantly improves the
visual appearances of fault surfaces and reveals details hidden by
noise. Gibson et al. (2005) proposed the highest confidence first
merging strategy combined with parametric models and residual
fields, which merges small fault surfaces into a set of complete fault
surfaces. Cohen et al. (2006) used skeletonization to operate fault
extraction. Kadlec et al. (2008) used level sets to construct fault
surfaces from fault attribute images and proposed a hierarchical
clustering algorithm constrained by orientations to automatically
classify faults. Wang and AlRegib (2014) used 3D Hough transform
and the weighted plane fitting method to detect fault planes and
extract smooth fault surfaces. Because the Hough transform is
suitable for straight-line detection, it may work well in the case of
approximately planar faults, but not for curved faults. Hale (2013)
applied a crease-surface-based method to construct surfaces from
fault likelihood attributes. Wu and Zhu (2017) used a tensor-voting
method to construct fault surfaces that reasonably fit locations
and orientations of fault samples and fill holes due to the missing
samples. Zhou et al. (2022) developed a novel fault extraction
workflow from a global perspective and used topological metrics to
automatically generate fault surfaces from seismic attribute data. Bi
and Wu (2021) adopted the Poisson equation surface method and
the point-set surface method to automatically construct complete
faults from the fault attribute image without any holes. Zhou et al.
(2022) proposed a novel fault extraction workflow from a global
perspective, which can extract fault surfaces on the premise of
obtaining the fault distribution of the entire data set.

We first discuss the method of optimal surface picking by using
the random sample consensus (RANSAC) algorithm (Li et al,
2023). As it solves for the optimal surface in a small box
window, the RANSAC method is robust for computing the optimal
surfaces passing through the control point from the thinned fault
attribute image in the small box window that has noise and
multiple faults.

To construct fault surfaces from 3D seismic attribute images
by using the point cloud surface reconstruction method, we first
apply the fault-scanning method (Hale, 2013; Wu and Hale, 2016)
to smooth the fault attribute image and thin the smoothed attribute
image. Then, we pick seed points from the thinned attribute
image. For each seed point, we efficiently pick an optimal surface
patch that passes through the seed point. Finally, we merge all
these picked optimal surfaces into a set of complete fault surfaces
and automatically classify the fault surfaces according to their
orientations at the same time. We reconstruct the merged fault
surfaces by using the moving least square (MLS) method (Zeng and
Lu, 2004) to smooth the fault surfaces and interpolate possible holes
on the fault surfaces. We demonstrate the efficiency and effectiveness
of the method by using multiple examples that are complicated by
intersecting faults and heavy noise.
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Optimal surface picking

Faults are approximately planar surfaces in small 3D seismic
image cubes (Figure la). Therefore, fault surface picking from the
seismic attribute image is a problem of searching for an optimal
surface in a small box window. We use the RANSAC algorithm to
efficiently pick such optimal surface patches.

To explain how to pick the optimal surface at the specified point
from the attribute image in a small box window (Figure la), we
first smooth the image, as shown in Figure 1b. The fault features
become more continuous after smoothing. Then, we apply a non-
maximum suppression to thin the fault attributes (Figure 1c) so that
the faults are more easily recognized. By choosing the points in
the thinned attribute image, whose values are larger than the set
threshold, the fault points can be selected by setting the threshold
of 0.2. By doing this, the fault points can be regarded as a three-
dimensional point cloud, and we are able to pick the optimal surface
passing through the control point (the red point in Figure 1d) by the
RANSAC method.

The RANSAC algorithm can be summarized into two parts:
hypothesis and validation. The assumption part of the work requires
the assumption of the parameters in the algorithm validation, which
include the distance deviation threshold T to satisfy the plane model,
the threshold M for the number of point clouds to satisfy the plane
model, and the number of validation iterations N. The algorithm will
verify whether the model parameters calculated from the minimum
sample subset selected during the iterative calculation process can
meet the optimal model parameters. In our paper, the RANSAC
algorithm process is implemented as follows:

1) Select three points to form the plane model S (one point is the
control point, and the other two points are randomly selected from
the fault points; these three points are not collinear), and calculate
the plane equation. If the three points P1, P2, and P3 are (x;,,,2;)s
(x2,¥5:2,)> and (x3,73,23), the plane equation is Ax+ By + Cz+D =
0, and we can calculate the coeflicient of the plane equation as follows
Equations 1-4:

_ (%3(r,-2) —y5(x, —2) - 231, — ) +23(x, ~ 2,))

A (6]
((x _21)(}’2 ~2,) - ()’1 -21) (%, - 2,))
B= (x3—a(x1—zl)—z3). 2)
(xz—zz)
C=-1. 3)
D=zy—axz —bx*z,. (4)

2) Assuming that the k-neighborhoods of these three points
have k1, k2, and k3 points, m points need to meet the condition of
conforming to the interior point before continuing with the next step
of the algorithm, otherwise reselecting the initial three points. The
m points can be calculated as follows Equation 5:

m > tx (k; +k, +k;). (5)

In this paper, t is taken as 0.5.
3) Calculate the distance from all the fault points to the plane S.
The distance can be calculated as follows Equation 6:

d; = Ax; + By, + Cz; +D. (6)
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FIGURE 1

Process of optimal fault surface picking. (a) Seismic attribute image; (b) enhanced fault attribute image, and (c) thinned fault attribute image; (d) the
optimal fault surface is picked from the thinned attribute image that passes through the control point (red circle).

Here, d, is the distance from point (x;, y,,z;) to the plane S.

4) Checking the fitting plane. The point whose distance from
the plane is less than the distance threshold T is called the inner
point, and the point that does not meet is called the outer point,
and the number of points of the current inner point is saved. If
the proportion of points in the current plane to the fault points is
greater than the set threshold M, or the number of random sampling
reaches the maximum number N of iterations of the algorithm, the
algorithm ends; otherwise, it continues.

The yellow surface in Figure 1d shows the selected optimal
surface, which passes through the control point and correctly follows
the high fault attribute values and the most inner points in the
fault points. We display the picked surface with the thinned fault
attribute images (Figure 1d), where we observe that the surface
correctly follows the picked fault.

3D fault surface construction

We have discussed automatically picking the optimal fault
surface passing through the control point from a fault attribute
image with noisy and discontinuous fault features in small box
windows by using the RANSAC method. In picking a single fault
surface, we have assumed that there is only one fault corresponding
to the control point and that the fault is an approximately planar
plane surface in a small seismic attribute image cube. However,
a 3D seismic fault attribute image often contains multiple faults
with different orientations and spatial extensions. In this section,
we use the point cloud surface reconstruction method to robustly
construct complete fault surfaces in 3D seismic fault attribute
images. The surface construction procedure consists of three steps.
We first use the fault-scanning method (Hale, 2013; Wu and
Hale, 2016) to smooth the fault attribute image and thin the
smoothed attribute image. Then, we pick seed points from the
thinned attribute image and pick the optimal surface patches
that pass through these seed points. Finally, we merge all these
picked optimal surfaces into a set of complete fault surfaces and
reconstruct the merged fault surfaces by using the MLS method
to smooth the fault surfaces and interpolate possible holes on
fault surfaces.
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Step 1: 3D fault attribute image smoothing and
thinning

To highlight faults in a seismic attribute image (such as
Figure 2b), we use the fault scanning method to smooth the fault
attribute image (Hale, 2013; Wu and Zhu, 2017). This is a simple and
efficient method to smooth a 3D fault image by applying a smoothing
filter defined by all possible directions of the strike angle and dip
angle. The whole process can be expressed as follows Equation 7:

m(x) = arg max f(x) * g(¢,0), (7)
9ep 06
where ¢ ={0°d,,2d,,--360°}, 0, = {0, 0, + g O,0i + 2dlp,

-0 and g(¢,0) denotes the filters defined by the fault dip
and strike. f(x) denotes the 3D fault attribute image. m(x) denotes

max}’

the maximum smoothing response. We choose a model data set to
display the smoothing result (Figure 2c). We find that the smoothed
fault image highlights most of the fault features. However, it is
still challenging to construct fault surfaces because many spurious
fault features are enhanced with high values, which significantly
blurs the surface construction. In addition, a basic assumption
of the scanning method is that one seismic image point exactly
corresponds to one fault. However, that is no longer valid for
a complicated intersected fault system because the fault attribute
values in other crossed directions can also be high enough to be
interpreted as faults. The fault samples near the fault intersections
and noise cannot be completely obtained, and thus, the constructed
fault surfaces suffer from holes.

Step 2: seed point picking and optimal surface
patch picking

With the smoothed fault attribute image, our next step is to
automatically compute seed points and pick the optimal fault surface
patches at seed points.

In computing the seed points, we first compute a thinned
fault attribute image by applying non-maximum suppression to the
smoothed fault attribute image. In this non-maximum suppression,
we keep only the attribute values on the ridges of the fault
attribute image and set zeros elsewhere to obtain the thinned
attribute image (Figure 2d). Then, we select seed candidates from
the thinned attribute image by collecting all the image samples
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a)

FIGURE 2
Process of fault surface construction in synthetic seismic data. (a) synthetic seismic image; (b) fault attribute image computed from the seismicimage;

(c) smoothed fault attribute image computed from the fault attribute image; (d) thinned fault attribute image; (e) seed points picked from the thinned
attribute image; (f) surface constructed by the point cloud method.

with attribute values that are larger than some thresholds. Finally, lowest value. In checking in the seeds, we compute the distances
we check in the true seeds from all the candidate points in order ~ between the current candidate to all the previously checked-in
from the one with the highest attribute value to the one with the  seeds and check the current candidate as a true seed only if the
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minimum distance is larger than some predefined radius (r = 6 for
the example in Figure 2¢). By doing this, we can greatly reduce
the number of seed points and, therefore, save computational time
for the followed optimal surface picking at the seed points. A
smaller radius will yield more seed points, which would be better
for the next step of constructing the surface, but this requires more
computational time for computing the optimal surface. Based on our
experience, the radius r depends on the fault curvature. When the
fault curvature is high, a smaller r should be selected to ensure the
accuracy of fault surface calculation. When the fault curvature is low,
a larger r should be selected to ensure the accuracy of fault surface
calculation.

For each seed point, we define a 3D box window that is centered
at the seed and is aligned in the x-y-z space (x denotes the inline
direction, y denotes the crossline direction, and z denotes the time
direction). We use the seed as a control point in the RANSAC
algorithm to pick the optimal surface from the thinned fault attribute
patch located within the box window (as shown in Figure 1).
In this way, we pick all the optimal surface patches at these
seed points.

Step 3: fault surface construction

In this paper, there are two main steps to construct the fault
surfaces: (1) linking the nearby optimal surface patches to construct
fault surfaces (Figure 3b) and (2) using MLS to reconstruct fault
surfaces without any holes.

Constructing fault surfaces from the optimal surface patches is
more straightforward and accurate than the thinned fault attribute
image. The plane equations of optimal surfaces are also helpful
for tracking fault surfaces. However, by directly linking the nearby
optimal surfaces, the constructed fault surfaces usually suffer from
holes (Figure 3c). The noise level in the seismic image is significantly
responsible for the holes appearing on the surfaces. In addition,
the RANSAC method assumes that the faults are locally planar,
implying by linking nearby optimal surfaces, only the nearby fault
samples are connected to a fault skin and approximate a fault
surface (Figure 3c). Therefore, after linking nearby optimal surface-
constructed fault surfaces, we use MLS to construct fault surfaces
without any holes apparent on surfaces even with some missing
fault samples (Figure 3d).

Merging fault surface patches

We define three criteria for merging the fault surface patches.

The first criterion is that the analyzed fault surface patch can only
merge with its neighboring fault surface patches if the angle between
their normal vectors is less than the angle threshold A (5° for the
example in Figure 3b). The normal vectors are given by the plane
equation. If the plane equation is Ax + By + Cz+ D = 0, the normal
vector u is Equation 8:

u=[A,B,C]. (8)

The second criterion is that the analyzed fault surface patch and
its neighboring fault surface patches should be inclined in the same
direction. The normal vector of the analyzed fault surface patch is
u; = (x,9,,2,), and the normal vector of a nearby surface patch is
u, = (x,9,,2,). If y, /y, and z, /z, are both positive or both negative,
the two patches are inclined in the same direction.
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The third criterion is that the overlap rate of planar projections
of the analyzed fault surface patch and its neighboring fault surface
patches should be less than the threshold S (0.1, for example,
in Figure 3). The normal vector of the analyzed fault surface
patch is u; = (x},y,,2,). If |x;/y,| > 1, these surface patches are
projected to the YOZ plane; if |x,/y,| <1, these surface patches
are projected to the XOZ plane. If n, is the number of the
fault samples projected by the analyzed fault surface patch, n, is
the number of the fault samples projected by a nearby surface
patch, n; is the number of fault samples where the projections of
these patches overlap, the projection overlap rate Pj is given by
Equation 9:

ns .

—,ifn; <mn,
Pji=1nl : ©)
n—z,z fn, >n,

The analyzed fault surface patch only merges with the
neighboring fault surface patches that satisfy these three criteria,
and the merged fault surface patch functions as the new analyzed
fault surface patch in the following merging process. The merging
process continues until the algorithm cannot merge any fault
surface patches.

Reconstructing fault surfaces by using MLS

The MLS method is mainly applied to curve and surface
fitting. The method is based on compact-supported weighting
functions (the function values are defined to be greater than 0
only in a closed domain of finite size and 0 outside the domain)
and polynomial basis functions. The fitting function suitable for
the scattered points model is established by the weighted least
square method.

Reconstruction of fault surfaces from the merged fault surface
patches is similar to the problem of surface reconstruction from
the 3D point cloud, which is well-studied in computer graphics
and computer version. Therefore, we choose the MLS method to
reconstruct fault surfaces from the merged optimal fault surfaces
because it makes the fault surfaces smoother while maintaining the
space configuration of the faults.

In the MLS method, we first choose a merged surface and divide
it into N x N rule section grid of points and count the node value
at the grid point. The node value at the grid point is calculated
as follows Equation 10:

f(x) = OF(x)y. (10)

Here, y = [y,,,,**+y, ], and y, is the node value at the grid point
X;. OF(x) is called the shape function, and k denotes the order of the
basis function. O¥(x) is counted as follows Equation 11:

0" () = p" (A (0)B(x). (11)

Here, Equations 12, 13:

Ax) = ) wlx—x))p(e )P (x,). (12)

i=1
B(x) = [w(x — x))p(x)), wlx = x,)p(xy), -, w(x = x, )p(x,,)].~ (13)

Here, p(x)=[p(x,),p(x,),---p(x3)]", and p(x) is the basis
function. We use quadratic polynomial basis functions in the fitting
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FIGURE 3

Process of a fault surface construction. (a) the seed points picked from the thinned attribute of this fault surface; (b) the optimal surface patches from
the seed point; (c) the merged fault surface of the optimal surface patches; (d) fault surface reconstructed by using the MLS method.
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process. w(x—x;) is a smooth continuous weight function at node
x; with the compact support property. The weight function w
is given by Equation 14:

TP+ 2 <1
2 3

w(x) = é(z-m)3 l<j<2 - (14)
0 else

We use Equation 10 to calculate the node values for all grid
nodes and connect the mesh nodes to form the fitting surface. By
fitting the merged surface, we can calculate the values of all the points
on the fault surface. As shown in Figure 2a, most fault samples are
aligned approximately coplanar and are linked to form fault surfaces,
as shown in Figure 2d. Some misaligned fault samples (often with
low fault likelihoods) are also apparent; however, they cannot be
linked together to form significant locally planar fault surfaces. We
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filter out small surfaces and keep only those with significant numbers
of fault samples. For example, in Figure 2f, we have discarded small
fault surfaces and kept only the five largest surfaces to demonstrate
the effectiveness of our methods.

Applications to seismic images

To further demonstrate the effectiveness of our methods, we
apply the point cloud surface method reconstruction to the real 3D
seismic image (287 [inline] x735 [crossline] x425 [time] samples)
shown in Figure 4a. Figure 4b shows the fault attribute image
computed from Kerry 3D seismic data. The fault attribute image
provides a good detection of the fault discontinuities from the
seismic image. However, some noisy features are also detected in
the fault attribute image. From the thinned fault attribute image
(Figure 4d), most of the large fault surfaces can be successfully
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FIGURE 4
Process of real 3D seismic image. (a) Kerry 3D seismic data; (b) fault attribute computed from Kerry 3D seismic data; (c) smoothed fault attribute image;

(d) thinned fault attribute section; (e) fault surface reconstructed by the point cloud surface reconstruction method.

extracted by linking nearby fault samples. However, many noisy Discussion

fault surfaces are also generated, which are difficult to separate,

and some faults also have local discontinuities. These problems We apply our proposed methods to synthetic seismic data and
will make fault surface construction difficult. Figure 4b shows the ~ Kerry 3D seismic data to illustrate the effectiveness of our method.
fault surfaces constructed by the point cloud surface reconstruction ~ Figure 2 shows the results of our method on synthetic seismic data
method from Kerry 3D seismic data. We display the fault surfaces  with intersecting faults, which means that our method can effectively
with inline, crossline, and time section and compare them with the address the intersected faults. Figure 4 shows the results of our
fault attribute data. It can be seen in Figure 4e that the extracted fault ~ method on Kerry 3D seismic data with complicated faults, which
surfaces are consistent with the locations of faults in the seismic data, indicates that our method can extract fault surfaces accurately and
which shows the effectiveness of our proposed method. In addition, ~ completely.

compared with the fault attribute data in the inline (or crossline) However, our method also has several limitations. The fault
section, the results of our method have more continuity and are  surface patches are directly picked by the RANSAC method with
cleaner. Therefore, our method can effectively construct complete ~ the assumption that the fault should be approximately planar
and continuous fault surfaces. within a small box window. This assumption is true for most
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cases, but it may fail for some special faults, such as
conical faults (Hale and Groshong, 2014), with the full range of
fault strike angles. In that case, using RANSAC to find spherical or
cylindrical planes instead of finding planar planes may also lead to
the selection of the optimal fault surface.

Because the fault surface is nearly planar within the local box
window when the moving least squares method (MLS) is used to
reconstruct the merged complete fault plane, a quadratic polynomial
basis function is sufficient to handle the majority of cases during the
fitting process.

In addition, our method relies heavily on the quality of the fault
detection attribute. For some regions with relatively strong noise
and complicated faults, the insufficient ability to delineate the fault
detection attribute anomalies limits the performance of our method.

Therefore, we use the fault scanning method to highlight faults
in a seismic attribute image. The deep-learning-based fault attribute
algorithms can produce high-quality seismic fault attributes without
staircase artifacts and undesired stratigraphic anomalies. Thus, using
fault attributes generated by the deep learning algorithm as the input
for our algorithm can yield better results.

The Kerry seismic data were processed on a computer with a
CPU (Intel(R) Core(TM) i7-7700, 3.6 GHz). The entire code was
run via the MATLAB Parallel Computing Toolbox. The computation
times of the fault scanning method are approximately 3 and 4 h. The
computation times of fault surface construction are approximately 3
and 4 h. Note that our algorithm does not extract the fault surface if
the fault surface on the vertical slice is smaller than approximately
60 ms. Thus, we conclude that our method is effective for medium
to large faults, but the effect is not obvious for small faults.

Conclusion

In this study, we proposed a new workflow for extracting fault
surfaces via the 3D point cloud surface reconstruction method.
We regarded the fault points in the fault attribute volume as 3D
point clouds and use the 3D point cloud surface reconstruction
algorithm to construct complete fault surfaces. First, we performed
fault scanning method processing on the fault attribute volume and
obtained 3D fault samples from the enhanced and thinned fault
attribute volumes. These fault samples were the initial 3D point
clouds of the faults. Then, we uniformly selected seed points from
these 3D fault samples and used the random sample consensus
(RANSAC) algorithm to calculate the local optimal surface patches
at the seed points. Based on the relationship of adjacent local
optimal surface patches, we connected the local fault surface patches
belonging to the same fault to form a complete fault surface. Finally,
we used the MLS (moving least squares) method to reconstruct
the merged complete fault surface to fill in the possible holes on
the merged fault surface and make the fault surface smoother.
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