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Coseismic landslides caused by
the 2022 Luding earthquake in
China: insights from remote
sensing interpretations and
machine learning models
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of Technology, Chengdu, China, 2College of Environment and Civil Engineering, Chengdu University
of Technology, Chengdu, China, 3Sichuan Institute of Nuclear Geological Survey, Chengdu, China

On5 September 2022, anMs 6.8 earthquake occurred in LudingCounty, Sichuan
Province, China, triggering numerous landslides and causing extensive damage
to buildings and casualties. A comprehensive study of the characteristics
of coseismic landslide distribution in this area is highly important for
postearthquake emergency response. In this paper, coseismic landslides in high-
intensity areas were interpreted through remote sensing images, and 5,386
landslides with a total area of 22.2 km2 were identified. The spatial distribution
of coseismic landslides was analyzed in relation to seismic, topographic, and
geological factors to assess their susceptibility at the regional scale. The results
revealed that the majority of coseismic landslides occurred on both sides of the
Xianshuihe fault, which is the causative fault, and the landslides exhibited a linear
distribution. These landslides were concentrated mainly at elevations between
1,000 and 1,800 m, with slopes of 30°–50°, and they occurred in areas with
hard intrusive rock masses. The spatial distribution of coseismic landslides in
the study area was predicted using three models: Random Forest (RF), Gradient
Boosting Decision Tree (GBDT) and eXtreme Gradient Boosting (XGBoost).
Furthermore, SHapley Additive exPlanations (SHAP) theory was used to conduct
a quantitative analysis of the main geomorphological factors controlling the
landslides. This paper revealed that different topographic factors had varying
degrees of nonlinear impacts on landslide formation and that the combined
effects of multiple factors, such as the Peak Ground Acceleration (PGA), slope,
and lithology, controlled the formation of landslides. This paper highlights the
significant advantages of machine learning-based intelligent identification and
analytical techniques in landslide disaster emergency surveys and analysis of
formation conditions. Rapid prediction of the spatial location and distribution
pattern of coseismic landslides provides effective support and guidance for
emergency response, risk mitigation, and reconstruction planning.
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1 Introduction

An earthquake is caused by the sudden release of energy
from the Earth’s lithosphere, which can lead to intense vibrations
on the Earth’s surface, causing large blocks of rock to separate
from the mountains and form landslides triggered by earthquakes;
landslides triggered by earthquakes are usually called coseismic
landslides (Budimir et al., 2014; Fan et al., 2019; Gorum et al.,
2013; Zhuang et al., 2018; Wen et al., 2024). Numerous studies
have reported that the Qinghai‒Tibet Plateau may be a typical
area prone to coseismic landslides, especially at its eastern edge.
High ground stress, deep canyons, and densely distributed faults
and cracks make the eastern edge very sensitive to earthquakes,
and even slight shaking may cause the collapse of rocky slopes
(Williams et al., 2018). For example, since 2000, at least 7
earthquakes have triggered massive landslides at the eastern
edge; these earthquakes include the 2008 Ms 8.0 Wenchuan
earthquake (197481 landslides), the 2010 Ms 7.3 Yushu earthquake
(2036 landslides), the 2013 Ms 7.0 Lushan earthquake (15645
landslides), and the 2017 Ms 7.0 Jiuzhaigou earthquake (Zhao et al.,
2022; Xu and Xu, 2014; Xu et al., 2014) (5,633 landslides).
These coseismic landslides have catastrophic consequences for
local people, such as villages being flooded, deaths, and lakes
being dammed.

The occurrence of landslides after earthquakes is not only
affected by seismic vibrations, but may also be exacerbated by
meteorological factors such as precipitation (Mao et al., 2024),
which can cause soil moisture and increase slope instability. This
plays an important role in the occurrence of landslides triggered
by earthquakes. Although this study mainly focuses on earthquake
induced landslides, combining precipitation data may improve
the accuracy of landslide prediction in subsequent research. The
occurrence of coseismic landslides is driven mainly by seismic
dynamics and geological and topographic conditions. The driving
mechanisms include surface movement caused by earthquakes,
fault activity, and complex interactions between topography and
geological characteristics. The key influential factors include slope,
topographic curvature, lithology, vegetation cover, groundwater
conditions, distance to epicentre or fault, etc. (Nowicki Jessee et al.,
2018) Rapid and accurate identification of the locations of
coseismic geological hazards is crucial for risk mitigation and future
reconstruction in earthquake-affected areas. In addition, a detailed
catalog of earthquake geological hazard events can be used to study
the patterns of coseismic landslide distribution. Compared with
onsite surveys, which require considerable time and humanpower,
remote sensing images can reveal a wide range of Earth observations
but have a short revisit time, providing an excellent opportunity to
monitor surface processes in a wide geographical area. On this basis,
the mapping of landslides via remote sensing technology has rapidly
developed and has become the most important means of realizing
their distribution and patterns (Guo et al., 2021).

Detailed coseismic landslide maps are usually made through
onsite surveys or the interpretation of optical remote sensing images
obtained from satellites and unmanned aerial vehicles (UAVs).
However, effective satellite images are often limited by weather
conditions. In addition, because of field conditions, it is difficult to
meet the standards of onsite surveys and UAV missions. Therefore,
coseismic landslide prediction is highly important for guiding and

making decisions in emergency rescue during the postearthquake
period without images and during the survey period. At present,
statistical analysis-based methods for predicting landslides, such as
logistic regression, linear regression, and support vector machines,
are widely used in many studies.These methods provide predictions
of the spatial distribution of landslides on the basis of various
conditional factors (Fan et al., 2018).

Despite the advantages of machine learning models in terms
of accuracy, their “black box” nature limits their wide application
in geological landslides. In recent years, the SHapley Additive
exPlanations (SHAP) method, as a tool for model interpretation,
has been used to quantify the contribution of each feature to
the model’s prediction results, thereby improving the transparency
and scientificity of the model. This method is particularly suitable
for studying the mechanism of the effects of complex geological
variables in landslide prediction.

On 5 September 2022, a Ms 6.8 earthquake, with an epicentre
at 29.59°N and 102.08°E and a focal depth of 16 km, shook Luding
County, Sichuan Province, China (Xu andXu, 2014).The earthquake
lasted for 20 s, and 2,715 aftershocks were subsequently recorded.
The earthquake strongly affected many provinces in the west,
including Chengdu, Chongqing, and Xi’an, which are approximately
226 km, 444 km, and 830 km away from the epicentre, respectively.
According to the seismic intensity map (Dai et al., 2023) published
by the Ministry of Emergency Management of China on the
Modified Mercalli (MM) scale (GB/T17, 742–2020), the area where
the seismic intensity was greater than VI was 19,089 km2, and
the maximum intensity reached IX, with an area of 280 km2.
The earthquake triggered many landslides, causing damage to
houses and blocking roads in the affected areas, resulting in
serious casualties and property losses. According to statistics, as
of 11 September 2022, the earthquake had caused 93 deaths and
25 missing people. In this paper, the 2022 Luding earthquake
is taken as a typical case, and a comprehensive framework for
evaluating landslides induced after a strong earthquake is proposed.
First, we recorded and analyzed the distribution patterns of
postearthquake landslides on the basis of remote sensing images.
Second, we constructed a machine learning-based predictionmodel
for postearthquake landslides by combining multisource geological,
seismic, and topographic data (Fan et al., 2021; Tanyas et al.,
2019; Budimir et al., 2015; Alvioli et al., 2020). Finally, we used
SHAP values for model interpretation. The aim of this work
is to (Budimir et al., 2014) identify the key factors affecting
landslide occurrence and their mechanisms of action (Fan et al.,
2019); evaluate the prediction ability and applicability of the
machine learning model; and (Gorum et al., 2013) explore an
interpretation framework based on SHAP values for geological
processes, providing a scientific basis for the prevention and control
of future coseismic landslides and risk assessment.

2 Study area

The epicentre of the “9.5” Luding earthquake is near the Moxi
fault in the southeastern section of the Xianshuihe fault zone on
the southeastern edge of the Qinghai‒Tibet Plateau (Xiong et al.,
2023) (Figure 1). The Xianshuihe fault zone stretches from the
vicinity of Donggu in Ganzi in the north, generally extends in
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FIGURE 1
2022 Luding earthquake location and map of the distribution of the fault zone

a northwest‒southeast direction, passes through Longho, Daofu,
Qianning, and Kangding, and extends to the southern part of Moxi
in Luding. It intersects with the Longmenshan Fault Zone and
the Anning River Fault Zone near Shimian, forming the famous
“Y-shaped” fault zone in western Sichuan. The total length is
approximately 350 km. It is a highly active large-scale left-lateral
strike‒slip fault zone, and it is prone to earthquake development
and a high risk of geological landslides (Guihua et al., 2016). In
terms of the geological structure, the Xianshuihe fault zone is located
within the Songpan–Ganzi Geosynclinal Fold System, which is
a first-order tectonic unit. The northeast side of the fault is the
Bayan Har Block, and the southwest side is the Sichuan–Yunnan
Rhombic Block. The fault is the dividing line between the two
second-order tectonic units, and the tectonic units on both sides
of the fault are different, resulting in fault contact (Zhao et al.,

2023). The study area is located within the Xianshuihe Fault
Zone, a seismically active region with complex geological structures
and diverse lithological formations. According to the 1:200,000
regional geologicalmap, themain lithologies outcropping in the area
include hard intrusive rocks (granite, diorite), layered metamorphic
rocks (schist, phyllite), weakly cemented clastic rocks (sandstone,
shale), and loose Quaternary deposits. These lithological units play
a critical role in controlling landslide susceptibility, as different
rock types respond differently to seismic shaking. The area near
the Xianshuihe fault zone has historically been prone to strong
seismic activity. Since 1700, 22 earthquakes withmagnitudes greater
than Ms 6.0 have occurred along this fault zone, including 8
earthquakes with magnitudes greater than Ms 7.0. The closest
spatial distance to this Luding earthquake was theM7.75 earthquake
in Kangding-Luding, Sichuan, on 1 June 1786, and the closest
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FIGURE 2
Range of remote sensing image acquisition.

spatial distance was the M7.9 earthquake in Longho, Sichuan,
on 6 February 1973. Relevant studies have shown that after the
Wenchuan earthquake in 2008 and the Lushan earthquake in 2013,
the Coulomb stress near the Xianshuihe fault increased significantly,
and the strike-slip rate of the fault zone showed an increasing
trend from northwest to southeast, suggesting the possibility of
triggering a major earthquake (Huang et al., 2023; Wang, 2015;
Dai et al., 2011).

The landforms of the Xianshuihe fault zone and its adjacent
areas are controlled by tectonics, forming a pattern of mountains
and rivers parallel to each other. The direction gradually deviates
to the south from northwest–southeast and finally becomes nearly
north–south. The fault zone spans two water systems: the Yalong
River and the Dadu River. Along the fault zone, the longest Xianshui

River, Qingda River and Liqi River in the central part of the fault
zone are part of the Yalong River water system. Tributaries such as
the Yala River and Zheduo River at the southeast end of the fault
converge into the Wasi River and then flow into the Dadu River,
which is part of the Dadu River water system (Yang et al., 2023).
The main peaks in the area include Haizi Mountain, Dapaonan
Mountain and Zheduo Mountain, all of which are greater than
4,500 m above sea level. Along the fault zone in the area, there are
several graben basins, such as the Qianning Basin, Longdeng Basin
and Daofu Basin, all of which are approximately 3,000 m above
sea level. The overall area is generally bounded by the trend of the
Xianshuihe fault zone. According to the differences in landforms
and relative cutting depth, the area can be divided into the Qiangxi
hill plateau area in the northeast and the Qiangxi plateau area in the
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southwest, both of which are alpine plateau landforms. The changes
in the crustal thickness on both sides of the Xianshuihe fault zone are
relatively gradual. The closer to the fault location, the more obvious
the changes in crustal thickness are. At the northwestern end of
the Ganzi–Yushu fault, the bottom layer thickness changes from
nearly north‒south to northwest‒southeast. In the southeastern
part of the Longmen Mountain fault zone, the direction in which
the crustal thickness changes also significantly changes, which
to some extent reflects the complexity of the deep structure
in this area.

3 Data and methods

3.1 Landslide identification

A detailed and accurate catalog of coseismic landslides is the
premise and foundation for conducting landslide assessments. An
ideal catalogmap should cover the entire earthquake area and should
accurately delineate the location and shape of landslides in the
form of polygons. More detailed catalogs of coseismic landslides
began in the 1950s, using mainly aerial interpretation methods and
field surveys, which are inefficient and have difficulty covering the
entire area affected by earthquakes. In recent years, with the rapid
development of remote sensing and GIS technology, high-precision
satellite remote sensing has been continuously applied to the
fine interpretation of geological landslides caused by earthquakes,
and many detailed and accurate hazard cataloging maps have
been produced.

The establishment of a catalog of coseismic landslides is an
important part of the analysis of coseismic landslides, and a reliable
source of imaging data is the basis for the accuracy of the database,
which is also an important guarantee for the analysis of patterns and
the establishment of models (He et al., 2024; He and Xu, 2022; Shao
and Xu, 2022). The basic data used to study the spatial distribution
of landslides during the Luding earthquake and the subsequent
prediction of landslides includemultisource andmultiperiod optical
remote sensing images, which are used for the detailed cataloging of
coseismic landslide data.The optical remote sensing data come from
the Planet satellite constellation, which can realize high-frequency
and full-coverage high-resolution observations of the whole globe
once a day.The satellite images selected in this paper include single-
band panchromatic images and multispectral images composed of
four bands: red, blue, green, and near-infrared. By registering and
fusing the panchromatic and multispectral images, we can obtain a
multispectral fused image with a spatial resolution of 3 m (Figure 2).

To identify coseismic landslides, we performed a pre- and post-
earthquake image comparison using PlanetScope 3 m resolution
imagery. The pre-earthquake image (August 2022) provided
a baseline, while the post-earthquake image (October 2022)
captured surface changes caused by the earthquake. Landslides
were identified based on newly exposed bedrock, vegetation loss,
and morphological changes (Figure 3).

Figure 3 shows an example of landslide identification, where a
comparison of pre- and post-earthquake images highlights newly
formed landslides. To further clarify the mapping process, we
overlaid the identified landslide polygons on the post-earthquake
image, allowing for a clear visualization of the affected areas.

3.2 Data on the influential factors

The spatial distribution of landslides triggered by earthquakes
is influenced by the seismic, topographic and geological conditions
of the earthquake area (Cemiloglu et al., 2023). On the basis of
the characteristics of landslide distribution in the study area and
their influential factors and on the basis of previous studies (Chen,
2017; Xu et al., 2015; Zhang et al., 2023; Zhao et al., 2024), we
selected 10 factors for evaluating coseismic landslides (Table 1),
including the PGA, distance to seismic fault, intensity, altitude,
slope, aspect, plan curvature, distance to closest fault, lithology, and
distance to river. We obtained the intensity and PGA data of the
earthquake through the United States Geological Survey (USGS)
Shakemap System and used ArcGIS to process the digital elevation
map (DEM) data to obtain altitude, slope, aspect, and plan curvature
data. We extracted faults and rivers from topographic maps and
used software to generate distance maps. Finally, we used the spatial
statistical analysis function of ArcGIS to study the spatial correlation
of 10 evaluation factors, thus systematically summarizing the
spatial distribution patterns of geological landslides triggered by
earthquakes.

3.3 Landslide susceptibility models

Machine learning technology is considered one of the
ideal techniques for solving nonlinear geological environmental
problems. For regression or classification problems, machine
learning technology can learn the correlation between the
occurrence of landslides and the prediction of their causes without
the need for a structural model. In this work, we selected classic
methods from two types of integrated models to establish a
prediction model and compared the random forest (RF) and
Gradient Boosting Decision Tree (GBDT) methods. In addition, we
selected the eXtreme Gradient Boosting (XGBoost) model, which
was improved on the basis of the GBDT method, for prediction
comparison.

RF is a powerful ensemble learning method that can be used for
classification, regression, and unsupervised learning. This method
has been widely applied in many fields and has shown good
performance (Calderoni et al., 2015; Kohestani et al., 2015; Liu et al.,
2024). In solving classification problems, RFprediction is considered
the unweighted majority of class votes. The bagging technique is
used to select random variable samples as the training dataset for
model calibration. For each variable, if the value of the variable is
arranged in the bagging observation values, the function determines
the prediction error of the model.

The GBDT is a machine learning model originally proposed by
Jerome Friedman in 1999 (Wang and Dong, 2024). GBDT is also a
member of the boosting family of ensemble learning. GBDT uses
the forward distribution algorithm for iteration, and each iteration
produces a weak learner. In the next iteration, it is trained according
to the residuals of the previous round of weak learners. In this way,
the iteration continues until the error is reduced to a certain range.
Finally, all weak learners are weighted and summed to obtain the
final strong learner (Lin et al., 2023).

XGBoost is an extensible machine learning system for tree
boosting that was proposed by Chen and Guestrin in 2016 (Chen
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FIGURE 3
Example of coseismic landslide identification. (a) Pre-earthquake PlanetScope image (August 2022). (b) Post-earthquake PlanetScope image (October
2022), with newly identified landslides outlined in red polygons.

and Guestrin, 2016). It is one of the most widely used regression
algorithms and has high regression accuracy. XGBoost has the
advantages of parallel computing, optimized memory usage, and
efficient processing of sparse data. When making predictions, the
accuracy of XGBoost is often higher than that of linear models,
but it also lacks the interpretability of linear models. The workflow
consists of the following parts: 1. create a decision tree and
initialize the prediction value of each sample; 2. define the loss
function; 3. calculate the derivative of the loss function for each

sample’s prediction value; 4. create a new decision tree on the
basis of derivative information; 5. use the new decision tree to
predict samples and accumulate them to the original value; 6.
repeat the process of creating decision trees. Repeat the process of
creating decision trees multiple times until the accuracy reaches its
maximum value.

To test the accuracy of the prediction model, we use the
receiver operating characteristic (ROC) curve for accuracy
verification (Nanehkaran et al., 2021). The area under the curve

TABLE 1 General description of conditioning factors adopted in this paper.

Class Factors Data source Resolution/scale

Seismic

PGA USGS Shakemap System 1000 m

Seismic fault Global Lithology Map 1:200000

Intensity USGS Shakemap System —

Topographic

Altitude Altitude taken directly from NASA SRTMS DEMS 30 m

Slope Slope angle derived from NASA SRTMS DEMS 30 m

Aspect Aspect derived from NASA SRTMS DEMS 30 m

Plan curvature Curvature derived from NASA SRTMS DEMS 30 m

Geological

Fault Global Lithology Map 1:200000

River Global Lithology Map 1:200000

Lithology Global Lithology Map 1:200000
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(AUC) of the ROC curve can be used directly to test the accuracy of
landslide prediction results. The larger the AUC value is, the higher
the accuracy and the stronger the rationality of the model.The ROC
curve is evaluated on the basis of the above confusion matrix, and
its horizontal coordinate is the specificity, that is, the number of
nonlandslide points that are correctly evaluated, and the vertical
coordinate is the sensitivity, that is, the number of landslide points
that are correctly evaluated.The criterion for judgment is as follows:
when the AUC values are 0.5 ∼ 0.7, the accuracy of the model’s
prediction results is relatively low; when the AUC values are 0.7
∼ 0.9, the accuracy of the model’s prediction results is relatively
high. The distribution of the AUC values can also reflect the
same pattern.

3.4 SHapley additive exPlanation (SHAP)

As the computational power of machine learning continues
to increase, models become increasingly complex, and it becomes
difficult to understand the internal operations of models and how
theymake decisions.Therefore,modelsmay performwell in training
but very poorly in actual applications. Scholars generally believe
that relying solely on the high prediction accuracy of models is
not enough to guarantee their credibility (Caruana et al., 2015).
Improving the interpretability of “black box” models, enabling
people to understand the reasons for their predictions, is an
important measure to enhance the universality and credibility of
machine learning algorithm applications. In 2017, Lundberg and Lee
proposed SHAP (Lundberg and Lee, 2017), a widely used method
whose main idea is cooperative game theory (CGP). It is used to
explain the prediction results of various models (classification and
regression), especially the reasons for the predictions of difficult-to-
understand black box models.

The method regards all input features as “contributors” affecting
the model’s prediction results and calculates the SHAP value of each
feature for the prediction results as the basis for judging the degree
and direction of its impact on the prediction results. Combined with
actual physical laws and existing empirical knowledge, it determines
whether the model’s prediction results are reliable. SHAP is used to
analyze the feature factors for selection to quantify the controlling
effect of each feature factor on the formation of landslides. By
plotting the relationship between the changes in the values of each
feature factor and their SHAP values, we can derive the mechanism
of the effect of feature factors and their interactions on the formation
of landslides.

4 Results

4.1 Landslide inventory

Through visual interpretation of remote sensing images and
verification of geological landslide data, we constructed a detailed
landslide database of the Luding earthquake event. Mapping of
landslides in the Luding earthquake research area revealed that
the 2022 Luding earthquake triggered at least 5,386 landslides in
an area of 3,700 km2. The total area of landslides and the average
area of landslides are 22.2 km2 and 4,125 m2, respectively. Most

of the landslides (5,366 cases, accounting for 99.64% of the total)
occurred in Luding County (2,531 cases, accounting for 47.00%
of the total) and Shimian County (2,835 cases, accounting for
52.64% of the total). These larger landslides were concentrated
mainly near the earthquake fault (Moxi fault), and there were 1,104
landslides with areas greater than 5,000 m2, accounting for 26.77%
of the total landslides. There were 756 landslides concentrated
within a 2 km range of the Moxi fault, accounting for 33% of
the total landslides. More than 90% of the landslides occurred
in the sections south of the epicentre, especially in the sections
between Moxi and Xinmin town, reflecting the sliding process of
the Moxi fault. There was no obvious concentration of landslides
near the epicentre. The landslide inventory is constructed based
on remote sensing images from the 3 m resolution Planet satellite,
and the minimum detectable and observable landslide area is
approximately 62 m2.

To further study the distribution of landslides, we conducted
a density analysis of the area and number of landslides, and the
results are shown in Figure 4. The highest density of landslide
areas was 13.8%, and the high-density areas were concentrated
mainly in the area of intensity IX and the northeast side of
the earthquake fault. The highest density of landslide points
was 35.73 km2, which was similar to the distribution of surface
density, and the high-density areas were also concentrated
in the area of intensity IX and the northeast side of the
earthquake fault.

4.2 Characteristics of spatial patterns

There was a strong correlation between earthquakes and
geological landslides and PGA. Statistical analysis revealed that
the total distribution area of geological landslides first increased
but then decreased (Figure 5). The area of geological landslides
and the gradational surface density reached their peak in the
range of 0.12–0.16 g, but the peak gradational surface density of
geological landslides was in the range of 0.08–0.24 g. Landslides
were concentrated in the range of 0.08–0.24 g, and the proportion
of the area of development of geological landslides in this range
was as high as 75.4%. The distribution of landslides triggered by
earthquakes was controlled mainly by the fault that caused the
earthquake. In this paper, we established buffer zones at intervals
of 1 km for the fault that caused the earthquake and statistically
calculated the area and gradational surface density of geological
landslides triggered by earthquakes at different distances from the
fault that caused the earthquake. The statistical analysis revealed
that the gradational surface density of geological landslides triggered
by earthquakes decreased as the distance to closest fault that
caused the earthquake increased, which was in line with the
general trend of geological landslides triggered by earthquakes.
The proportion of landslides decreased from 37.06% in the range
of 0–2 km from the fault that caused the earthquake to 4.02%
in the range of 8–10 km. In conclusion, the geological landslides
triggered by this earthquake were significantly controlled by the
fault that caused the earthquake. The area of intensity zone VII
in the study area was 4400.99 km2, the area of intensity zone
VIII was 505.77 km2, and the area of intensity zone IX was
278.88 km2. The results of the statistical analysis of the coseismic
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FIGURE 4
Landslide density map.

FIGURE 5
Statistics of seismic factors. (a) PGA, (b) distance to seismic fault, (c) intensity.

landslides and earthquake intensities revealed that the coseismic
landslides were distributed in all three zones, and the distribution
of the landslides tended to gradually increase with increasing
earthquake intensity. In intensity zone IX, the landslide area
reached its maximum value, accounting for approximately 58.4%
of the total disaster area, indicating that the energy of earthquakes

had a significant impact on the number, area, etc., of coseismic
landslides.

Altitude is an important topographic feature affecting the
occurrence of coseismic landslides. The statistical results revealed
that geological landslides triggered by earthquakes tended to
be distributed within a certain altitude range. In 2022, the
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area of geological landslides triggered by the Luding earthquake
and the relative altitude also exhibited an approximate Gaussian
distribution. Approximately 79.8% of the geological landslides
triggered by the earthquake were concentrated in the altitude range
of 1,000–1800 m, which was the main altitude range of geological
landslides triggered by this earthquake. In addition, the gradational
surface density of geological landslides triggered by earthquakes
first increased with altitude, reached a maximum in the altitude
range of 1,000–1,200 m, and then gradually decreased. When the
altitude was greater than 2,200 m, almost no landslides developed.
The stress on the slope increased with increasing slope gradient,
as did the probability of landslides (Nanehkaran et al., 2023).
The area of geological landslides triggered by earthquakes and the
density of gradational surfaces of geological landslides increased
rapidly with increasing slope of the terrain, mainly in the range
of 30–50°, especially in the range of 30–40°; the area of geological
landslide distribution reached its peak, and there was basically no
distribution of landslides after the slope exceeded 60°. The slope
orientations of the Luding study area were divided into N, NE, E,
SE, S, SW, W, and NW, i.e., 8 directions, and the areas of geological
landslides triggered by earthquakes and the density of gradational
surfaces in different directions were determined. The statistical
analysis revealed that the distribution of geological landslides in
the E direction was more prominent than that in other directions.
Among these directions, the proportion of geological landslides in
the E and SE directions reached 42.6%, which was the dominant
direction of geological landslides triggered by this earthquake.
Curvature is the second derivative of the slope terrain surface. The
distribution of geological landslides triggered by this earthquake
and the statistical results of the plan curvature of the slope
are shown in Figure 6. The statistical results revealed that geological
landslides triggered by earthquakes developed within each interval
of slope curvature. With the change in the slope curvature, within
the interval of the plan curvature of −0.5–0.5, the proportion
of the distribution area of landslides reached 50.09%, which was
the area with a concentrated distribution of landslides. Overall,
the sensitivity of geological landslides triggered by earthquakes
in the Luding study area to the plan curvature of the slope was
relatively weak.

As the distance to river increased, the area of geological
landslides and the density of graded geological landslides generally
tended to decrease. Therefore, the river had a significant impact
on the distribution of coseismic landslides in the study area, which
was in line with the general statistical law of the distribution
of coseismic landslides. In 2022, the main rivers in the Luding
earthquake area were aligned with the direction of the fault that
caused the earthquake, resulting in many landslides distributed
along the two banks of the rivers. Among these landslides, the
proportion of geological landslides within 400 m of the river system
reached 42.32%, whereas when the distance of the water system
was in the range of 1,800–2,000 m, the proportion of landslides
was only 1.8%. Notably, when the distance of the water system was
greater than 2000 m, the landslide area slightly increased, which
was due to the influence of other factors on the distribution of
landslides. The fault development in the Luding research area cut
the rock mass into blocks or fragments, reducing the strength
of the rock mass and forming structural conditions conducive
to the formation and development of geological landslides. The

correlation between coseismic landslides and the distance to
closest fault is shown in Figure 7. The statistical results indicate
that with increasing distance to closest fault, the distribution
area and density of landslides significantly decreased, confirming
that the fault had an important impact on the development of
landslides. Among them, geological landslides were distributed
mainly within a range of 4 km from the fault, and the area of
landslide development reaches 7.22 km2, accounting for 94.5% of
the total area. When the distance to closest fault was >6 km, there
was essentially no distribution of landslides. On the basis of the
1:200000 regional geological map, the main lithologies exposed
in the Luding research area included hard intrusive rock masses,
layered metamorphic rocks with alternating soft and hard layers,
weak thin-bedded clastic rocks, hard medium-to thick-bedded
carbonate rock masses, hard massive volcanic rocks, and loose
rock masses. According to the statistical results of the area and
gradational surface density of geological landslides with different
lithologies, as shown in Figure 7, the landslides were distributed
mainly in the hard intrusive rock mass, and the proportion of
landslides reached 64.94%. The other components were sorted
by coverage rate and included layered metamorphic rocks with
alternating soft and hard layers (16.97%), hard massive volcanic
rocks (7.94%), weak thin-bedded clastic rocks (4.93%), loose rock
masses (4.27%), and hard medium-to thick-bedded carbonate rock
masses (0.95%).

4.3 Landslide susceptibility

4.3.1 Factor selection
On the basis of the analysis of the distribution patterns of

geological landslides triggered by earthquakes in the previous text,
we preliminarily selected the PGA, intensity, distance to seismic
fault, altitude, slope, aspect, plan curvature, distance to river,
distance to closest fault, and 10 lithology factors as the factors for
evaluating the predictionmodel of geological landslides triggered by
earthquakes. In model establishment, if the independent variables
interfere with each other, it leads to distortion of the model
estimation.

Therefore, it was necessary to conduct a collinearity analysis
of the 10 influencing factors initially selected. Figure 8 shows
the spearman correlation coefficient matrix of the environmental
factors. Among the aforementioned factors, the correlation
coefficient between the PGA and intensity was 0.72, which
indicated moderate correlation; the correlation coefficient between
the altitude and the distance to seismic fault was 0.56, which
indicated moderate correlation; and the correlation coefficient
between the elevation and the distance to river was 0.62, which
indicated moderate correlation. Considering that the PGA can
intuitively reflect the release of seismic energy, we did not consider
intensity and altitude when establishing the model. Therefore,
we input the remaining 8 factors as evaluation factors into the
model and established an index system for evaluating the risk
of geological landslides triggered by earthquakes via machine
learning.
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FIGURE 6
Statistics of topographic factors. (a) Altitude, (b) slope, (c) aspect, (d) plan curvature.

FIGURE 7
Statistical chart of geological factors. (a) Distance to river, (b) distance to closest fault, (c) lithology (A: hard intrusive rock mass, B: layered metamorphic
rocks with alternating soft and hard layers, C: weak thin-bedded clastic rocks, D: hard medium- to thick-bedded carbonate rock mass, E: hard massive
volcanic rocks, F: loose rock mass).

4.3.2 Landslide susceptibility mapping
On the basis of the catalog of geological landslides triggered

by earthquakes and eight evaluation factors, such as slope and
aspect, in this study, RF, GBDT and XGBoost were used to
establish three spatial distribution prediction models of geological
landslides triggered by earthquakes, and the spatial distribution
of geological landslides triggered by the Luding earthquake
in 2022 were evaluated using these three prediction models.

The optimal model was selected through comparison of the
ROC curves.

The spatial distribution of geological landslides triggered by the
Luding earthquake predicted by the RF machine learning model is
shown in Figure 9. The landslides possibly induced by the Luding
earthquake were distributed mainly in the eastern and southeastern
parts of the epicentre and on both sides of the Dadu River,
especially in Moxi town, De Tuo town and Tianwan Yi national
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FIGURE 8
Pearson correlation coefficients (Ⅰ) PGA, (Ⅱ) distance to seismic fault, (III) intensity, (Ⅳ) altitude, (Ⅴ) slope, (Ⅵ) aspect, (Ⅶ) plan curvature, (Ⅷ) distance
to river, (Ⅸ) distance to closest fault, and (Ⅹ) lithology.

FIGURE 9
Results of the landslide probability distributions predicted by machine learning models. (a) RF, (b) GBDT, (c) XGBoost.

township, which are relatively close to the epicentre, where the
probability of landslides is the highest. According to the probability
of landslides, the area proportion of each probability partition is
shown in the Table 2.The extremely high probability area accounted
for 7.56% of the total area of the study area. In terms of the
distribution of landslides, 89.77% of the landslide points were in
the high- and extremely high-probability areas, and 5.76% of the
landslide points were in the low-probability areas.

The map of the probability distribution of geological landslides
triggered by the Luding earthquake using the GBDT machine
learning model is basically consistent with the prediction results of
the RF model and the XGBoost model. According to the probability
of landslide occurrence, the area proportion in each probability
partition is shown in the table. The extremely high probability area
accounts for 3.53% of the total area of the study area. In terms of
the distribution of landslides, 94.58% of the landslide points are in
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TABLE 2 Landslide probability distribution based on machine learning models.

Model Prediction Area (km2) Proportion of area (%) Landslide area (km2) Proportion of landslides (%)

RF

Low 3831.03 87.05 0.99 5.76

Moderate 115.09 2.63 0.77 4.47

High 121.52 2.76 0.69 4.05

Very high 332.98 7.56 14.83 85.72

GBDT

Low 3831.03 87.05 0.99 5.76

Moderate 115.09 2.63 0.77 4.47

High 121.52 2.76 0.69 4.05

Very high 332.98 7.56 14.83 85.72

XGBoost

Low 3619.6 82.25 0.11 0.61

Moderate 370.52 8.43 0.83 4.81

High 254.8 5.79 4.89 28.27

Very high 155.7 3.53 11.47 66.31

FIGURE 10
ROC curves of machine learning models.

the high- and extremely high-probability areas, and 0.61% of the
landslide points are in the low-probability partitions.

The probability distribution map of geological landslides
triggered by the Luding earthquake was made based on predictions
by the XGBoost machine learning model. The landslides possibly
induced by the Luding earthquake were concentrated mainly in
the alpine valley area, among which the probability of landslide

distribution was the highest in Wanggangping town and De Tuo
town, followed by the areas around Caoke town and Moxi town.
According to the probability of landslide occurrence, we counted
the area proportion in each probability partition. The extremely
high probability area accounted for 4.12% of the total area of
the study area, and it was distributed along the fault. This was
due to the greater distance to seismic fault, the impact of the
earthquake, and the greater fragility of the geological environment,
which made it easier to form geological landslides under the
influence of earthquakes and other factors. The distribution of
landslides revealed that 98.16% of the landslide points were in
high- and extremely high-probability zones and that 0.13% of
the landslide points were in low-probability zones. These findings
indicate that the model had good recognition ability for coseismic
landslides.

4.3.3 Model performance evaluation and
comparison

To quantitatively evaluate the results of the spatial distribution
of landslides, we used the ROC curve to evaluate the accuracy of
the four models. In the Luding earthquake landslide area, a total
of 7,199 landslide points were created, and the same number of
non-landslide points were created in areas where landslides did not
occur, totaling 14,398 points.The ROC curve is plotted in Figure 10.
The AUC value of the XGBoost model was 0.941, the AUC value
of the RF model was only 0.9166, and the AUC value of the
GBDT model was 0.892, which was the lowest accuracy among
the three models. In summary, all three models were significantly
better than the reference line and had good predictive capabilities.
The XGBoost model had the best prediction accuracy among the
three models.
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FIGURE 11
SHAP values of landslide characterization factors. (a) SHAP values of landslide characterization factors; (b) Influencing factor contribution rate.

5 Discussion

5.1 Explaining model predictions of
landslide susceptibility with SHAP

In this paper, coseismic landslides in high-intensity areas were
interpreted through remote sensing satellite images, and a total of
5,386 landslides were interpreted, covering an area of 22.2 km2.
On the basis of the results of the interpretation, we analyzed the
spatial distribution pattern of coseismic landslides and studied
the relationships between the spatial distributions of coseismic
landslides and seismic, topographic, and geological factors. Three
models, i.e., RF, GBDT and XGBoost, were used to predict the
spatial distribution of coseismic landslides in the study area, and
through comparison, we determined that the optimal prediction
model among the three models was the XGBoost model.

We used the XGBoost–SHAP algorithm to visualize the
interpretation results (Figure 11A). The vertical axis represents the
features arranged vertically and sorted from top to bottom according
to their influence. The features at the top have a greater overall
impact on the model’s output, whereas the features at the bottom
have less influence. The horizontal axis represents the size of each
feature’s impact on the prediction results.The farther a point is from
the centerline (zero point), the greater the feature’s influence on the
model’s output. A positive SHAP value indicates a positive impact,
whereas a negative SHAP value indicates a negative impact.

The average of the absolute values of the SHAP value samples
is taken to obtain the importance of each feature and determine the
contribution to themodel (Figure 11B).The results of the calculation
reveal that different characteristic factors have different degrees
of nonlinear influence on the formation of coseismic landslides.
Among them, the distance to seismic fault (52%), the PGA (24%)
and the distance to river (17%) play major controlling roles in
the coseismic landslides induced by the Luding earthquake, with
a cumulative weight proportion of 93%. On the basis of the SHAP
model, we analyzed the mode of control of each characteristic factor
for the coseismic landslides induced by the Luding earthquake
(Budimir et al., 2014). The distance to seismic fault is the most
significant factor in the model, and its range of SHAP values is

relatively large, indicating that its contribution to model prediction
is significant and that its mode of action is more complex. The
influence of high eigenvalues (far from faults) on model predictions
tends to be positive, whereas low eigenvalues (close to faults)
significantly reduce the predicted values (Fan et al., 2019). The
PGAmakes a highly concentrated and stable contribution to model
predictions, and high eigenvalues significantly enhance model
predictions, indicating that it plays an important role in geological
hazard-related events.

The mode of action of different characteristics varies in the
model: the influence of the distance to river and slope shows a
nonlinear distribution, indicating that these topographic features
may interact more significantly with specific geological conditions.
The influence of lithology and plan curvature onmodel prediction is
relatively small but still shows some pattern differences, which may
reflect the importance of secondary features.

SHAP value analysis reveals the interpretability of the results of
the model prediction, decomposing the complex “black box” model
into the individual contribution values of features to the prediction.
This finding is consistent with common-sense knowledge in the
field of geology (such as the relationships between seismic faults
and earthquake effects, slopes and landslides), thus providing a
scientific basis for model reliability. Some features (such as plan
curvature) have a small amplitude of impact, which may be
due to the insufficient consideration of correlations in the data
sampling distribution or feature construction process. Future studies
can attempt to add more relevant variables or perform feature
engineering optimization.

5.2 Comparison with empirical models of
earthquake-induced landslides

Several empirical models have been proposed to estimate
the maximum epicentral distance at which earthquake-induced
landslides occur. Keefer (1984) provided a widely used relationship
based on global earthquake data, while Rodríguez et al. (1999)
refined these estimates using a larger dataset. In this study, we found
that the maximum landslide epicentral distance was approximately
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50 km, which is consistent with the 59 km predicted by Keefer
and within the 30–70 km range proposed by Rodríguez et al. for
earthquakes of this magnitude. This agreement suggests that these
empirical models are applicable to the M 6.8 Luding Earthquake,
reinforcing their validity in seismically active mountainous regions.
However, while the observed landslide distribution generally follows
these empirical relationships, local geological and topographic
factors likely played a role in modifying the exact extent of
landsliding. The steep slopes, highly fractured lithology, and fault-
controlled terrain of the Xianshuihe Fault Zonemay have influenced
the spatial distribution of landslides, potentially extending their
reach beyond the median values predicted by global datasets.
These findings highlight the importance of integrating both global
empirical models and region-specific geological considerations
when assessing landslide hazards following an earthquake. Future
studies could refine these empirical models by incorporating
additional case studies from active fault zones with complex
topography.

5.3 Potential influence of post-earthquake
rainfall

While earthquake shaking was the primary trigger for landslides
in this study, we cannot entirely rule out the contribution of
post-earthquake rainfall to some mapped failures. Similar cases
have been reported in previous studies (Martino et al., 2020),
where heavy rainfall following an earthquake reactivated slopes
already weakened by seismic shaking. To assess the potential
impact of post-earthquake rainfall on landslides, we obtained daily
rainfall records from meteorological stations for the study area. The
recorded rainfall between August and October 2022 was analyzed,
covering the period between the acquisition of pre- and post-
earthquake satellite images. The rainfall analysis (Figure 12) shows
that a 100 mm rainfall event occurred on September 10, 5 day
after the earthquake, followed by additional precipitation in the
subsequent weeks. This raises the possibility that some landslides
could have been triggered solely by rainfall or through a combined
effect of seismic shaking and precipitation-induced pore pressure
increase. However, our spatial analysis indicates that the landslide
distribution aligns closely with areas of high PGA and seismic fault
proximity, which supports the hypothesis that most landslides were
primarily earthquake-induced. Future research should incorporate
time-series landslide detection usingmulti-temporal remote sensing
and hydrological models to better distinguish between seismic and
rainfall-induced landslides.

6 Conclusion

To clarify the characteristics of the spatial patterns of the
coseismic landslides caused by the Luding earthquake in 2022, we
interpreted the Planet satellite images with a resolution of 3 m as
the basis, took the area above intensity VII of the 2022 Luding
Ms 6.8 earthquake as the study area, and intuitively interpreted the
coseismic landslides triggered by the earthquake. The 2022 Luding
earthquake triggered at least 5,386 landslides in an area of 22.2 km2;
more than 99% of the landslides were distributed in Luding County

FIGURE 12
Precipitation data analysis.

and ShimianCounty.The correlations between the spatial patterns of
coseismic landslides and ten potential controlling factors, such as the
PGA, intensity, distance to closest fault, altitude, slope, aspect, plan
curvature, distance to river, distance to closest fault, and lithology,
were analyzed. The coseismic landslides associated with the Luding
earthquake occurred mainly on both sides of the Xianshuihe fault
andwere distributed in a strip shape.Theyweremainly concentrated
in areas with altitudes ranging from 1,000 to 1,800 m, slopes ranging
from 30° to 50°, and hard intrusive rock masses.

On the basis of the historical landslide dataset identified by
comprehensive remote sensing recognition technology, grid cells
were used for the calculation and evaluation units, 3 different
machine learningmodels were selected, and the spatial distributions
of coseismic landslides were predicted on the basis of correlation
analysis of the factors used for evaluation. Through ROC curve
evaluation and analysis, we evaluated the consistency of the results of
the evaluation with the historical landslide data and finally analyzed
the prediction accuracy of the prediction model for coseismic
landslides. Three models, i.e., RF, GBDT and XGBoost, were used
to predict the distribution of earthquake geological landslides, and
the XGBoost model performed well in landslide prediction in the
study area, with reliable evaluation results and high model accuracy.
Through SHAP value analysis, we revealed the contribution and
mechanism of each input feature to the model’s prediction results.
The distance to seismic fault and the PGA were the most significant
features affecting the model, and high or low feature values
significantly affected the prediction results.The distance to river and
the slope also had a moderate influence, whereas the contributions
of the plan curvature and the engineering rock mass were relatively
small.The overall results show that geologically and topographically
related features had different degrees of influence on model
prediction, providing a scientific basis formodel interpretability and
practical application. The comprehensive interpretation framework
based on the XGBoost–SHAP model can quantify the importance
and contribution of each factor, which can provide a reference for
the study of machine learning interpretation capabilities. It can
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provide effective support and guidance for emergency rescue, risk
mitigation, and reconstruction planning.
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