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A challenge in agricultural drought risk assessment is the lack of standardization
for selecting indicators and aggregation methods, leading to inconsistent and
less reliable outcomes. This issue is particularly evident in Vietnam,where diverse
agricultural practices and regional climates add complexity to the assessment
process. This study proposes a methodological framework specifically designed
for Vietnam’s agricultural sector. It recommends the use of the Standardized
Precipitation Index Vegetation Health Index and Soil Moisture (SM) for assessing
drought hazards, while socioeconomic indicators such as agricultural land,
population, Gross Domestic Product total income, agriculture-based income,
literacy rate, and poverty rate are suggested for evaluating exposure and
vulnerability. The research assesses drought risk across mainland Vietnam from
2015 to 2022, employing both equal proportion and Principal Component
Analysis (PCA) to determine indicator weightings. The study highlights the
advantages of Geographic Information System (GIS) and Remote Sensing data
in evaluating drought risk across Vietnam. The result of spatiotemporal analysis
shows that the drought hazard index varies significantly on a monthly basis,
while exposure and vulnerability indices remain relatively stable over the years.
During the examined period, 2015 and 2016 were identified as the years with the
highest drought risk, followed by 2019 and 2020. The Mekong Delta, Central
Highlands, and Northwest regions consistently exhibited high drought risk,
reflecting their agricultural practices and socioeconomic vulnerabilities. This
dynamic analysis provides critical insights for policymakers and stakeholders to
proactively manage drought impacts in Vietnam’s agricultural sector.
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1 Introduction

Drought risk refers to the likelihood of experiencing damage and economic losses
caused by droughts. The concept of risk is often understood as the probability of adverse
outcomes resulting from the interaction between hazards and vulnerability (Blauhut,
2020). Recent research agrees that the occurrence of a drought hazard alone does not
necessarily lead to an emergency response. Whether a drought event escalates into an
emergency depends on its impact on local stakeholders, communities, and society, which
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is shaped by their vulnerability to the hazard (Hagenlocher et al.,
2023). Following that, the assessment approach proposed by the
Intergovernmental Panel on Climate Change (IPCC) emphasizes
the need for a comprehensive approach that goes beyond focusing
solely on drought hazards and incorporates the experiences of those
affected by severe drought events. According to this approach,
drought risk is determined by three components: hazard, exposure,
and vulnerability (IPCC, 2022). Drought hazard refers to dry
weather or climate conditions that have an impact on the study
objective or a specific area. It is characterized by the probability
of a drought event occurring in a particular region with sufficient
severity and duration to cause damage within a given time
frame. Exposure, on the other hand, refers to the presence of
people, livelihoods, properties, and systems that are susceptible to
potential damage caused by drought. In the context of agricultural
drought, exposure includes crops, farmers, and other workers in
the agricultural sector who are at risk of being negatively impacted
by drought (Yang et al., 2023). Vulnerability, the third component,
refers to the sensitivity or susceptibility to damage and the lack of
adaptive capacity (Bourne et al., 2023).

From a temporal perspective, drought risk assessment (DRA)
approach can be described as dynamic, semi-dynamic, or static
according to time scale. Dynamic DRAs assess drought risk using
time series to reflect the change of drought risk over a relatively short
time (e.g., on a monthly basis), while static DRA provides general
information of overall risk based on a longer period (e.g., annually
or longer). Semi-dynamic, on the other hand, combines both
dynamic and static characteristics.Many studies use dynamic hazard
data in combination with static socioeconomic data for drought
risk calculation, as hazard is the most dynamic part of overall
risk, while data unavailability limits exposure and vulnerability to
be assessed dynamically (Hoque et al., 2021; Song et al., 2022).
Monitoring long-term drought risk progression, not only in terms
of hazard dimension but also socioeconomic aspects, has been
increasingly acknowledged as important for a more comprehensive
understanding of drought risk and the development of adaptation
strategies (Ai et al., 2021; Yang et al., 2023).This is because variations
in indicators over time can offer insights into risk underlying causes
in different geographical areas (Song et al., 2022). Also, the change of
risk levels would indicate response degreesmade by decisionmakers
to adapt to drought extreme events (Dunne and Kuleshov, 2023).
Therefore, dynamic risk assessment is highly recommended forDRA
research to increase its common applicability in a particular region.

Among four conventional drought types (Mishra and Singh,
2010), agricultural drought is a type of drought that specifically
impacts the agricultural sector. Agricultural activities are highly
dependent on water availability, making them particularly
vulnerable to the impacts of drought (Mishra et al., 2025). Drought
events can disrupt agricultural production, leading to reduced crop
yields, food insecurity, economic losses, and potential livelihood
crises in rural communities (Elusma et al., 2022). The frequency
and severity of agricultural drought events have become a concern
(Hoque et al., 2021; Ha et al., 2022; Minh et al., 2022a), especially
in the context of climate change (Saha et al., 2023). Therefore,
understanding agricultural drought is crucial for effective water
resource management and the development of adaptation strategies
to its adverse effects on food production and community wellbeing
(Islam et al., 2024). Vietnam, a Southeast Asian country with a

population heavily reliant on agriculture, has become increasingly
vulnerable to drought hazards (Truong et al., 2022).The agricultural
sector, employing nearly half of the workforce, ensures national
food security and significantly contributes to global food security
as a major exporter of rice and coffee (Anh et al., 2023). In the
Mekong Delta alone, where nearly 18 million people are engaged
primarily in farming, over half of the nation’s rice output and 95%
of its rice exports are produced. Recently, the country experienced
unprecedented droughts, notably in 2015–2016 and more recently
in 2019–2020, which prompted the government to declare a state
of emergency during both drought crisis periods (ODV, 2022;
UNDP, 2016). According to UNDP (2016), 659,245 ha of cropland,
including more than 273,000 ha of rice have been damaged to
various degrees during the 2015–2016 drought.The 18most affected
provinces were identified in the Mekong Delta, South-Central
Vietnam, and Central Highlands experiencing losses of 70% or
more in 161,030 ha of cropland, classified as “extreme loss” by
the government. Subsequently, the intense drought and resulting
increase in salinity levels in 2019–2020 further damaged significant
areas of rice fields, fruit orchards, and vegetable plots. This severe
drought also caused water shortages for 96,000 households or
430,000 people in the Mekong Delta (ODV, 2022).

With droughts expected to be more severe and frequent in
the future, identifying drought risk at the appropriate spatial
and temporal scale is crucial for decision-making in adaptation
strategies, especially in the agricultural sector (Xu et al., 2021;
Blauhut, 2020). In recent years, research in agricultural drought risk
assessment has been expanded in different directions. A significant
portion of existing studies continues to focus on drought hazard
monitoring, which typically involves the application of various
drought indicators such as the Standardized Precipitation Index
(SPI), the Standardized Precipitation Evapotranspiration Index
(SPEI), and the Palmer Drought Severity Index (PDSI) to evaluate
drought severity and track its propagation (Yang et al., 2023;
Kumar and Chu, 2024). Concurrently, there has been a notable
shift toward examining drought vulnerability from a socioeconomic
perspective (Islam et al., 2024; Shiravand and Bayat, 2023; Hedayat
and Seyed Kaboli, 2024) as well as applying a more comprehensive
approach to conduct a drought risk index incorporating hazard,
exposure, and vulnerability (Wu et al., 2025; Liou et al., 2024;
Babel et al., 2024). In addition, the rapid advancement of geospatial
technologies such as remote sensing and GIS has significantly
improved the ability to quantify and visualize agricultural drought
risk by integrating multiple factors across varying spatial and
temporal scales (Senapati and Das, 2024). Therefore, an increasing
number of studies have adopted these technologies to conduct
comprehensive drought risk assessments and support spatially
explicit decision-making.

However, there are persistent gaps in quantifying and mapping
drought risk as pointed out by many scholars (Le et al., 2024). First,
the selection of indicators is usually subject to data availability and
researchers’ assumptions, as discussed by Kim et al. (2023) and
Hagenlocher et al. (2019). It is emphasized that the justification for
chosen indicators needs to be in line with the research objective
and the diversity of socioecological contexts. In addition, the
existing approach for computing composite risk indicators is a
matter of contention. As explored by Sahana et al. (2021) and
Aitkenhead et al. (2023), although various weighting methods
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and aggregation approaches utilized in the literature, there is
insufficient validation regarding the accuracy of assessment results.
This results in significant uncertainty within this research field.
Furthermore, there is a deficiency in establishing a connection
between drought risk assessment (DRA) research and adaptation
strategies, even though the ultimate goal of DRAs is to lay the
foundation for the development of drought management strategies.
Scholars including Villani et al. (2022) and Blauhut (Blauhut,
2020) also emphasized the importance of integrating
scientific assessments with policy-making to enhance drought
resilience.

In Vietnam, DRA studies remain limited in both number
and methodological depth. Much of the existing research has
predominantly focused on analysing drought hazards patterns,
trends and characteristics (Stojanovic et al., 2020; Phan et al.,
2020; Le et al., 2019; Minh et al., 2022b; Ha D. H. et al.,
2024; Ha T. V. et al., 2024). While the study by Pham et al.
(2022) incorporated some social factors to assess vulnerability,
it primarily emphasizes the hazard component of drought risk
in Phu Yen province of Vietnam, focusing on generating the
Normalized Difference Drought Index maps as the main output.
The research lacks integration of exposure and vulnerability for
a comprehensive risk assessment and does not include robust
validation methods to support the accuracy of its results. Only
a few studies have attempted to comprehensively assess drought
risk by integrating hazard, exposure, and vulnerability components,
such as those conducted by Thao et al. (2019), Buurman et al.
(2020), Le et al. (2021), and Pham et al. (2022). However, these
efforts still exhibit several methodological limitations in terms
of indicator selection, data sources, and the consideration of
spatio-temporal dynamics. For instance, the studies by Thao et al.
(2019) and Buurman et al. (2020) are constrained by limited
data availability, relying solely on in-situ data and using a single
hazard indicator (i.e., SPI) which may not sufficiently capture
the multifaceted impacts of drought. Meanwhile, Le et al. (2021)
advanced the assessment by incorporating all three components
of risk, yet adopted a static approach that does not account
for the temporal variation of drought risk. Overall, advancing
DRA research in Vietnam requires significant investment in both
the quantity and quality of studies, particularly in overcoming
data accessibility challenges. In this context, remote sensing
and GIS technologies offer promising solutions due to their
affordability, broad spatial coverage, and high spatial and temporal
resolution.

This study aims to support decision-makers in agricultural
drought risk management by providing a comprehensive drought
risk assessment in mainland of Vietnam. To achieve this aim, the
research has the following objectives: (i) identify the most pertinent
indicators and aggregation methodologies for DRA tailored to
the unique characteristics of the study area based on sound
justification; (ii) conduct temporal and spatial DRA in mainland
Vietnam for 2015 to 2022, employing chosen indicators and
robust aggregation methods; (iii) to identify high drought risk
areas, validated with available historical drought-related agricultural
losses within the country, and link the findings with adaptation
strategies. This research contributes to the scientific field of
drought risk assessment by providing a comprehensive rationale
for the selection of indicators and aggregation methods tailored

specifically to Vietnam’s agricultural landscape. By customizing
these indicators to align with Vietnam’s specific requirements, the
study not only enhances the accuracy of DRA but also ensures
their applicability to local contexts. Furthermore, this research
endeavors to progressively bridge the gap in the field of DRA
by accounting for the dynamic nature of drought risk, enhancing
the reliability of findings through validation with historical
impact records, and linking the results to informed adaptation
strategies.

2 Materials and methods

2.1 Theoretical framework

Contemporary research in the field of DRA exhibits
distinctive characteristics aimed at enhancing the robustness and
applicability of risk evaluation. A notable trend is the adoption
of a comprehensive approach that considers all crucial risk
components—hazard, exposure, and vulnerability—rather than
concentrating solely on the hazard aspect. This holistic perspective
ensures a more robust understanding of the multifaceted nature
of drought risks. Moreover, researchers frequently employ index-
based methods to quantitatively assess, compare, and monitor
the intricate complexities of these risks, as demonstrated by
Aitkenhead et al. (2023). This methodological choice emphasizes
a systematic and standardized approach to capturing the various
dimensions of drought impact. Another significant development
lies in the integration of Satellite Remote Sensing (SRS) and
GIS technologies, as highlighted by Belal et al. (2014). These
technological advancements have substantially improved the
operational capabilities of DRA by enabling the seamless
incorporation of spatial-temporal dynamic changes in climate and
socioeconomic data. Consequently, this integration enhances the
accuracy and timeliness of drought risk assessments, providing
a more comprehensive understanding of the evolving landscape.
In essence, the current trajectory of DRA research reflects a
commitment to holistic frameworks, sophisticated methodologies,
and cutting-edge technologies to capture the intricate spatial-
temporal dynamics inherent in climate and socioeconomic data.
This study applied comprehensive agricultural DRA to understand
the dynamic of risk in Vietnam context. The research workflow is
demonstrated in Figure 1.

2.2 Study area

The study area encompasses mainland Vietnam (Figure 2)
with the total area of approximately 331,000 km2. The country
is predominantly mountainous, with mountain terrain covering
three-quarters of its land area and peaks reaching up to
3,000 m. Vietnam is rich in hydrological resources, featuring
nine major river systems. The country’s complex topography,
along with varying precipitation and temperature conditions,
divides Vietnam into seven climatic sub-regions including:
Northwest (S1), Northeast (S2), Red River Delta (S3), North
Central (S4), South Central (S5), Central Highland (S6), and
the Southest (S7), and Mekong Delta (S8) (Stojanovic et al.,
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FIGURE 1
Research workflow.

2020). Vietnam’s climate is notably diverse, with significant
influence from monsoonal patterns and topography. Positioned
centrally between the southwest and northeast monsoons, Vietnam
experiences a main tropical monsoon climate. This results in
distinct wet and dry seasons, with the wet season occurring from
May to October and the dry season from November to April
(Le et al., 2019). In the north, the tropical monsoon climate,
impacted by the northeast monsoon, brings dry conditions early
in winter and highly humid conditions later in the season. By
contrast, Southern Vietnam, affected by the southwest monsoon,
has a moderate tropical climate with clearly defined dry and
rainy seasons. The rainy season in the northern and southern
central subregions typically spans from mid-August to mid-
December, followed by a dry season from January to July
(Chandrasekara et al., 2021).

Regarding socioeconomic conditions, Vietnamhad a population
of approximately 99.46 million people in 2022. The agriculture,
forestry, and fishery sector account for 11.88% of the country’s
GDP. The agricultural sector has consistently been crucial to
Vietnam’s economic development and food security, providing 29%
of employment in 2022 (GSO, 2022). The output of the agriculture,
forestry, and fishery sectors sustains the economy by providing
increasing quantities and quality of food for domestic consumption

and export. The estimated paddy area was 7,109 thousand hectares,
with a paddy yield of 60 quintals per hectare in 2022 (World
Bank Group, 2024). Socioeconomic conditions vary across different
regions of Vietnam. The northern region of Vietnam includes
the Northwest, Northeast, and Red River Delta. The mountainous
Northwest and Northeast have low GDP per capita and income
levels, while the densely populated Red River Delta, home to the
capital Hanoi, is the country’s economic, political, and cultural
hub. Central Vietnam comprises the North Central and South
Central Coast regions. The North Central region, with its narrow
coastal strip, relies on agriculture and fishing, resulting in modest
economic development. In contrast, the South Central Coast ismore
industrialized, benefiting from its strategic location and industrial
hubs. The Central Highlands face socio-economic challenges,
including poor infrastructure and low living standards, but are rich
in natural resources, particularly fertile soil for crops like coffee
and tea. Southern Vietnam includes the Southeast and Mekong
Delta. The Southeast, home to major urban centers such as Ho
Chi Minh City, is Vietnam’s most economically developed region.
The Mekong Delta, with flat terrain and low altitude (Phan et al.,
2020), is a major agricultural hub, contributing 50% of the
country’s rice production and achieving 7.8% GDP growth in 2022
(GSO, 2022).
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FIGURE 2
Study area of Vietnam (left) and climatic sub-regions (right).

2.3 Selection of indicators and data
collection

2.3.1 Utilization of satellite remote sensing data
for drought hazard analysis

In this study, the use of satellite remote sensing data as
a primary source for drought analysis is justified due to the
limitations of precipitation data from rain gauge stations inVietnam.
The transition to diverse remote sensing datasets offers several
advantages for drought assessment. Firstly, satellite remote sensing
provides near real-time measurements, allowing for timely and
up-to-date information on drought conditions (Ty et al., 2022).
This is crucial for effective drought management and response.
Secondly, satellite sensors offer global coverage, enabling the
assessment of drought hazards in regions that may be inaccessible
or lacking in-situ observations. This is particularly important for
drought assessment in Vietnam, which has some areas with limited
ground-based observations. Lastly, satellite remote sensing provides
relatively high spatial resolution, which enhances the observation
capacity over land surfaces.This is essential for accurately capturing
and monitoring drought conditions at a finer scale, especially in
agricultural remote areas.

To ensure a comprehensive assessment of drought hazards in
Vietnam’s agricultural sector, this study utilized a combination of
hazard indicators, including the Standardized Precipitation Index

(SPI), Vegetation Health Index (VHI), and Soil Moisture (SM).
A summary of selected hazard indicators and data sources is
presented in Table 1. The use of SPI is recommended by the World
Meteorological Organization (WMO) for drought monitoring.
SPI identifies precipitation shortages over different accumulation
periods, providing valuable information on the temporal patterns
of drought. SPI was commonly used in drought risk analysis by
many scholars including Sharafi et al. (2020) and Villani et al.
(2022). However, it is acknowledged that SPI alone may not be
sufficient to assess reduced SM and crop stress associated with
agricultural drought. To address this limitation, the VHI and
SM are included as additional indicators. The VHI, developed by
Kogan, combines Vegetation Condition and Temperature Condition
Indices to evaluate drought severity based on vegetation health and
temperature impact on plants (Kogan, 2019). By considering both
vegetation health and temperature conditions, the VHI provides a
more comprehensive assessment of drought impacts on agricultural
systems, as demonstrated in the studies by Dunne and Kuleshov
(2023) and Aitkenhead et al. (2023). Furthermore, SM, indicating
relative water content in the topmost layer, serves as an effective
indicator of agricultural drought. This indicator is commonly used
in DRA (Dunne and Kuleshov, 2023; Han and Singh, 2023). A
combination of SPI, VHI, and SM as key indicators is particularly
relevant for the agricultural sector in Vietnam, where crop stress
and reduced SM are critical factors in drought vulnerability. Le et al.
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TABLE 1 Selected hazard indicators in agricultural drought risk assessment.

Ref Indicator Correlation Data source Spatial and temporal resolution References

1 Standardized Precipitation Index (SPI) Negative MSWEP 0.1°, monthly Beck et al. (2019)

2 Vegetation Health Index (VHI) Negative SEMDP 0.1°, monthly Kuleshov et al. (2019)

3 Soil Moisture (SM) Negative SMOPS 0.25°, monthly NOAA (2024)

(2021) have demonstrated the usefulness of these indicators to assess
the 2019 drought in the Mekong Delta and Central Highlands
of Vietnam.

The time frame from 2015 to 2022 was selected for several
key reasons. Primarily, our study focuses on an ad hoc assessment
of drought risk using historical data, rather than long-term
drought trend analysis. The focus is on understanding how recent
drought events, such as the 2015–2016 and 2019–2020 crises
(ODV, 2022; UNDP, 2016) interacted with evolving socioeconomic
conditions to shape overall drought risk. These events provide
valuable opportunities to test and validate the effectiveness of
our framework in capturing and analyzing drought impacts.
Moreover, the 2015–2022 period was chosen based on the
availability of consistent, high-quality data across both hazard and
social indicators. While the SPI from the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) dataset is available from 1982,
other critical indicators have more limited records. For instance, the
Vegetation Health Index (VHI), sourced from the WMO’s Space-
based Weather and Climate Extremes Monitoring Demonstration
Project, is only available from 2013. Soil moisture (SM) data from
NOAA’s Soil Moisture Products System (SMOPS)—selected for its
reliability in our study area, is available only from 2015 to 2022. As
such, this period ensures the consistency and comparability required
for robust analysis.

2.3.2 Socioeconomic data for assessment of
exposure and vulnerability

Exposure and vulnerability indicators are often used
interchangeably, depending on assumptions the researchers make
when selecting indicators for their studies.Therefore, it is important
to stress the need for a clear justification and explanation of the
assumptions behind the selection of indicators. In this study, we
selected a set of indicators for the assessment of exposure and
vulnerability to drought in Vietnam. The main criteria employed
for indicator selection include the relevance to the agricultural
sector, availability of quantitative and publicly available data, and
specificity to Vietnam’s socio-economic conditions. All exposure
and vulnerability indicators are based on socioeconomic data
obtained from the Statistical Yearbook of Vietnam for the period
from 2015 to 2022.

The percentage of the agricultural population and agricultural
land could be included with strong justification to assess exposure.
These indicators reflect the extent of agricultural activities in an area,
thereby increasing the risk of drought. Agricultural landwas selected
as a measure of exposure, considering that agricultural activities are
particularly susceptible to drought due to water scarcity. A higher
percentage of agricultural land area implies an elevated vulnerability

to drought. Additionally, agricultural population signifies the
number of individuals engaged in the agricultural sector per unit
of land area. A heightened agricultural population density indicates
a greater population exposure to drought risks. To maintain
consistency and comparability throughout the examined period,
we use the rural population indicator instead of the agricultural
population, as data for the agricultural population is unavailable
from 2015 to 2018, while rural population data is available from
2015 to 2022. This is based on the assumption that most people in
rural areas are likely engaged in agricultural production for their
livelihood. The percentage of the agricultural population and land
is expected to positively correlate with the drought exposure index,
as higher values indicate greater exposure to drought.

For the assessment of vulnerability, we considered various
socioeconomic factors such as Gross Domestic Product (GDP),
income, and education level. Based on data availability and
relevance to the agricultural sector, we selected five key indicators:
agricultural GDP, agricultural income, total income, poverty
rate, and literacy rate. Agricultural GDP measures the value
of agricultural production in an area. A higher agricultural
GDP indicates greater vulnerability to drought due to the area’s
economic dependence on agriculture. Agricultural income shows
the population’s reliance on agriculture, thus, it positively correlates
with vulnerability, while total income indicates their ability to
cover living costs, therefore negatively correlates with overall
risk. The poverty rate captures the socio-economic vulnerability
of the population, with higher poverty rates indicating greater
vulnerability to drought due to limited resources and resilience.
Lastly, the adult literacy rate was included to measure education
levels. Higher education levels indicate better farming skills and
access to new technology, reducing vulnerability to drought. Key
exposure and vulnerability indicators are presented in Table 2.

Some indicators were not selected for the DRA in Vietnam
despite their relevance and common use by other authors, due to
their unsuitability in the Vietnamese context and the unavailability
of data. For example, elevation and slope were utilized by
researchers such as Elusma et al. (2022) and Hoque et al. (2021)
as exposure indicators. However, there are conflicting views on
their contribution to drought risk. Some argue that high elevation
and slope lead to increased run-off flow, thus exacerbating drought
exposure (Guo et al., 2021a; Fan et al., 2017; Dayal et al., 2018), while
other studies found a positive correlation between highly elevated
areas and drought (Le et al., 2019; Feng et al., 2020). Given the varied
geographical features in Vietnam, the elevation and slope may offer
inconsistent indicators to assess drought risk. Therefore, we exclude
this indicator from our assessment. Similarly, rice yield was used by
some researchers including Zhao et al. (2020), Luo et al. (2020), and
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TABLE 2 Key socioeconomic indicators for assessment of exposure and vulnerability.

Ref Indicator Description Correlation Data availability References

Exposure

1 Rural population Percentage of population
living in rural areas (%)

Positive 2015–2022 Buurman et al. (2020),
Meza et al. (2020)

2 Agricultural land Percentage of
agricultural land per
total provincial land area
(%)

Positive 2015–2022 Buurman et al. (2020)

Exposure

1 Agricultural GDP Percentage of
agricultural, forestry and
fishing value added per
GDP (%)

Positive 2015–2022 Buurman et al. (2020),
Deng et al. (2023)

2 Agricultural income Monthly average money
value per capita derived
from agriculture,
forestry, and fishery
(thousand dong)

Positive 2015–2022 Le et al. (2021)

3 Total income Monthly average money
value per capital derived
from all sources of
income (thousand dong)

Negative 2015–2022 Nauditt et al. (2022)

4 Poverty rate Multi-dimension
poverty rate (%)

Positive 2015–2022 Le et al. (2021)

5 Literacy rate Literacy rate of adult
people over 15 years old
(%)

Negative 2015–2022 Sahana and Mondal
(2023), Song et al. (2022)

Avia et al. (2023) to measure communities’ response capacity and
environmental conditions. However, rice productivity is influenced
by too many factors, including biophysical elements such as air
temperature, soil condition, storms, and flooding (Abhishek et al.,
2021;Minh et al., 2022a; Nguyen et al., 2022), as well as social factors
like farming practices, technology and modernization, fertilizer
application, and sowing and harvest dates (Guo et al., 2021b;
Valverde-Arias et al., 2018). Thus, there is a high uncertainty of rice
yield inmeasuring drought vulnerability across various geographical
areas of Vietnam, leading us not to include this indicator in our
study. Additionally, irrigation and reservoir networks, are excluded
due to the ongoing controversy over their impact on drought
vulnerability and the lack of data in most provinces. The presence
of irrigation and reservoirs is normally seen as a positive factor in
reducing risk as they are designed to supply water to crops during
periods of water scarcity and maintain agricultural productivity
(Kim et al., 2023; Tingsanchali and Piriyawong, 2018; Sahana et al.,
2021; Meza et al., 2021). However, research by Di Baldassarre et al.
(2018) shows that reliance on reservoirs might reduce the incentive
for adaptive action, which in turn increases drought vulnerability.
The selection or omission of indicators for DRA is based on well-
founded reasoning tailored to the specific context. As a result,
research in a different study areamay involve a different set of chosen
indicators.

2.4 Assessment of multicollinearity

Multicollinearity refers to the presence of linear relationships
among independent variables. It arises when multiple predictors
are strongly correlated with the dependent variable and with each
other. Ideally, variables should be largely independent, withminimal
correlation among them. Conducting multicollinearity analysis
ensures there is no overrepresentation of the selected indicators
(Villani et al., 2022). In recent years, numerous studies have
employed this test to highlight key factors contributing to drought
vulnerability conditions (Arabameri et al., 2021; Villani et al., 2022).
The Variance Inflation Factor (VIF) and Tolerance (TOL) are key
indicators used to assess multicollinearity. VIF helps quantify how
much the variance of a regression coefficient increases due to
collinearity among the independent variables. It provides insight
into the degree of redundancy in the predictors. The VIF is
calculated using Equation 1:

VIF = 1
1−R2 =

1
TOL

(1)

Tolerance is the inverse of the Variance Inflation Factor
(VIF). A lower tolerance value indicates a higher likelihood of
multicollinearity among the variables. A VIF value of one suggests
no correlation between independent variables. When VIF values
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range from 1 to 5, multicollinearity is considered moderate and
generally acceptable. Values between 5 and 10 indicate a higher
level of correlation, which may need closer examination and
justification for retaining the variable (Villani et al., 2022). A
VIF of 10 or more typically signals problematic multicollinearity,
where regression coefficients may be unstable and the variable is
often excluded (Shrestha, 2020).

2.5 Aggregation methods

Highlighting issues for concerns during aggregation is the
weighting of indicators with different relative importance before the
combination of all using arithmetic algorithms. There are various
weighting methods of indicators such as expert knowledge-based
weighting, fuzzy membership function, analytic hierarchy process,
and principal component analysis (Le et al., 2024; Hochrainer-
Stigler et al., 2019).The choice of weighting method simply depends
on each research assumption of input variable contribution. There
are no standards or rationales for why a particular weightingmethod
is preferred over the others and little effort has been made to
validate the reliability of their choice (Dobbie and Dail, 2013). In
this study, an effort will be made to justify the use of equal weighting
and unequal weighting methods [i.e., principal component analysis
(PCA)] for the calculation of each drought risk component. We will
justify our choice of using equal weighting for the calculation of
the hazard index and exposure index while applying PCA for the
vulnerability index.

2.5.1 Equal weighting
Equal weighting is a subjective method that normalizes data

and averages all indicators with equal proportional weight (Le et al.,
2021). This approach constructs the composite index based on
the mean of all equally weighted indicators, assuming that each
contributes equally to the overall measurement and does not
prioritize any specific indicator. In our study, we applied equal
weighting to calculate DHI and DEI. The rationale for using equal
weighting in our paper lies in the conceptual significance of the
indicators. SPI, VHI, and SM represent equally critical dimensions
of drought hazard. SPI captures precipitation levels, which serve as
an external driver of drought conditions. VHI reflects vegetation
health, highlighting ecological impacts, while SM indicates soil
moisture, a factor essential for agriculture and hydrology. Similarly,
two indicators including rural population and agricultural land
are considered equally important for understanding the level of
exposure to drought. In this case, the conceptual parity of indicators
justifies the use of equal weights for aggregation.

This approach is supported by established methodologies.
The OECD Handbook on Constructing Composite Indicators
(2008) (OECD, 2008) recommends equal weighting when
all indicators are conceptually significant, and no robust
empirical basis exists for assigning differential weights.
Additionally, Hedayat and Seyed Kaboli (2024) compared several
weighting methods, such as Fuzzy Logic and the Analytic Network
Process (ANP), and suggested that assigning equal weight to all
factors can be a valid alternative to more complex techniques. They
noted that equal weighting offers a useful approach to address the
inconsistency in judgments of indicator importance.

Before aggregating the indicators with equal weighting, it is
crucial to ensure that all data are on the same scale. Nardo et al.
(2005) emphasize the importance of normalization to address
inconsistencies in magnitude when constructing composite indices.
This involves transforming the data into a common unit of
measurement. In our study, we will apply min-max scaling, as
described in Equations 2 and 3, for normalization.These techniques
will standardize the data to a comparable range, allowing for
meaningful aggregation. The minimum and maximum values are
established based on the value range (whether from a single year or
multiple years) that we intend to compare.

For positive correlation variables:Normalized (x)

= ((x−min (x))/ (max (x) −min (x))) (2)

For negative correlation variables:Normalized (x)

= (1‐ (x ‐min (x))/ (max (x) ‐min (x))) (3)

2.5.2 Unequal weighting: principal component
analysis

As a method for applying unequal weighting, PCA enables the
combination of various datasets with differing levels of importance
into a single composite index, assuming that each input variable
contributes differently (Bhardwaj et al., 2023). By using PCA, we
can create a composite index where the weights of the variables are
based on their variance and loadings in the principal components.
This approach ensures that the variables with the most variance
and significant loadings have the highest weights in the index
(Kim et al., 2021a). Given that PCA relies on a computational
method, it is seen as more objective than the equal-weighting
method (Wei et al., 2022). In our study, we used PCA to explore
the correlations between variables and determine their respective
weights within the vulnerability components. PCA is a robust
method for evaluating the contribution of each indicator and
reducing dimensionality in the presence of potential redundancy
between variables. The vulnerability component consists of five
indicators (Table 2), each contributing differently to the composite
index. Given the uncertainty regarding the appropriate weight for
each variable, PCA provides an effective solution for objectively
determining their relative importance.

For the PCA-weighted method, several steps were taken. First,
the dataset was checked to correct issues with missing values
and outliers using statistical techniques. Second, the data was
standardized to bring all indicators to the same data scale using
Equations 2 and 3. A correlation matrix was then computed to
assess the interrelationships among the variables in the dataset.
This step helped to identify any multicollinearity issues that
could affect the PCA results (Jaadi et al., 2024). After that, the
eigenvalues and eigenvectors were calculated to determine the
principal components, with the number of principal components
being equal to the number of variables (Haobo et al., 2023). The
eigenvalues represent the amount of variance explained by each
component, while the eigenvectors represent the loadings of each
variable on the components. Each variable will have its own loadings
and variance explanation. Based on these two important factors,
we can calculate the weighting of each variable when combining
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datasets of all variables into a multivariate drought exposure and
vulnerability index. The Equations (4–6) were applied following
similar methods conducted by Kim et al. (2021a), David andHarvey
(2022) and Bulut andThompson (2023).

PCA− basedweighting:Wi,j =
CiVj

∑n
i=1
∑m

j=1
CiVj

(4)

Factor score of selected principal component: FSj =
n

∑
i=1

xi∗Wi,j (5)

Drought vulnerability index:DVI =
m

∑
j=1

FSj (6)

Whereas: n is the number of provinces; m is the number of selected
principal components; x is the normalized values of variables; c is
the loading of each variable at a particular principal component, v is
the explained variance of a particular principal component.

2.5.3 Drought risk analysis
As noted by Bravo et al. (2021) and Le et al. (2024), integrating

hazard, exposure, and vulnerability components into a composite
Drought Risk Index (DRI) is commonly achieved through either
multiplicative or additive models. The multiplicative approach
is often favored for its theoretical consistency, particularly the
premise that risk should approach zero if any component is null
(Avia et al., 2023; Khoshnazar et al., 2023; Wang and Sun, 2023;
Zhou et al., 2023). However, a significant number of studies also
adopt additive models, especially when the goal is to generate
comparative indices for spatial prioritization (Dumitraşcu et al.,
2018; Park et al., 2021; Pham et al., 2022).

In our study, we adopted an additive approach with the objective
of identifying and comparing high-risk areas across Vietnam, rather
than predicting absolute risk values. This method allows us to
avoid “zero” values and highlight relative differences in drought risk
intensity across regions. The additive index is normalized, ensuring
comparability across components, and is consistent with several
recent studies using a similar rationale. Additionally, while the
multiplicative model assumes full interdependence of components,
the additive model is more suitable when the indicators may
contribute independently to overall risk. Following this rationale,
the composite drought risk index (DRI) will be constructed using
the summation function of the drought hazard index (DHI), drought
exposure index (DEI), and drought vulnerability index (DVI),
following Equation (7).

DRI = DHI+DEI+DVI (7)

In our study, drought risk analysis with handling a large amount of
data needs the aid of programming languages such as Python and R.
The development of Python scripts integrated with the ArcGIS tool
has played a pivotal role in streamlining and enhancing the analytical
processes. Incorporating loops in Python facilitates scalability and
automation in data processing of repeatable tasks including the
“Extract by Mask,” Zonal statistics, classification, and symbology.
Furthermore, R statistics scripts introduce advanced analytical
techniques for DRA. R scripts are utilized to calculate mean
monthly values for key indicators, functionmin-max normalization,
and conduct weighting and aggregation. The development and
deployment of these Python and R scripts have proven useful in

enhancing the efficiency, accuracy, and comprehensiveness of the
DRA process.

3 Results

3.1 Multicollinearity analysis

The VIF and TOL are calculated for two exposures and five
vulnerability indicators. For exposure indicators, since there are
only two variables, the VIF values remain at 1 across all years.
Therefore, there is no issue with multicollinearity when processing
the exposure component. On the other hand, the VIF and TOL
values for the selected vulnerability indicator across all assessed
years range from 2.21 to 7.51 and 0.13 to 0.45, respectively (Table 3).
VIF values exceeding 5 were observed for the poverty rate, which
is understandable given its conceptual relationship with variables
such as income and literacy rate. However, we opted to retain this
indicator due to its critical relevance in representing socioeconomic
vulnerability within the study context.

3.2 Drought hazard assessment

Themonthly Drought Hazard Index (DHI) was calculated for 8
years from 2015 to 2022 to observe changes in drought conditions
across the country. SPI, VHI, and SM data were normalized to
a range of 0–1 using the minimum and maximum values of the
entire 8-year dataset. The normalized SPI, VHI, and SM were then
combined with equal weighting. The classification of the computed
DHI data was performed using manual intervals in ArcGIS Pro.
Each month’s data was classified into seven breaks based on the
highest DHI value of 0.84 (April 2016) and the lowest value of
0.23 (February 2018). This process resulted in a series of monthly
DHI maps for Vietnam from 2015 to 2022, totaling 96 maps, which
are presented in Appendix 1. A series of drought hazard index
maps in Vietnam from 2015 to 2022. Temporal analysis of the DHI
indicates that the most intense droughts occurred nationwide in
2015 and 2016, with less severe droughts recurring in 2019–2020.
The map of DHI for April 2016, which represents the most intense
drought month, along with its corresponding SPI, VHI, and SM, is
illustrated in Figure 3.

During the drought year of 2015, the entire country faced
extremely dry conditions, with the Central and Southern regions
experiencingmore severe droughts compared to theNorth. Seasonal
variations were also evident, with the drought being most intense
fromMarch to July. The intense drought began in March, peaked in
May, and then became less severe by August. A similar trend was
observed in 2016, with the Southern part of Vietnam experiencing
particularly severe drought conditions fromMarch to June, peaking
in April. In 2017, dry conditions arrived later and were less intense
compared to the previous years, but the Central and Southern
regions remained consistently drier than the North. Notably, the
Southern region experienced drought from August to November,
rather than the usual period from November to April, which could
be due to the time lag in the VHI and SM following reduced rainfall.

In 2018, the drought was not intense and did not follow the
usual seasonal pattern. Drought conditions were highlighted in the
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TABLE 3 VIF and TOL for the selected vulnerability indicators.

Variable 2015 2016 2017 2018 2019 2020 2021 2022

VIF for the selected vulnerability indicators

 Agri GDP 3.21 4.42 3.54 4.03 3.49 3.53 4.29 3.62

 Agr income 2.48 3.1 2.63 2.9 2.57 2.32 2.7 2.21

 All income 4.39 3.99 3.99 4.66 4.96 4.33 4.03 4.2

 Literacy 2.86 3.28 3.49 3.44 4.37 3.57 3.97 4.57

 Poverty 6.61 5.94 6.6 6.33 7.39 5.92 6.48 7.51

TOL for the selected vulnerability indicators

 Agri GDP 0.31 0.23 0.28 0.25 0.29 0.28 0.23 0.28

 Agr income 0.4 0.32 0.38 0.34 0.39 0.43 0.37 0.45

 All income 0.23 0.25 0.25 0.21 0.2 0.23 0.25 0.24

 Literacy 0.35 0.31 0.29 0.29 0.23 0.28 0.25 0.22

 Poverty 0.15 0.17 0.15 0.16 0.14 0.17 0.15 0.13

Central and Southern regions in October and November, which are
typically the wet season. The Central provinces and Mekong Delta
were most affected this year. In 2019, cumulative dry conditions
lasted from April to December, with June being the most intense
month. Although not severe, the drought extended over a longer
period and was more widespread across the country, particularly
affecting the Central and Mekong Delta regions. Continuing from
the long-term dry conditions of 2019, 2020 was also a drought year,
though less intense than in 2015 and 2016. The drought occurring
from April to August followed the typical seasonal pattern, with
the drought period beginning in April, peaking in May for the
South, and in July for the North. The Central and Southern regions
remained more impacted by drought hazards this year. In 2021, the
country did not experience an intense drought year, with the most
impacted months being from July to September, peaking in August.
Similarly, 2022 was marked by greener colors, indicating a wet year
with minimal drought impact.

The analysis of drought hazard indices for these years reveals
a consistent pattern, with the severity of drought being notably
more pronounced in the southern regions, especially the Highlands
and lower Mekong areas. This recurrent trend underscores the
heightened vulnerability and challenges faced by these regions.
However, 2019 showed a variation where the northwest region
experienced relatively more severe drought conditions compared to
other regions, highlighting the dynamic nature of drought patterns.
This regional disparity emphasizes the importance of temporal
and spatial analysis in understanding drought hazards. These
insights are crucial for regional planning and proactive drought
management strategies. Recognizing the consistent vulnerability
of the southern regions while acknowledging temporal variations,
particularly in the northwest during 2019, underscores the need for
tailored approaches and targeted interventions. This understanding

enhances the effectiveness of mitigation and adaptation measures,
ensuring a more resilient response to drought challenges across
diverse geographical areas.

3.3 Drought exposure assessment

Drought exposure in Vietnam was assessed over 8 years from
2015 to 2020, using two indicators: the percentage of agricultural
land and the percentage of rural population in each province.
These indicators were normalized using a min-max function and
combined with equal weighting, assuming that each indicator
contributes equally to the final Drought Exposure Index (DEI). To
oversee the change in DEI across the years, the min and max values
were determined based on the range of values from the entire 8-
year dataset. DEI values were then classified with manual intervals
and mapped using ArcGIS Pro, resulting in the production of eight
DEI maps, one for each year. The DEI maps for 2015 and 2022 are
presented in Figure 4 to illustrate the temporal variation of DEI over
the examined period. A further series of DEI maps from 2015 to
2022 can be seen in Appendix 2. A series of drought exposure index
maps in Vietnam from 2015 to 2022.

The temporal analysis indicates minimal changes in DEI across
provinces over the years, with the maps showing little reduction in
the extent of drought exposure across the provinces of Vietnam.
The DEI maps also compare the level of exposure of provinces in
Vietnam, spatially. Through spatial analysis, we identify that the
Mekong Delta, particularly provinces like Vinh Long, Hau Giang,
Ben Tre, An Giang, Kien Giang, Tien Giang, and Dong Thap,
exhibits the highest DEI values. This is largely due to the region’s
extensive agricultural activities. Following the Mekong Delta, the
Central Highlands (including provinces such asDaklak, Gia Lai, and
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FIGURE 3
The DHI in April 2016 (d)- a combination of SPI (a), VHI (b), and SM (c).
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FIGURE 4
Drought exposure index maps for 2015 and 2022.

Kontum) and some Northeast provinces (such as Thai Binh, Hung
Yen, Ha Nam, and Nam Dinh) also show relatively high DEI values.
In contrast, provinces such as Ho Chi Minh, Da Nang, Khanh Hoa,
and Thua Thien Hue, which focus on the industrial and tourism
sectors, are less exposed to drought. The remaining areas exhibit
moderate to average levels of exposure to drought.

3.4 Drought vulnerability assessment

This assessment aims to analyze drought vulnerability across
Vietnam over 8 years from 2015 to 2022. Year-by-year comparisons
of drought vulnerability levels from 2015 to 2022 are conducted
to identify regions that exhibit higher vulnerability relative to
others. The components of drought vulnerability are represented
by five indicators: agricultural income, total income, agricultural
GDP, poverty rate, and literacy rate. Adopting the same method
as for exposure, min-max normalization is applied using the
minimum and maximum values of each indicator obtained
from the entire dataset spanning the 8 years from 2015 to
2022. Applying PCA analysis, the weight of each indicator
is determined based on the loadings and the proportion of
variance for each principal component (PC). The loadings of
PCs in year 2022 (for demonstration), and the weights for

each vulnerability indicator from 2015 to 2022 are presented in
Table 4 and Table 5. The analysis indicates that poverty rate (Po),
total income (Ti), and literacy Li) have greater weight compared to
the other two indicators–agricultural income (Ai) and agricultural
GDP (AG), highlighting their higher contribution to the overall
drought vulnerability index. These factors are important in shaping
vulnerability, with changes in poverty rates, income levels, and
literacy rates having a greater impact on the overall drought
vulnerability of different regions.

After the calculation of the DVI value using PCA weight,
the classification of drought vulnerability was conducted using
manual interval breaks in ArcGIS Pro, and a series of DVI maps
are generated and presented in Figure 5. From the analysis, it is
observed that drought vulnerability exhibits a decreasing trend over
the years, with 2015 identified as the most vulnerable year. This
trend can be attributed to a significant reduction in poverty rates
and an increase in total income and literacy rates over time. Such
improvements are likely supported by government policies aimed
at economic development and enhancing the living standards of
the population, particularly after 2018. Spatially, regions such as the
Red River Delta and the Southeast emerge as the least vulnerable
to drought, indicating their resilience. Conversely, the Northwest
region experiences the highest levels of vulnerability, although
this has diminished from 2015 to 2022. The Central Highlands
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TABLE 4 Loadings of PCs in 2022.

Variables PC1 PC2 PC3 PC4 PC5

Po 0.5,014,671 0.3820841 0.1386577 0.2167113 −0.7323611

Ti 0.5187436 0.0956229 −0.6186655 0.4131975 0.4102221

Ai 0.3111300 −0.6350842 0.5366962 0.4455987 0.1151743

Li 0.4805037 0.3613317 0.4459350 −0.4767440 0.4608825

AG 0.3895511 −0.5576517 −0.3333560 −0.5970436 −0.2639834

TABLE 5 PCA–determined weight of vulnerability indicators.

Year Vulnerability indicators

Poverty rate All income Agricultural income Literacy rate Agricultural GDP

2015 0.5552 0.2931 0.09543 0.03841 0.01786

2016 0.5669 0.2959 0.08783 0.03118 0.01815

2017 0.5504 0.3081 0.08616 0.03821 0.01711

2018 0.5506 0.3097 0.0871 0.03407 0.01851

2019 0.5718 0.2952 0.0808 0.0361 0.01604

2020 0.5869 0.2747 0.06993 0.04865 0.01985

2021 0.5886 0.2881 0.06527 0.03993 0.01818

2022 0.5867 0.2785 0.07829 0.04087 0.01562

demonstrate high vulnerability, whereas the Mekong Delta and
Central region are characterized by moderate vulnerability levels.
These spatial patterns highlight the varying impacts of drought
across different regions and underscore the importance of targeted
adaptation to drought vulnerability in the most affected areas.

3.5 Drought risk assessment

The drought risk index (DRI) was calculated using three
components: the Drought Hazard Index (DHI), the Drought
Exposure Index (DEI), and the Drought Vulnerability Index (DVI),
with equal weighting. The final results were classified into pre-
determined intervals with 05 levels from very low (dark green)
to very high (dark red) to facilitate year-to-year comparisons. The
series of DRI maps, presented in Figure 6, illustrate the dynamics
of drought risk both spatially and temporally. As analyzed in the
previous section, the hazard component exhibited themost variation
on a monthly scale, while the vulnerability component showed
moderate changes, and the exposure component remained relatively
static. When combined, these factors reveal changes in risk levels,
although these changes are not significant. Notably, 2015 and 2016
emerged as the years with the highest levels of risk across the
examined provinces, followed by 2019 and 2020. The other years

showed lower levels of risk. Spatially, the Mekong Delta, Central
Highlands, and Northwest regions consistently experienced high
drought risk. These areas are particularly drought-prone due to
their agricultural activities and heightened social and economic
vulnerabilities. Consequently, these regions should be prioritized for
adaptation strategies to drought risk.

3.6 Accuracy assessment for drought risk
index

It is essential to assess the reliability and practical value of the
drought risk index and mapping product. In this case, we presented
key observations from historical events to help validate our results.
First, the performance of the drought hazard index was compared
against declared drought years 2015/2016 and 2019/2020 (MARD,
2020). Through the examination, the months with low SPI, VHI,
and SM are identified from April to July, indicating dry conditions
in these months.This is in line with the seasonal patterns of drought
hazard in most of the country at the time. Additionally, the UNDP
(2016) reported significant crop damage and losses during the
2015/2016 drought crisis, identifying the regions with severe impact
including the Mekong Delta, South-Central Vietnam, and Central
Highlands. Specifically, rice and fruit tree losses were reported in the
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FIGURE 5
Drought vulnerability index of Vietnam from 2015 to 2022.

Mekong Delta, while damage to perennial crops was documented
in the Central Highlands. These regions that experienced the most
severe impacts correspond closely with the areas identified in our
study as having high drought risk levels. This agreement between
our results and documented impacts validates the reliability of our
drought hazard index.

To evaluate the reliability of our DRI, we focused on provinces
in the Mekong Delta that were significantly affected by the major
drought events of 2015/2016 and 2019/2020. According to reports
from the Ministry of Agriculture and Rural Development (MARD),
10 provinces in the region experienced substantial agricultural
losses during both drought periods. The DRI values and the
corresponding agricultural damage loss, expressed in monetary
terms, are summarized in Table 6. To validate our findings, we
performed a correlation analysis between the DRI and the reported
agricultural loss values for the years 2015 and 2020. The results
indicate a moderate positive correlation, with Pearson correlation
coefficients of 0.41 for 2015 and 0.52 for 2020 (Figure 7). While
these values are not statistically strong, they nonetheless suggest a
reasonable level of alignment between the DRI and actual economic
losses, thereby lending support to the DRI validity. It is important
to note that this validation is constrained by the availability and
quality of historical agricultural loss data. As more comprehensive
and consistent data become accessible, future analyses can further
enhance the robustness and accuracy of the DRI validation process.

Furthermore, an analysis of rice yield data from 2013 to 2022
reveals a noticeable decline during the drought crisis years of
2015/2016 and 2019/2020 in four high-rankingDRI provinces in the
MekongDelta: Ben Tre, CaMau, Tra Vinh, andVinh Long, as shown
in Figure 8. These provinces, which our study identified as having
high drought risk, experienced significant rice yield reductions.
While rice yield can be influenced by various factors beyond climate
conditions (Minh et al., 2022b; Abhishek et al., 2021; Li et al., 2015;
Guo et al., 2021a; Nguyen et al., 2022), the observed decline in these
provinces aligns well with the high drought risk indicated by our
study, further validating our results.

4 Discussions

4.1 Justification of indicator selection and
aggregation methods for DRA in Vietnam

Currently, there is no universally accepted framework for
DRA, leading to considerable variability in methodologies and
results across different studies and regions (Wu et al., 2025).
Many previous DRA efforts in Vietnam such as Thao et al.
(2019) and Buurman et al. (2020) have relied on single drought
indices, which, while useful, offer a limited perspective on the
complexity of drought phenomena. In contrast, this study quantifies
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FIGURE 6
Drought risk index in Vietnam from 2015 to 2022.

TABLE 6 Economic loss, estimated in VND, in the Mekong Delta’s provinces during the drought crisis of 2015–2016 and 2019-2020 (MARD, 2024)a.

No Affected
province

DRI 2015 DRI 2020 Money loss
2015

Money loss
2020

1 Hau Giang 0.663789 0.562396 13,000 -

2 Tra Vinh 0.659491 0.559737 1,130,589 1,000,000

3 Vinh Long 0.654642 0.550302 285,001 142,485

4 Tien Giang 0.641091 0.531902 101,716 330,375

5 An Giang 0.639529 0.544443 19,000 -

6 Ben Tre 0.636275 0.538032 1,496,958 1,678,002

7 Soc Trang 0.628602 0.527477 896,999 20,495

8 Kien Giang 0.617651 0.547778 2,350,800 -

9 Long An 0.610588 0.508016 191,437 55,466

10 Bac Lieu 0.552086 0.494108 164,829 2,500

a“Report on agricultural damage and loss caused by drought and salinity in Mekong Delta” inTheMinistry of agriculture and rural development of Vietnam. Report provided to the author on 15
May 2025. Unpublished data.
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FIGURE 7
Pearson correlation coefficients between the DRI and the reported agricultural loss values.

FIGURE 8
Rice yield drops during drought years 2015/2016 and 2019/2020 in the most severely affected provinces of the Mekong Delta.

drought hazard using a combination of three drought indices, each
selected to capture different aspects of agricultural drought severity
and tailored to the Vietnamese context. Our research findings
emphasize the appropriateness of utilizing the SPI, VHI, and SM
for quantifying drought hazard indices specifically tailored to the
agricultural sectors in Vietnam. The SPI, by assessing precipitation
variations over different time scales, provides valuable insights into
meteorological conditions. The VHI, incorporating both vegetation
health and temperature indices, offers a holistic perspective on the
impact of drought on crops, considering the relation between plant

health and temperature stress. Furthermore, the inclusion of SM as
an indicator is particularly relevant for the agricultural sector, as
it directly reflects the water content in the soil for plant growth.
The choice of SPI, VHI, and SM as indicators for drought hazard
quantification in Vietnam’s agricultural sectors is highly relevant
to the unique conditions faced by the agricultural landscape and
justified by our research findings.

The selection of indicators for exposure and vulnerability
assessment is highly dependent on the local context, making
it distinct from studies conducted in other regions. For
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instance, Yang et al. (2023) selected indicators such as grain crop
area, crop output, and agricultural insurance to assess exposure
and vulnerability in Shandong province of China, which are not
directly applicable to Vietnam. In this study, indicator selection
was guided by criteria including relevance to the agricultural
sector, data availability, and alignment with Vietnam’s socio-
economic conditions. After careful consideration, two exposure
indicators including the percentage of agricultural land and rural
population, were selected, along with five vulnerability indicators -
agricultural GDP, agricultural income, total income, poverty rate,
and literacy rate. These indicators reflect the economic dependence
on agriculture, socio-economic vulnerability, and education levels,
all of which influence the population’s resilience to drought. The
DEI and DVI findings, incorporating these indicators, effectively
capture the spatial distribution of exposure and vulnerability across
regions of Vietnam.

One key contribution of this study lies in its integration of
dynamic temporal analysis, which is often underrepresented in
existing literature (Khoshnazar et al., 2023; Islam et al., 2024). By
tracking the evolution of drought risk over time, we observe that
hazard indicators tend to fluctuate more dynamically compared to
exposure and vulnerability components. This insight is crucial for
adaptation planning, as it highlights the need to prioritize flexible
and responsive hazard adaptation strategies in high-risk regions.
This strength in our research is facilitated by the application of
GIS and remote sensing in conducting drought risk assessment.
The use of these techniques enables the collation of complex
climate, socio-economic, and ecological information into a single
image, resulting in maps that depict areas of high drought risk
(Belal et al., 2014; Kumari and Kumar, 2023). The visualization
of risk through maps is proven to be useful in communicating
drought risk to stakeholders across different scales and sectors,
facilitating decision-making processes related to drought disaster
risk management.

4.2 DRA-informed adaptation strategies

DRA plays a critical role in supporting decision-makers by
providing a comprehensive understanding of the areas with high
drought risk and the factors contributing to this risk. The creation
of drought risk maps for Vietnam serves as a crucial tool
for policymakers in strategic decision-making processes related
to drought resilience and management. These maps provide a
visual representation of high-risk areas, enabling policymakers
to prioritize resources and interventions in areas that are most
vulnerable to drought. The findings emphasize the importance of
focusing on regions such as the Mekong Delta, Central Highlands,
and Northwest, which consistently face high drought risks due to
their exposure to hazards, agricultural practices, and socioeconomic
vulnerabilities. By identifying the high-risk areas, decision-makers
can allocate resources more effectively and prioritize interventions
to adapt to the impact of drought. For example, improvements in
irrigation infrastructure (Babel et al., 2024; Delfiyan et al., 2021)
can be implemented in regions such as the Mekong Delta, where
agricultural activities are prevalent and severe hazardous conditions
frequently occur. Alternatively, other adaptation strategies, such as
modifying farming practices, changing crop types, and providing

post-drought financial relief (Aliyar et al., 2022; Villani et al.,
2022), can be directed toward high-vulnerability areas such as the
Central Highlands and Northwest. Based on the DRA results for
administrative regional divisions (Figure 2), we propose tailored
adaptation strategies that align with the specific characteristics
of exposure and vulnerability unique to each region in Table 7
as demonstration. It is noted that a more detailed, smaller-scale
analysis would be necessary to further refine the adaptation
strategies. Given that the scope of this research focuses on providing
DRA, the proposed adaptation strategies are relatively general.

Additionally, the dynamic analysis of hazard, exposure,
and vulnerability factors provides valuable insights into the
evolving nature of drought risk, enabling a more comprehensive
understanding of the issue, rather than solely focusing on the
final results. Hazard is a dynamic component that can change
frequently over short timeframes, such as monthly or quarterly.This
is caused by the frequent changes in climate factors such as rainfall,
vegetation health, and soil moisture within the examined time
range. In contrast to hazard, the exposure component, represented
by the percentage of agricultural land and population, shows
minimal variation over the period of 8 years. This suggests that
the areas exposed to drought remain relatively constant, indicating
a static nature of exposure. The vulnerability index, on the other
hand, demonstrates slight variations year by year, with an overall
decreasing trend. This implies that the factors contributing to
vulnerability, including level of income and education are subject
to gradual changes over time. This finding highlights the need
for long-term strategies in drought risk management, as exposure
remains a consistent factor that needs to be addressed irrespective
of temporal variations in hazard and vulnerability. The decreasing
trend of vulnerability is a positive outcome, suggesting some
effective measures for improving socioeconomic conditions and
living standards. However, it is essential to continue monitoring
vulnerability to ensure that it remains at a manageable level and
to identify any emerging trends or factors that may increase
vulnerability in the future. Regular monitoring is crucial to
understanding these patterns and enabling prompt responses to
changes, ensuring that risk management strategies remain effective
and responsive to emerging threats.

4.3 Study limitations

Some limitations can be identified in this study. First, the
selection of indicators in this study was constrained by the
availability of data. For instance, we recognize the importance
of “irrigation coverage” as a key indicator of water resource
utilization in agricultural drought risk assessments. Irrigation
coverage, which reflects the extent of irrigated areas, can be
viewed as an indicator of exposure, as discussed by Meza et al.
(2021), or as a factor that mitigates vulnerability by providing
water during droughts (Elusma et al., 2022). Ideally, we would
have included this indicator in our assessment; however, reliable
and high-resolution data on irrigation coverage are not available
in Vietnam, either in terms of spatial resolution or temporal
coverage. Consequently, its inclusion was not feasible for this study.
Future research could explore the incorporation of such indicators,
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TABLE 7 Suggested specific adaptation strategies for seven administration regions.

Risk regions Main risk characteristics Suggested adaptation strategies

Northwest (S1)
Northeast (S2)
Central Highland (S6)
Mekong Delta (S8)

• Drought hazard affects seasonally.
• Severe hazardous conditions frequently occur
• High vulnerability: high poverty rate, low
non-agricultural income, high agricultural income,
and low education rate

• High exposure to drought with extensive agricultural
activities and number of agricultural workers

• Conduct more detailed drought risk research on
specific regional drought patterns and impacts

• Enhance monitoring of seasonal drought patterns to
track drought onset and plan critical crop activities
(i.e., sowing, harvesting) accordingly

• Invest in drought-tolerant crop varieties suitable for
local conditions

• Improve irrigation infrastructure and efficient water
management practices for drought periods

• Diversify economic activities: encourage the
development of non-agricultural livelihoods to
reduce dependence on farming

• Strengthen agricultural education and training
toward drought-resistant agricultural practices for
farmers

• Provide post-drought financial relief to support
affected farmers and promote drought insurance
programs

North Central (S4) and South Central (S5) • Drought hazards affect seasonally.
• Severe hazardous conditions frequently occur.
• Moderate level of exposure and vulnerability

• Encourage further drought risk research to refine
adaptation strategies

• Continue monitoring of typical drought seasonal
pattern for crop timing practices

• Shift to less agriculture-dependent work
• Build community knowledge and capacity for
dealing with seasonal droughts and
resilience-building practices

• Implement modern irrigation technologies to
optimize water usage, especially in the South Central
region

The Southeast (S7) • Drought hazards affect seasonally.
• Minimal level of exposure and vulnerability to
drought.

• Industrial activities, higher level of income

• Continue monitoring to ensure preparedness, but
with less emphasis on immediate agricultural impacts

• Expand economic activities into more sustainable
and diversified sectors

• Focus on water efficiency and recycling in industrial
operation

• Integrate drought resilience into urban development
plans, such as sustainable water infrastructure

depending on data availability at the time, to enhance the accuracy
and effectiveness of the DRA framework.

Furthermore, the validation of agricultural drought
vulnerability remains a methodological challenge due to the
absence of direct and universally accepted mechanisms. Also, due
to the slow onset and widespread impacts of droughts, collecting
comprehensive validation data, such as economic losses or damages
during drought crises, is complicated. This limitation is widely
acknowledged in DRA research, as noted by Blauhut (2020).
Several studies, including those by Kim et al. (2021b), Nauditt et al.
(2022), and Elusma et al. (2022) did not provide validation
for their methodologies or results. While some studies employ
comparative analyses of drought events across years or examine
empirical correlations with agricultural losses, validation remains
partial (Aitkenhead et al., 2023; Wang and Sun, 2023; Oh et al.,
2023). In our study, we address this gap by validating our risk
assessment through historical drought events and crop yield data.
Although constrained by the availability of historical records, the
positive correlation between risk estimates and yield losses provides
empirical support for the robustness of our approach. Our research,

therefore, highlights the importance of recording and maintaining
relevantmonitoring data, such as economic losses and yield impacts,
to enable the application of robust statistical methods for validating
and refining the assessment framework.

Another limitation is the spatial scale of the assessment. In this
study, data were available only at the provincial level, which may
have introduced some spatial accuracy limitations. To improve the
precision of drought risk identification and enable better resource
allocation for adaptation efforts, future work should consider
incorporating data at finer resolutions, such as district level or even
pixel level. This would provide more detailed insights into the areas
most at risk and allow for more targeted and effective drought
management strategies.

5 Conclusion

This study applied a comprehensive risk assessment framework
encompassing hazard, exposure, and vulnerability to evaluate
agricultural drought risk in Vietnam from 2015 to 2022. It
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aimed to identify high-risk areas and support the development
of drought adaptation strategies through integrated spatial and
temporal analyses. By employing tailored indicators and a systematic
quantification method, the study successfully achieved its objectives
and offers valuable insights for future DRA. First, our study
emphasizes the advantage of using a combination of drought indices
such as SPI, VHI and SM over relying on a single index for more
robust hazard evaluation. In addition, the study recommends a
context-specific set of indicators for exposure and vulnerability,
carefully selected based on Vietnam’s unique socio-economic and
agricultural characteristics. Second, the dynamic assessment of
drought risk reveals that hazard is the most variable component,
vulnerability shows a slight downward trend, and exposure remains
relatively stable. These temporal dynamics provide insights into
the underlying causes of risk and can inform policy priorities
and the effectiveness of response measures. Furthermore, high-
risk regions, including the Mekong Delta, South-Central Vietnam,
and the Central Highlands, were identified through spatial analysis
usingGIS.The assessment was validated using historical agricultural
loss data, showing strong alignment with severe drought impacts
recorded during the 2015–2016 and 2019–2020 periods. While the
study offers general adaptation strategies, it also underscores the
importance of advancing spatially explicit assessments in critical
areas to enable the development of more localized and actionable
adaptation measures.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

TL: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Resources,
Software, Validation, Visualization, Writing – original draft,
Writing – review and editing. CS: Conceptualization, Investigation,
Methodology, Project administration, Supervision, Validation,
Writing – review and editing. TT: Conceptualization, Investigation,
Methodology, Supervision, Validation,Writing – review and editing.
SC: Conceptualization, Methodology, Supervision, Validation,
Writing – review and editing. YK: Investigation, Methodology,
Supervision, Validation, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors gratefully acknowledge the support and resources
provided by the Geospatial Department of RMIT University,
Melbourne, Victoria, Australia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of this manuscript. Generative AI was utilized in this manuscript
solely to enhance readability and ensure clarity of expression.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2025.
1564900/full#supplementary-material

References

Abhishek, A., Das, N. N., Ines, A. V. M., Andreadis, K. M., Jayasinghe, S., Granger, S.,
et al. (2021). Evaluating the impacts of drought on rice productivity over Cambodia in
the Lower Mekong Basin. J. Hydrol. 599, 126291. doi:10.1016/j.jhydrol.2021.126291

Ai, P., Chen, B., Yuan, D., Hong, M., and Liu, H. (2021). Dynamic risk assessment
of drought disaster: a case study of Jiangxi Province, China. J. Water Clim. Change 12,
1761–1777. doi:10.2166/wcc.2020.141

Aitkenhead, I., Kuleshov, Y., Bhardwaj, J., Chua, Z. W., Sun, C., and Choy, S. (2023).
Validating a tailored drought risk assessment methodology: drought risk assessment
in local Papua New Guinea regions. Nat. Hazards Earth Syst. Sci. 23, 553–586.
doi:10.5194/nhess-23-553-2023

Aliyar, Q., Zulfiqar, F., Datta, A., Kuwornu, J. K. M., and Shrestha, S. (2022).
Drought perception and field-level adaptation strategies of farming households
in drought-prone areas of Afghanistan. Int. J. Disaster Risk Reduct. 72, 102862.
doi:10.1016/j.ijdrr.2022.102862

Anh, D. L. T., Anh, N. T., and Chandio, A. A. (2023). Climate change and its
impacts on Vietnam agriculture: a macroeconomic perspective. Ecol. Inf. 74, 101960.
doi:10.1016/j.ecoinf.2022.101960

Arabameri, A., Chandra Pal, S., Santosh, M., Chakrabortty, R., Roy, P., and
Moayedi, H. (2021). Drought risk assessment: integrating meteorological,
hydrological, agricultural and socio-economic factors using ensemble models

Frontiers in Earth Science 19 frontiersin.org

https://doi.org/10.3389/feart.2025.1564900
https://www.frontiersin.org/articles/10.3389/feart.2025.1564900/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2025.1564900/full#supplementary-material
https://doi.org/10.1016/j.jhydrol.2021.126291
https://doi.org/10.2166/wcc.2020.141
https://doi.org/10.5194/nhess-23-553-2023
https://doi.org/10.1016/j.ijdrr.2022.102862
https://doi.org/10.1016/j.ecoinf.2022.101960
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Le et al. 10.3389/feart.2025.1564900

and geospatial techniques. Geocarto Int. 37, 6087–6115. doi:10.1080/10106049.2021.
1926558

Avia, L. Q., Yulihastin, E., Izzaturrahim, M. H., Muharsyah, R., Satyawardhana,
H., Sofiati, I., et al. (2023). The spatial distribution of a comprehensive drought
risk index in Java, Indonesia. Kuwait J. Sci. 50, 753–760. doi:10.1016/j.kjs.
2023.02.031

Babel, M. S., Chawrua, L., Khadka, D., Tingsanchali, T., and Shanmungam, M.
S. (2024). Agricultural drought risk and local adaptation measures in the Upper
Mun River Basin, Thailand. Agric. Water Manag. 292, 108655. doi:10.1016/j.agwat.
2023.108655

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A.
I., et al. (2019). MSWEP V2 global 3-hourly 0.1 precipitation: methodology and
quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500. doi:10.1175/bams-d-
17-0138.1

Belal, A. A., El-Ramady, H. R.,Mohamed, E. S., and Saleh, A.M. (2014). Drought risk
assessment using remote sensing and GIS techniques. Arabian J. Geosciences 7, 35–53.
doi:10.1007/s12517-012-0707-2

Bhardwaj, J., Kuleshov, Y., Chua, Z.-W., Watkins, A. B., Choy, S., and Sun, C. (2023).
Pairing monitoring datasets with probabilistic forecasts to provide early warning of
drought in Australia. J. Hydrol. 626, 130259. doi:10.1016/j.jhydrol.2023.130259

Blauhut, V. (2020).The triple complexity of drought risk analysis and its visualisation
via mapping: a review across scales and sectors. Earth-Science Rev. 210, 103345.
doi:10.1016/j.earscirev.2020.103345

Bourne, A. R., Bruce, J., Guthrie, M. M., Koh, L. A., Parker, K., Mastrantonis, S.,
et al. (2023). Identifying areas of high drought risk in southwestWestern Australia.Nat.
Hazards 118, 1361–1385. doi:10.1007/s11069-023-06065-z

Bravo, R. Z. B., Cunha, A. P. M. d. A., Leiras, A., and Cyrino Oliveira, F. L. (2021).
A new approach for a drought composite index. Nat. Hazards 108 (1), 755–773.
doi:10.1007/s11069-021-04704-x

Bulut, E., andThompson, H. (2023). Performing principal component analysis (PCA)
to determine weights for index indicators. ArcGIS Blog [Online]. Available online
at: https://www.esri.com/arcgis-blog/products/api-python/analytics/performing-
principal-component-analysis-pca-to-determine-weights-for-index-indicators

Buurman, J., Bui, D. D., and Du, L. T. T. (2020). Drought risk assessment in
Vietnamese communities using household survey information. Int. J.Water Resour. Dev.
36, 88–105. doi:10.1080/07900627.2018.1557038

Chandrasekara, S. S. K., Kwon, H.-H., Vithanage, M., Obeysekera, J., and Kim, T.-W.
(2021). Drought in South Asia: a review of drought assessment and prediction in South
Asian countries. Atmosphere 12, 369. doi:10.3390/atmos12030369

David, T., and Harvey, B. A. H. (2022). A comparison of functions for
PCA. Cran.R Project Organization. Available online at: https://cran.r-project.
org/web/packages/LearnPCA/vignettes/Vig_07_Functions_PCA.pdf.

Dayal, K. S., Deo, R. C., and Apan, A. A. (2018). Spatio-temporal drought
risk mapping approach and its application in the drought-prone region of south-
east Queensland, Australia. Nat. Hazards 93 (2), 823–847. doi:10.1007/s11069-
018-3326-8

Delfiyan, F., Yazdanpanah, M., Forouzani, M., and Yaghoubi, J. (2021).
Farmers’ adaptation to drought risk through farm–level decisions: the case
of farmers in Dehloran county, Southwest of Iran. Clim. Dev. 13, 152–163.
doi:10.1080/17565529.2020.1737797

Deng, H. Y., Yin, Y. H., Zong, X. Z., and Yin, M. J. (2023). Future drought risks in the
Yellow River Basin and suggestions for targeted response. Int. J. Disaster Risk Reduct.
93, 103764. doi:10.1016/j.ijdrr.2023.103764

Di Baldassarre, G.,Wanders, N., Aghakouchak, A., Kuil, L., Rangecroft, S., Veldkamp,
T., et al. (2018).Water shortages worsened by reservoir effects.Nat. Sustain. 1, 617–622.
doi:10.1038/s41893-018-0159-0

Dobbie, M. J., and Dail, D. (2013). Robustness and sensitivity of weighting
and aggregation in constructing composite indices. Ecol. Indic. 29, 270–277.
doi:10.1016/j.ecolind.2012.12.025

Dumitraşcu, M., Mocanu, I., Mitrică, B., Dragotă, C., Grigorescu, I., and
Dumitrică, C. (2018). The assessment of socio-economic vulnerability to drought
in Southern Romania (Oltenia Plain). Int. J. Disaster Risk Sci. 27, 142–154.
doi:10.1016/j.ijdrr.2017.09.049

Dunne, A., and Kuleshov, Y. (2023). Drought risk assessment and mapping for the
Murray–darling basin, Australia. Nat. Hazards 115, 839–863. doi:10.1007/s11069-022-
05576-5

Elusma, M., Tung, C.-P., and Lee, C.-C. (2022). Agricultural drought risk assessment
in the Caribbean region: the case of Haiti. Int. J. Disaster Risk Reduct. 83, 103414.
doi:10.1016/j.ijdrr.2022.103414

Fan, G., Zhang, Y., He, Y., and Wang, K. (2017). Risk assessment of drought in the
Yangtze River Delta based on natural disaster risk theory. Discrete Dyn. Nat. Soc. 2017,
1–7. doi:10.1155/2017/5682180

Feng, W., Lu, H., Yao, T., and Yu, Q. (2020). Drought characteristics and its elevation
dependence in the Qinghai–Tibet plateau during the last half-century. Sci. Rep. 10,
14323. doi:10.1038/s41598-020-71295-1

GSO (2022). Agriculture, Forestry, and Fishery. Available online at: https://www.gso.
gov.vn/en/homepage (Accessed April 19 2024).

Guo, H., Chen, J., and Pan, C. (2021a). Assessment on agricultural drought
vulnerability and spatial heterogeneity study in China. Int. J. Environ. Res. Public Health
18, 4449. doi:10.3390/ijerph18094449

Guo, H., Wang, R., Garfin, G. M., Zhang, A., Lin, D., Liang, Q., et al.
(2021b). Rice drought risk assessment under climate change: based on physical
vulnerability a quantitative assessment method. Sci. Total Environ. 751, 141481.
doi:10.1016/j.scitotenv.2020.141481

Ha, D. H., Duc, P. N., Luong, T. H., Duc, T. T., Ngoc, T. T., Minh, T. N., et al. (2024).
Application of artificial intelligence to forecast drought index for the mekong delta.
Appl. Sci. 14, 6763. doi:10.3390/app14156763

Ha, T. V., Huth, J., Bachofer, F., andKuenzer, C. (2022). A review of earth observation-
based drought studies in Southeast Asia. Remote Sens. 14, 3763. doi:10.3390/rs
14153763

Ha, T. V., Uereyen, S., and Kuenzer, C. (2024). Spatiotemporal analysis of tropical
vegetation ecosystems and their responses to multifaceted droughts in Mainland
Southeast Asia using satellite-based time series. GIScience Remote Sens. 61, 2387385.
doi:10.1080/15481603.2024.2387385

Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., et al.
(2019). Drought vulnerability and risk assessments: state of the art, persistent gaps, and
research agenda. Environ. Res. Lett. 14, 083002. doi:10.1088/1748-9326/ab225d

Hagenlocher, M., Naumann, G., Meza, I., Blauhut, V., Cotti, D., Döll, P., et al. (2023).
Tackling growing drought risks-the need for a systemic perspective. Earths Future 11,
e2023EF003857. doi:10.1029/2023ef003857

Han, J., and Singh, V. P. (2023). A review of widely used drought indices and the
challenges of drought assessment under climate change. Environ. Monit. Assess. 195,
1438. doi:10.1007/s10661-023-12062-3

Haobo, L., Choy, S., Zaminpardaz, S., Carter, B., Sun, C., Purwar, S., et al.
(2023). Investigating the inter-relationships among multiple atmospheric variables
and their responses to precipitation. Atmosphere 14 (3), 571. doi:10.3390/atmos
14030571

Hedayat, H., and Seyed Kaboli, H. (2024). Drought risk assessment: the importance
of vulnerability factors interdependencies in regional drought risk management. Int. J.
Disaster Risk Reduct. 100, 104152. doi:10.1016/j.ijdrr.2023.104152

Hochrainer-Stigler, S., Balkovic, J., Silm, K., and Timonina-Farkas, A. (2019). Large
scale extreme risk assessment using copulas: an application to drought events under
climate change for Austria. Comput. Manag. Sci. 16, 651–669. doi:10.1007/s10287-018-
0339-4

Hoque, M. A. A., Pradhan, B., Ahmed, N., and Sohel, M. S. I. (2021).
Agricultural drought risk assessment of Northern New South Wales, Australia
using geospatial techniques. Sci. Total Environ. 756, 143600. doi:10.1016/j.scitotenv.
2020.143600

IPCC (2022). Climate change 2022: impacts, adaptation and vulnerability.
Contribution of working group II to the sixth assessment report of the intergovernmental
panel on climate change. Editors Pörtner, H.-O., Roberts, D. C., Tignor,M., Poloczanska,
E. S., Mintenbeck, K., and Alegría, A. (Cambridge, UK: Cambridge University Press),
3056.

Islam, S. M. S., Yeşilköy, S., Baydaroğlu, Ö., YıLDıRıM, E., and Demir, I.
(2024). State-level multidimensional agricultural drought susceptibility and risk
assessment for agriculturally prominent areas. Int. J. River Basin Manag., 1–18.
doi:10.1080/15715124.2024.2304546

Jaadi, Z., Whitfield, B., and Pierre, S. (2024). Principal component analysis (PCA):
a step-by-step explanation. Builtin. Available online at: https://builtin.com/data-
science/step-step-explanation-principal-component-analysis.

Khoshnazar, A., Corzo Perez, G., and Sajjad, M. (2023). Characterizing
spatial–temporal drought risk heterogeneities: a hazard, vulnerability and
resilience-based modeling. J. Hydrol. 619, 129321. doi:10.1016/j.jhydrol.2023.129321

Kim, J. E., Yoo, J., Kwon, H. H., and Kim, T. W. (2023). Comprehensive drought
risk assessment using structural equation modeling and objective weighting methods.
J. Hydrol. Reg. Stud. 50, 101538. doi:10.1016/j.ejrh.2023.101538

Kim, J. E., Yu, J., Ryu, J. H., Lee, J. H., and Kim, T. W. (2021a). Assessment
of regional drought vulnerability and risk using principal component analysis
and a Gaussian mixture model. Nat. Hazards 109, 707–724. doi:10.1007/
s11069-021-04854-y

Kim, S. J., Park, S., Lee, S. J., Shaimerdenova, A., Kim, J., Park, E., et al. (2021b).
Developing spatial agricultural drought risk index with controllable geo-spatial
indicators: a case study for South Korea and Kazakhstan. Int. J. Disaster Risk Reduct.
54, 102056. doi:10.1016/j.ijdrr.2021.102056

Kogan, F. (2019). Vegetation health method. Remote Sens. Food Secur., 51–73.
doi:10.1007/978-3-319-96256-6_4

Kuleshov, Y., Kurino, T., Kubota, T., Tashima, T., and Xie, P. (2019). “WMO space-
based weather and climate extremes monitoring demonstration project (semdp): first
outcomes of regional cooperation on drought and heavy precipitation monitoring
for Australia and Southeast Asia,” in Rainfall-extremes, distribution and properties.
IntechOpen. doi:10.5772/intechopen.85824

Frontiers in Earth Science 20 frontiersin.org

https://doi.org/10.3389/feart.2025.1564900
https://doi.org/10.1080/10106049.2021.1926558
https://doi.org/10.1080/10106049.2021.1926558
https://doi.org/10.1016/j.kjs.2023.02.031
https://doi.org/10.1016/j.kjs.2023.02.031
https://doi.org/10.1016/j.agwat.2023.108655
https://doi.org/10.1016/j.agwat.2023.108655
https://doi.org/10.1175/bams-d-17-0138.1
https://doi.org/10.1175/bams-d-17-0138.1
https://doi.org/10.1007/s12517-012-0707-2
https://doi.org/10.1016/j.jhydrol.2023.130259
https://doi.org/10.1016/j.earscirev.2020.103345
https://doi.org/10.1007/s11069-023-06065-z
https://doi.org/10.1007/s11069-021-04704-x
https://www.esri.com/arcgis-blog/products/api-python/analytics/performing-principal-component-analysis-pca-to-determine-weights-for-index-indicators
https://www.esri.com/arcgis-blog/products/api-python/analytics/performing-principal-component-analysis-pca-to-determine-weights-for-index-indicators
https://doi.org/10.1080/07900627.2018.1557038
https://doi.org/10.3390/atmos12030369
https://cran.r-project.org/web/packages/LearnPCA/vignettes/Vig_07_Functions_PCA.pdf
https://cran.r-project.org/web/packages/LearnPCA/vignettes/Vig_07_Functions_PCA.pdf
https://doi.org/10.1007/s11069-018-3326-8
https://doi.org/10.1007/s11069-018-3326-8
https://doi.org/10.1080/17565529.2020.1737797
https://doi.org/10.1016/j.ijdrr.2023.103764
https://doi.org/10.1038/s41893-018-0159-0
https://doi.org/10.1016/j.ecolind.2012.12.025
https://doi.org/10.1016/j.ijdrr.2017.09.049
https://doi.org/10.1007/s11069-022-05576-5
https://doi.org/10.1007/s11069-022-05576-5
https://doi.org/10.1016/j.ijdrr.2022.103414
https://doi.org/10.1155/2017/5682180
https://doi.org/10.1038/s41598-020-71295-1
https://www.gso.gov.vn/en/homepage
https://www.gso.gov.vn/en/homepage
https://doi.org/10.3390/ijerph18094449
https://doi.org/10.1016/j.scitotenv.2020.141481
https://doi.org/10.3390/app14156763
https://doi.org/10.3390/rs14153763
https://doi.org/10.3390/rs14153763
https://doi.org/10.1080/15481603.2024.2387385
https://doi.org/10.1088/1748-9326/ab225d
https://doi.org/10.1029/2023ef003857
https://doi.org/10.1007/s10661-023-12062-3
https://doi.org/10.3390/atmos14030571
https://doi.org/10.3390/atmos14030571
https://doi.org/10.1016/j.ijdrr.2023.104152
https://doi.org/10.1007/s10287-018-0339-4
https://doi.org/10.1007/s10287-018-0339-4
https://doi.org/10.1016/j.scitotenv.2020.143600
https://doi.org/10.1016/j.scitotenv.2020.143600
https://doi.org/10.1080/15715124.2024.2304546
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://doi.org/10.1016/j.jhydrol.2023.129321
https://doi.org/10.1016/j.ejrh.2023.101538
https://doi.org/10.1007/s11069-021-04854-y
https://doi.org/10.1007/s11069-021-04854-y
https://doi.org/10.1016/j.ijdrr.2021.102056
https://doi.org/10.1007/978-3-319-96256-6\string_4
https://doi.org/10.5772/intechopen.85824
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Le et al. 10.3389/feart.2025.1564900

Kumari, M., Kumar, D., Vaishnavi, (2023). Dynamic drought risk
assessment and analysis with multi-source drought indices and analytical
hierarchy process. Int. J. Environ. Sci. Technol. 20, 2839–2856. doi:10.1007/
s13762-022-04041-x

Kumar, V., and Chu, H.-J. (2024). Spatiotemporal consistency and
inconsistency of meteorological and agricultural drought identification: a
case study of India. Remote Sens. Appl. Soc. Environ. 33, 101134. doi:10.1016/
j.rsase.2023.101134

Le, P. V., Phan-Van, T., Mai, K. V., and Tran, D. Q. (2019). Space–time variability of
drought over Vietnam. Int. J. Climatol. 39, 5437–5451. doi:10.1002/joc.6164

Le, T., Sun, C., Choy, S., and Kuleshov, Y. (2021). Regional drought risk assessment
in the Central Highlands and the South of Vietnam. Geomatics, Nat. Hazards Risk 12,
3140–3159. doi:10.1080/19475705.2021.1998232

Le, T., Sun, C., Choy, S., Kuleshov, Y., and Tran, T. D. (2024). Agricultural
drought risk assessments: a comprehensive review of indicators, algorithms, and
validation for informed adaptations. Geomatics, Nat. Hazards Risk 15, 2383774.
doi:10.1080/19475705.2024.2383774

Liou, Y. A., Vo, T. H., Tran, D. P., and Bui, H. A. (2024). Comprehensive drought
risk assessment and mapping in Taiwan: an ANP-ANN ensemble approach. Sci. Total
Environ. 952, 175835. doi:10.1016/j.scitotenv.2024.175835

Li, T., Angeles, O., Radanielson, A., Marcaida, M., and Manalo, E. (2015). Drought
stress impacts of climate change on rainfed rice in South Asia. Clim. Change 133,
709–720. doi:10.1007/s10584-015-1487-y

Luo, D., Zhang, M., and Zhang, H. (2020). Two-stage grey cloud clustering model for
drought risk assessment. Grey Syst. 10, 68–84. doi:10.1108/gs-06-2019-0021

MARD (2020). Report on the drought and saltwater intrusion in mekong river
delta. The Ministry of Agriculture and Rural Development. Available online at:
https://phongchongthientai.mard.gov.vn/en/Pages/mard-report-on-the-drought-and-
saltwater-intrusion-in-mekong-river-delta.aspx.

Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O.,
et al. (2021). Drought risk for agricultural systems in South Africa: drivers, spatial
patterns, and implications for drought riskmanagement. Sci. Total Environ. 799, 149505.
doi:10.1016/j.scitotenv.2021.149505

Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Rezaei, E. E., et al. (2020). Global-
scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 20,
695–712. doi:10.5194/nhess-20-695-2020

Minh, H. V. T., Kumar, P., Van Ty, T., Duy, D. V., Han, T. G., Lavane, K., et al.
(2022a). Understanding dry and wet conditions in the Vietnamese Mekong delta
using multiple drought indices: a case study in Ca Mau province. Hydrology 9, 213.
doi:10.3390/hydrology9120213

Minh, H. V. T., Lavane, K., Ty, T. V., Downes, N. K., Hong, T. T. K., and
Kumar, P. (2022b). Evaluation of the impact of drought and saline water intrusion
on rice yields in the Mekong Delta, Vietnam. Water 14, 3499. doi:10.3390/
w14213499

Mishra, A. K., and Singh, V. P. (2010). A review of drought concepts. J. Hydrol. 391,
202–216. doi:10.1016/j.jhydrol.2010.07.012

Mishra, A., Delk, J., Mishra, A., and Zilberman, D. (2025). Drought has varying
impacts on the national economy. Stoch. Environ. Res. Risk Assess. 39, 925–936.
doi:10.1007/s00477-024-02892-z

Nardo, M., Saisana, M., Saltelli, A., and Tarantola, S. (2005). Tools for composite
indicators building. EUR 21682 EN. JRC31473. Available online at: https://publications.
jrc.ec.europa.eu/repository/handle/JRC31473.

Nauditt, A., Stahl, K., Rodríguez, E., Birkel, C., Formiga-Johnsson, R. M., Kallio,
M., et al. (2022). Evaluating tropical drought risk by combining open access
gridded vulnerability and hazard data products. Sci. Total Environ. 822, 153493.
doi:10.1016/j.scitotenv.2022.153493

Nguyen, V.-H., Stuart, A. M., Nguyen, T.-M.-P., Pham, T.-M.-H., Nguyen, N.-P.-T.,
Pame, A. R. P., et al. (2022). An assessment of irrigated rice cultivation with different
crop establishment practices in Vietnam. Sci. Rep. 12, 401. doi:10.1038/s41598-021-
04362-w

NOAA (2024). NESDIS operational soil moisture products. National Oceanic and
Atmospheric Administration - Office of Satellite and Product Operation. Available
online at: https://www.ospo.noaa.gov/products/land/smops/algo.html.

ODV (2022). The new normal: Mekong delta faces droughts and saltwater intrusion.
Vietnam: Open Development Vietnam.

OECD (2008).Handbook on constructing composite indicators: methodology and user
guide. Paris: OECD Publishing.

Oh, H., Kim, H. J., Mehboob, M. S., Kim, J., and Kim, Y. (2023). Sources
and uncertainties of future global drought risk with ISIMIP2b climate
scenarios and socioeconomic indicators. Sci. Total Environ. 859, 160371.
doi:10.1016/j.scitotenv.2022.160371

Park, S. Y., Sur, C., Kim, J. S., Choi, S. J., Lee, J. H., and Kim, T. W. (2021). Projected
drought risk assessment fromwater balance perspectives in a changing climate [Article].
Int. J. Climatol. 41 (4), 2765–2777. doi:10.1002/joc.6988

Pham, M.-P., Nguyen, K. Q., Vu, G. D., Nguyen, N. T. T., Tong, H. T.,
Trinh, L. H., et al. (2022). Drought risk index for agricultural land based on a
multi-criteria evaluation. Model. Earth Syst. Environ. 8, 5535–5546. doi:10.1007/
s40808-022-01376-9

Phan, V. H., Dinh, V. T., and Su, Z. (2020). Trends in long-term drought changes in
the Mekong river delta of Vietnam. Remote Sens. 12, 2974. doi:10.3390/rs12182974

Saha, A., Pal, S. C., Chowdhuri, I., Roy, P., Chakrabortty, R., and Shit, M.
(2023). Vulnerability assessment of drought in India: insights from meteorological,
hydrological, agricultural and socio-economic perspectives.GondwanaRes. 123, 68–88.
doi:10.1016/j.gr.2022.11.006

Sahana, V., and Mondal, A. (2023). Evolution of multivariate drought hazard,
vulnerability and risk in India under climate change. Nat. Hazards Earth Syst. Sci. 23,
623–641. doi:10.5194/nhess-23-623-2023

Sahana, V., Mondal, A., and Sreekumar, P. (2021). Drought vulnerability
and risk assessment in India: sensitivity analysis and comparison of
aggregation techniques. J. Environ. Manag. 299, 113689. doi:10.1016/
j.jenvman.2021.113689

Senapati, U., and Das, T. K. (2024). Geospatial assessment of agricultural drought
vulnerability using integrated three-dimensional model in the upper Dwarakeshwar
river basin in West Bengal, India. Environ. Sci. Pollut. Res. Int. 31, 54061–54088.
doi:10.1007/s11356-022-23663-9

Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H., and Van Passel, S.
(2020). Drought risk assessment: towards drought early warning system
and sustainable environment in western Iran. Ecol. Indic. 114, 106276.
doi:10.1016/j.ecolind.2020.106276

Shiravand,H., andBayat, A. (2023). Vulnerability and drought risk assessment in Iran
based on fuzzy logic and hierarchical analysis. Theor. Appl. Climatol. 151, 1323–1335.
doi:10.1007/s00704-022-04323-x

Shrestha, N. (2020). Detecting multicollinearity in regression analysis. Am. J. Appl.
Math. Statistics 8, 39–42. doi:10.12691/ajams-8-2-1

Song, W., Cao, S., Du, M., Mo, Y., and Li, S. (2022). Investigation of compound
drought risk and driving factors in Nepal. Nat. Hazards 114, 1365–1391.
doi:10.1007/s11069-022-05429-1

Stojanovic, M., Liberato, M. L., Sorí, R., Vázquez, M., Phan-Van, T., Duongvan,
H., et al. (2020). Trends and extremes of drought episodes in Vietnam sub-
regions during 1980–2017 at different timescales. Water 12, 813. doi:10.3390/
w12030813

Thao, N. T. T., Khoi, D. N., Xuan, T. T., and Tychon, B. (2019). Assessment of
livelihood vulnerability to drought: a case study in Dak Nong Province, Vietnam. Int. J.
Disaster Risk Sci. 10, 604–615. doi:10.1007/s13753-019-00230-4

Tingsanchali, T., and Piriyawong, T. (2018). Drought risk assessment of irrigation
project areas in a river basin. Eng. J. 22, 279–287. doi:10.4186/ej.2018.22.1.279

Truong, D. D., Dat, T. T., Hang, N. D., and Huan, L. H. (2022).
Vulnerability assessment of climate change in Vietnam: a case study of
Binh Chanh district, Ho Chi Minh city. Front. Environ. Sci. 10. doi:10.3389/
fenvs.2022.880254

Ty, T. V., Lavane, K., Nguyen, P. C., Downes, N. K., Nam, N. D. G., Minh, H. V. T.,
et al. (2022). Assessment of relationship between climate change, drought, and land use
and land cover changes in a semi-mountainous area of the Vietnamese Mekong delta.
Land 11, 2175. doi:10.3390/land11122175

UNDP (2016). Vietnam drought and salt water intrusion: transitioning from
emergency to recovery. United Nations Development Programme (VN). Available
online at: https://www.undp.org/sites/g/files/zskgke326/files/migration/vn/Recovery-
draft-Sep-2016_final.pdf.

Valverde-Arias, O., Garrido, A., Valencia, J. L., and Tarquis, A. M. (2018).
Using geographical information system to generate a drought risk map for rice
cultivation: case study in Babahoyo canton (Ecuador). Biosyst. Eng. 168, 26–41.
doi:10.1016/j.biosystemseng.2017.08.007

Villani, L., Castelli, G., Piemontese, L., Penna, D., and Bresci, E. (2022).
Drought risk assessment in Mediterranean agricultural watersheds: a case
study in Central Italy. Agric. Water Manag. 271, 107748. doi:10.1016/
j.agwat.2022.107748

Wang, T., and Sun, F. (2023). Integrated drought vulnerability and risk assessment
for future scenarios: an indicator based analysis. Sci. Total Environ. 900, 165591.
doi:10.1016/j.scitotenv.2023.165591

Wei, W., Zhang, X., Liu, C., Xie, B., Zhou, J., and Zhang, H. (2022). A new drought
index and its application based on geographically weighted regression (GWR) model
and multi-source remote sensing data. Environ. Sci. Pollut. Res. 30, 17865–17887.
doi:10.1007/s11356-022-23200-8

World BankGroup., (2024).TheWorld Bank InViet Nam:Overview. Available online
at:. https://www.worldbank.org/en/country/vietnam/overview.

Wu, F., Yang, X., Cui, Z., Ren, L., Jiang, S., Liu, Y., et al. (2025). Comprehensive
drought risk assessment of the Yangtze River Basin considering socio-
natural systems — based on PCR-GLOBWB model. J. Hydrology 646, 132315.
doi:10.1016/j.jhydrol.2024.132315

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2025.1564900
https://doi.org/10.1007/s13762-022-04041-x
https://doi.org/10.1007/s13762-022-04041-x
https://doi.org/10.1016/j.rsase.2023.101134
https://doi.org/10.1016/j.rsase.2023.101134
https://doi.org/10.1002/joc.6164
https://doi.org/10.1080/19475705.2021.1998232
https://doi.org/10.1080/19475705.2024.2383774
https://doi.org/10.1016/j.scitotenv.2024.175835
https://doi.org/10.1007/s10584-015-1487-y
https://doi.org/10.1108/gs-06-2019-0021
https://phongchongthientai.mard.gov.vn/en/Pages/mard-report-on-the-drought-and-saltwater-intrusion-in-mekong-river-delta.aspx
https://phongchongthientai.mard.gov.vn/en/Pages/mard-report-on-the-drought-and-saltwater-intrusion-in-mekong-river-delta.aspx
https://doi.org/10.1016/j.scitotenv.2021.149505
https://doi.org/10.5194/nhess-20-695-2020
https://doi.org/10.3390/hydrology9120213
https://doi.org/10.3390/w14213499
https://doi.org/10.3390/w14213499
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1007/s00477-024-02892-z
https://publications.jrc.ec.europa.eu/repository/handle/JRC31473
https://publications.jrc.ec.europa.eu/repository/handle/JRC31473
https://doi.org/10.1016/j.scitotenv.2022.153493
https://doi.org/10.1038/s41598-021-04362-w
https://doi.org/10.1038/s41598-021-04362-w
https://www.ospo.noaa.gov/products/land/smops/algo.html
https://doi.org/10.1016/j.scitotenv.2022.160371
https://doi.org/10.1002/joc.6988
https://doi.org/10.1007/s40808-022-01376-9
https://doi.org/10.1007/s40808-022-01376-9
https://doi.org/10.3390/rs12182974
https://doi.org/10.1016/j.gr.2022.11.006
https://doi.org/10.5194/nhess-23-623-2023
https://doi.org/10.1016/j.jenvman.2021.113689
https://doi.org/10.1016/j.jenvman.2021.113689
https://doi.org/10.1007/s11356-022-23663-9
https://doi.org/10.1016/j.ecolind.2020.106276
https://doi.org/10.1007/s00704-022-04323-x
https://doi.org/10.12691/ajams-8-2-1
https://doi.org/10.1007/s11069-022-05429-1
https://doi.org/10.3390/w12030813
https://doi.org/10.3390/w12030813
https://doi.org/10.1007/s13753-019-00230-4
https://doi.org/10.4186/ej.2018.22.1.279
https://doi.org/10.3389/fenvs.2022.880254
https://doi.org/10.3389/fenvs.2022.880254
https://doi.org/10.3390/land11122175
https://www.undp.org/sites/g/files/zskgke326/files/migration/vn/Recovery-draft-Sep-2016_final.pdf
https://www.undp.org/sites/g/files/zskgke326/files/migration/vn/Recovery-draft-Sep-2016_final.pdf
https://doi.org/10.1016/j.biosystemseng.2017.08.007
https://doi.org/10.1016/j.agwat.2022.107748
https://doi.org/10.1016/j.agwat.2022.107748
https://doi.org/10.1016/j.scitotenv.2023.165591
https://doi.org/10.1007/s11356-022-23200-8
https://www.worldbank.org/en/country/vietnam/overview
https://doi.org/10.1016/j.jhydrol.2024.132315
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Le et al. 10.3389/feart.2025.1564900

Xu, H., Xu, K., and Yang, Y. (2021). Risk assessment model of agricultural drought
disaster based on grey matter-element analysis theory. Nat. Hazards 107, 2693–2707.
doi:10.1007/s11069-021-04681-1

Yang, W., Zhang, L., and Liang, C. (2023). Agricultural drought disaster
risk assessment in Shandong Province, China. Nat. Hazards 118, 1515–1534.
doi:10.1007/s11069-023-06057-z

Zhao, J., Zhang, Q., Zhu, X., Shen, Z., and Yu, H. (2020). Drought risk assessment
in China: evaluation framework and influencing factors. Geogr. Sustain. 1, 220–228.
doi:10.1016/j.geosus.2020.06.005

Zhou, Z. L., Ding, K. X., Zhang, L. P., She, D. X., Chen, J., Wang, G. S., et al. (2023).
Three-dimensionalmeteorological drought characteristics and associated risk in China.
Environ. Res. Lett. 18 (12), 124046. doi:10.1088/1748-9326/ad0a1c

Frontiers in Earth Science 22 frontiersin.org

https://doi.org/10.3389/feart.2025.1564900
https://doi.org/10.1007/s11069-021-04681-1
https://doi.org/10.1007/s11069-023-06057-z
https://doi.org/10.1016/j.geosus.2020.06.005
https://doi.org/10.1088/1748-9326/ad0a1c
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Theoretical framework
	2.2 Study area
	2.3 Selection of indicators and data collection
	2.3.1 Utilization of satellite remote sensing data for drought hazard analysis
	2.3.2 Socioeconomic data for assessment of exposure and vulnerability

	2.4 Assessment of multicollinearity
	2.5 Aggregation methods
	2.5.1 Equal weighting
	2.5.2 Unequal weighting: principal component analysis
	2.5.3 Drought risk analysis


	3 Results
	3.1 Multicollinearity analysis
	3.2 Drought hazard assessment
	3.3 Drought exposure assessment
	3.4 Drought vulnerability assessment
	3.5 Drought risk assessment
	3.6 Accuracy assessment for drought risk index

	4 Discussions
	4.1 Justification of indicator selection and aggregation methods for DRA in Vietnam
	4.2 DRA-informed adaptation strategies
	4.3 Study limitations

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

