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The Jiangnan Orogen (South China) is endowed with many important gold
deposits, whose genesis remains controversial. The Yanzhupo is a representative
gold deposit (2.50 t Au @ 2.52 g/t) in the Jiangnan Orogen, characterized
by multi-stage quartz formation. Its mineralization can be divided into three
stages (I) quartz-ankerite-pyrite (II) quartz-ankerite-chlorite-pyrite-gold, and (III)
quartz-ankerite-calcite-pyrite. Multiple generations of quartz were identified at
Yanzhupo. Stage I quartz (Qz1) commonly coexists with pyrite and is coarse-
grained, and texturally homogeneous. Stage II quartz (Qz2) is divided into two
generations, namely, Qz2a and Qz2b, and the homogeneous Qz2a is often
replaced by the veined/stockwork Qz2b. Stage III quartz (Qz3) comprises two
generations of quartz, namely, the earlier, texturally homogeneous Qz3a, and
the younger Qz3b that replaced Qz3a. Qz1 is Ti-rich (median: 0.743 ppm)
and Al-depleted (median: 294 ppm), indicating that it was formed at high
temperatures and pH levels. The ensuing drop in temperature and pH favored the
formation of Qz2a. However, the abrupt decrease in Al concentration fromQz2a
(median: 1,383 ppm) to Qz2b (median: 120 ppm) suggests that it was created at
a high pH, which might have been caused by an intense water-rock interaction,
resulting in Stage II Au precipitation. Finally, the sealing of fractures by veins
may have resulted in the production of Qz3 in stable settings, evidenced by
the As-rich and Ti-depleted Qz3 than Qz2b. The Yanzhupo Au deposit has Al
and Ti contents and Al/Ti ratios that are similar to those found in magmatic-
hydrothermal deposits, implying that it is likely of magmatic-hydrothermal
origin. These findings show that the coupled examination of quartz texture and
geochemistry can provide important clues to the mineralization history, origin
of gold deposits, and the distribution characteristics of gold mineralization, and
give vital insights into the origin of Au mineralization in the Jiangnan Orogen
(South China).
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1 Introduction

Quartz, a typical mineral in many hydrothermal environments
(Rusk et al., 2008), is extremely resistant to change and keeps a
continuous geochemical record of trace elements that may be utilized
to reconstruct the history ofmineral creation (Rusk 2012;Müller et al.,
2018; Hong et al., 2024). Several generations of quartz with various
micro-texturesmaybedistinguishedusingcathodoluminescence(CL)
images, which provide information on hydrothermal development
(Rusk et al., 2008; Wertich et al., 2018; Qiu et al., 2021; Yuan et al.,
2023). Temperature, oxygen fugacity ( fO2), pH, growth rate, andfluid
composition are the main factors that influence the incorporation of
trace elements into quartz (Rusk et al., 2008; Tanner et al., 2013;
Müller et al., 2018). Accordingly, the texture and trace element
compositions of quartz as assessed by CL can offer important insights
into the origin of the ore and the intricate ore process of hydrothermal
systems (Hong et al., 2024; Gao et al., 2022; Qiu et al., 2022). The
structure and geochemistry of quartz have been successfully used in
a variety of hydrothermal deposits, especially in porphyry deposits
(Müller et al., 2010; Hong et al., 2024) and skarn (Zhang Y. et al.,
2019). The genesis of unknown deposits can be ascertained using this
categorization as a basis.

The Neoproterozoic Yangtze–Cathaysia Block continent-
continent collision along the Shaoxing–Jiangshan–Piangxiang–
Shuangpai fault zone created the Jiangnan Orogen in the South
China Block (Figure 1A) (Yan et al., 2015).With a total gold resource
of around 950 t, the orogen is one of South China’s major gold
producers (Deng et al., 2017; 2020). Even though there have been a
lot of studies on regional gold mineralization, several metallogenic
models have been proposed because of the multiphase orogenic
activities, the close spatial-temporal relationship between granite
and gold mineralization, the complexity of the ore-forming fluids,
and the source of materials, including orogenic-type (Zhao et al.,
2013; Xu D. et al., 2017; Liu et al., 2019), sedimentary exhalative
(SEDEX)-type (Gu et al., 2007; Gu et al., 2012), intrusion-related
(Jia et al., 2019; Li et al., 2019; Feng et al., 2020a; Feng et al., 2020b;
Li et al., 2021), epithermal (Ye et al., 1994), and intracontinental
reactivation-type model (Deng et al., 2017; Xu D. R. et al., 2017).

Situated in the center of the Jiangnan Orogen, the Yanzhupo
gold deposit has a confirmed ore resource of 2.50 t Au
@ 2.52 g/t (China Geological Survey, 2024). It is a prime candidate for
using quartz geochemistry to restrict the mineralization history due
to its widespread occurrence ofmuti-generations of quartz.This work
employs laser ablation inductively coupledplasma-mass spectrometry
(LA–ICP–MS) in conjunction with scanning electron microscope
cathodoluminescence (SEM-CL) imaging to investigate the trace-
element geochemistry of the Yanzhupo multistage quartz. Our goals
are to clarify the physicochemical circumstances and history of ore
formation,disentangletheore-formingprocess,andofferfreshinsights
into the Jiangnan Orogen’s Au mineralization origin.

2 Geological setting

2.1 Regional geology

After the Paleo-South China Ocean closed and the blocks
collided between 980 and 820 Ma, the Neoproterozoic assembly

of the Yangtze and Cathaysia Block created the NE-NEE trending
Jiangnan orogen in South China (Figure 1A) (Cawood et al.,
2013; Yao et al., 2019; Shu et al., 2021). The Neoproterozoic
collisional event was accompanied by two magmatic events: the
emplacement of bimodal igneous rocks between 780 and 730 Ma
and massive granitic plutons between 835 and 800 Ma (Li et al.,
2003; Li et al., 2005). Stable sedimentation followed post-orogenic
expansion in the late Neoproterozoic (Wang and Shu, 2012).
Numerous gold occurrences in this area are wallrocks made of
these Neoproterozoic metamorphosed sedimentary rocks (Li et al.,
2021). In the early Paleozoic, the Yangtze and Cathaysian Blocks
once more came together and collided (Faure et al., 2009). The
early Paleozoic tectonic event is identified by the intrusion of
S-type granites and migmatites from the late Silurian to the
Early Devonian, unconformably overlain by Devonian successions
(Chu et al., 2012; Xu D. et al., 2017). Many folds and nappe
faults were created in the orogen as a result of the early Mesozoic
collision between South China and North China (Wang et al.,
2005). The basin-ridge structure was first created in the late
Mesozoic with the transition from the Tethys Ocean to the ancient
Pacific plate (Zhang et al., 2012). With a total gold resource
of approximately 970 t, the Jiangnan orogen may have produced
numerous gold-polymetallic deposits due to complex and protracted
orogenic movement, 40 of which are dispersed along the deep
faults that trend NE-NNE (Wang et al., 2014; Li et al., 2016;
Zhang L. et al., 2019).

Tectonically situated in the middle Jiangnan Orogen,
northeastern Hunan (NE Hunan) is also regarded as a portion
of the late Mesozoic South China Basin-and-Range Province
(Figure 1). The most significant gold district in the Jiangnan
Orogen is NE Hunan (gold reserve >315 t) (Zhang L. et al., 2019;
Xiong et al., 2020; Zhou et al., 2021). It is home to numerous
giant-large gold deposits, such as the Wangu (85 t Au @ 6.8 g/t;
Wen et al., 2016), Huangjindong (∼80 t Au@ 4.0–10.0 g/t; Han et al.,
2010), and Zhengchong (116 t Au @ 3.2 g/t; Liu et al., 2019). The
Neoproterozoic Lengjiaxi group of low-grade metamorphosed
turbidites, Cambrian-nanhua System sandstone, limestone and
shale, and Quaternary-Cretaceous sandstone and conglomerate
dominate the exposed strata in northeastern Hunan (Li et al., 2020;
Li et al., 2022; Madayipu et al., 2024). From the Neoproterozoic
to the Mesozoic, many intrusive activity events were recorded in
northeastern Hunan (Figure 1B) (Xu D. et al., 2017; Wang et al.,
2020a; 2020b; Madayipu et al., 2023a; Madayipu et al., 2023b).
The Changsanbei granodiorite (zircon U–Pb age: 845 ± 4 Ma;
Deng et al., 2020) and Hongxiaqiao biotite granodiorite and
Banshanpu biotite monzogranite (zircon U–Pb age: 423–421 Ma;
Li et al., 2015) respectively reflect the Neoproterozoic and
early Paleozoic intrusion. The most common and distinctively
S-type granites are those of the Late Mesozoic, such as the
Mufushan biotite monzogranite (zircon U–Pb age: 158–125 Ma;
Wang et al., 2014; Xiong et al., 2020) and the Lianyunshan two-mica
monzogranite (zircon U–Pb age: 150–140 Ma; Wang et al., 2016;
Xu D. R. et al., 2017). The three ductile-shear zones (Cili–Linxiang,
Xiaochijie–Lianyunshan, and Anhua–Liuyang ductile-shear zones)
and Basin-and-Range-like topography are the key regional features
in the NE Hunan district (Han et al., 2010; Xu D. et al., 2017;
Zhou et al., 2019). The predominately NE-to NNE-trending faults
cut or reactivate a variety of E-W-, NE-, and NW-trending faults
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FIGURE 1
(A) Location of Jiangnan Orogen (Ji et al., 2018); (B) Geologic map of northeastern Hunan Province (Lu et al., 2020; Wang et al., 2024).

that were developed in the early phase. The regional NNE-trending
faults, which imposed first-order structural control, are where the
gold resources are spatially concentrated. Nonetheless, the majority
of the gold mineralization is found in second or third-order faults,
such as those that trend NW and NNE (Tan et al., 2022).

2.2 Deposit geology

The Yanzhupo deposit is located in Pingjiang County,
northeastern Hunan (Figure 2A). The Neoproterozoic Lengjiaxi
Group, which includes the Huanghudong Formation, Leishenmiao

Formation, and Panjiacong Formation, makes up the majority of
the relatively basic local outcropping sequences in the deposit. The
strata mainly trend northwest. The distribution of the Quaternary
system is primarily banded. The Cambrian Fulu Formation, which
is angularly unconformable above the Lengjiaxi Group strata and
mostly consists of a series of gray-green medium-thick bedded
conglomerate or conglomerate sandstone, is exposed in modest
amounts in the eastern and northwest portions of the Yanzhupo
deposit.Themain host of gold ore in the region is the sandstone slate
of the Leishenmiao Formation in the Lengjiaxi Group (Figure 2B).

Local stratigraphic inversion results from small-scale folds,
which are the predominant fold types in the region. Mostly found
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FIGURE 2
(A) Geologic map and (B) typical geological profile of the Yanzhupo Au deposit.

in the northern and western regions, the fault structures are
comparatively well-developed and oriented mostly in the northeast
and northwest (west) directions, while there are also east-west
faults.Themost importantmain ore-controlling and ore-conducting
structures in the deposit are the northwest (west) oriented faults,
which dip NE with a few small dips to the south at 45°–60°.
Tectonic breccia, shattered rock, mylonitic slate, and quartz veins
make up the majority of the fault fracture zones. Pyrite alteration
can be found locally in the tectonic breccia and shattered rock.
Additionally, no outcrops of igneous rocks were observed in
the deposit.

At Yanzhupo, three distinct gold ore veins have been
identified (China Geological Survey, 2024). With a dip angle of
60°–80°, the No. I vein strikes northwest and dips northeast. The
gold grade ranges from 0.12 to 8.38 g/t, the mineralized zone width
is 0.35–3.85 m, and the surface-controlled length is 1,250 m. The
vein is mostly composed of quartz veins scattered across broken
altered slate. With very slight variations in thickness and strong
mineralization continuity, the vein stretches along its strike and
dips somewhat steadily. One distinct orebody, designated I-1,
has a dip angle of 70°, strikes NW, and dips NE. With an initial
estimated gold resource of 1.25 t, the controlled length is 400 m,
the controlled inclination depth is 330 m, the average thickness
is 1.52 m, and the average grade is 2.52 g/t. The No. II vein has
a dip angle of 60°–70°, striking NW and dipping NE. The gold
grade ranges from 0.19 to 40.70 g/t, the mineralized zone width is
0.36–1.56 m, and the surface-controlled length is 1,200 m. The vein
is primarily composed of quartz veins scattered throughout broken
altered slate. With a dip angle of 60°–80°, the No. III vein strikes
northwest and dips northeast. The gold grade ranges from 0.20 to

6.13 g/t, themineralized zone width is 0.25–0.97 m, and the surface-
controlled length is 560 m. Quartz veins make up themajority of the
veins. Deep mineralization has weakened, and the mineralization is
inconsistent.

3 Paragenetic sequence of
mineralization and alteration

Three stages of the mineralization/alteration paragenetic
sequence at Yanzhupo can be distinguished based on the mineral
assemblages and textural relationships (I) Quartz-ankerite-
pyrite (II) Quartz-ankerite-chlorite-pyrite-native gold, and (III)
Quartz-ankerite-calcite-pyrite (Figure 3).

Stage I is dominated by a significant proportion of quartz
and ankerite, a little amount of pyrite and chalcopyrite, and
trace quantities of galena (Figures 4A–C), occurring mainly
as veins (0.8–1.0 cm wide; Figures 4A, D, E). The subhedral to
anhedral porous pyrite (0.3 mm–2 cm; Figures 4B, C) with galena
and chalcopyrite inclusions in the quartz-ankerite-pyrite vein is
linked to significant silicification (China Geological Survey, 2024).
Chalcopyrite, which is subhedral-anhedral (Figures 4B, C), is
mostly found inside the quartz-ankerite-pyrite vein and along the
margin of pyrite.

The Stage I quartz-ankerite-pyrite veins (usually 0.8–1.0 cm
wide) are frequently intersected by Stage II quartz-ankerite-
chlorite-pyrite-native gold veins (4.0–5.0 cm wide) (Figure 4D).
Furthermore, significant silicification and pyrite alteration are also
linked to Stage II (China Geological Survey, 2024). With grain
sizes ranging from 20 to 500 μm, pyrite is usually subhedral to
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FIGURE 3
Alteration and mineralization paragenetic sequence at Yanzhupo.

anhedral and mostly appears in irregular lumps or tiny vein
formations inside veins (Figure 4F). Pyrite has well-developed
fractures that are frequently filled with sphalerite, tetrahedrite,
galena, and chalcopyrite (Figure 4F). With grain sizes ranging from
20 μm to 1 mm, subhedral to anhedral arsenopyrite is found in
the veins and wall rock. Arsenopyrite and native gold are closely
related (Figure 4G). A tiny quantity of anhedral chalcopyrite, galena,
sphalerite, and tetrahedrite is encased in pyrite, but the majority
are found inside the veins (Figure 4H). Furthermore, previous
study demonstrates that sporadic fine-grained tabular rutile (Ti-
rich) and anhedral apatite can be observed in the quartz veins
of Stage II (Liao et al., 2025).

It is usual for Stage I quartz-ankerite-pyrite veins (Figures 4D,E)
and Stage II quartz-ankerite-chlorite-pyrite-native gold veins
(Figure 4I) to be cut by Stage III quartz-ankerite-calcite-pyrite veins
(0.5–1.0 cm wide; Figure 4I). The primary processes linked to this
stage are silicification and carbonation (China Geological Survey,
2024). Coexisting with quartz, ankerite, and calcite, pyrite is
subhedral-anhedral, fragmented, and has a particle size of
0.1–1.0 mm (Figure 4J). Additionally, the pyrite fractures and the
quartz-carbonate veins include anhedral galena and chalcopyrite.

4 Sampling and analytical methods

4.1 Samples

Thirty-nine samples were taken from drill cores. Twelve samples
of quartz-rich ore were chosen for textural and geochemical
analyses. Detailed sample descriptions are listed in Table 1. These
samples were thus chosen for petrographic examination using
cathodoluminescence (CL) imaging and reflected and transmitted

polarized light microscopy. Five were then selected for LA–ICP–MS
trace element spot analysis (ZK3502-13, ZK3502-40, ZK3502-44,
ZK3502-44, ZK1002-36).

4.2 Scanning electron microscope
cathodoluminescence (SEM-CL) imaging

In order to study the interior texture of the quartz before trace
element analysis, the quartz crystals in these six samples were
imaged using scanning electron microscope cathodoluminescence
(SEM-CL) before the LA–ICP–MS analysis. A TESCAN MIRA4
field-emission scanning electron microscope (FE-SEM) was used
at Weitan Technology Co. Ltd. in Changsha, China, to perform
quartz cathodoluminescence (CL) imaging. An accelerating voltage
of 8 keV and a beam current of 1 nA were the parameters used for
CL imaging.

4.3 LA–ICP–MS quartz trace element
analysis

Femtosecond laser-ablation inductively coupled plasma-mass
spectrometry (fs–LA–ICP–MS) was utilized to analyze the trace
elements in quartz. The analyses were conducted at Chemlabpro
Technology Co. Ltd. (Shanghai, China). A Genesis GEO model
femtosecond laser ablation system was used in conjunction with an
Agilent 8,900 triple quadrupole ICP–MS. The carrier gas used in
the experiment is 99.999% pure helium, flowing at a rate of 600
mL per minute. A 50 μm spot size, an energy density of 5 J/cm2,
a laser repetition rate of 2 Hz, and a 45 s ablation duration were
used for the laser ablation analysis. Each ablation area was preceded
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FIGURE 4
Typical alteration and mineralization photos at Yanzhupo: (A) Stage I quartz-ankerite-pyrite veins cut by Stage II quartz-ankerite-chlorite-pyrite-native
gold veins; (B) Pyrite with galena and chalcopyrite inclusions in the quartz-ankerite-pyrite vein; (C) Chalcopyrite found inside the quartz-ankerite-pyrite
vein and along the margin of pyrite; (D, E) Stage II quartz-ankerite-chlorite-pyrite-native gold veins cut Stage I quartz-ankerite-pyrite veins; (F) Pyrite
often has well-developed fractures filled with sphalerite, tetrahedrite, galena, and chalcopyrite; (G) Arsenopyrite closely associated with native gold; (H)
Chalcopyrite, galena, sphalerite, and tetrahedrite encased in pyrite; (I) Stage I quartz-ankerite-pyrite veins and Stage II quartz-ankerite-chlorite-pyrite-
native gold veins cut by Stage III quartz-ankerite-calcite-pyrite veins; (J) Pyrite coexist with quartz, ankerite, and calcite. Abbreviations: Py, pyrite; Sp,
sphalerite; Gn, galena; Apy, arsenopyrite; Ccp, chalcopyrite; Td, tetrahedrite; Ng, native gold; Qz, quartz; Cal, calcite; Ank, ankerite; Chl, chlorite.

and followed by a 25 s warm-up and washout time. The elements
that are measured include As, Rb, Sr, Zr, Nb, Sn, Sb, Cs, Nd, Gd,
Hf, Pb, Li, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Ge,
and As. External standards were the international standard reference
materials ARM-3, NIST616, NIST614, and NIST612. Standards were
examined at 10-point intervals. With a sample depth of 7.0 mm and a
nebulizer gas flow rate of 850 mL/min, the ICP-MS ran at 1550 W.The
entire mass spectrometry collection time was around 80 s, with each
single-element scan taking 0.03 s and the scan cycle for all elements
lasting1.0426 s Iolite4 softwarewasused to treat the experimental data
utilizing a multi-external standard normalization procedure.

5 Results

5.1 Generations characteristics of quartz

Quartz from the Yanzhupo gold deposit into five generations
spanning three stages from early to late: Qz1 (Stage I), Qz2a and

Qz2b (Stage II), and Qz3a and Qz3b (Stage III) (Figure 5). The
euhedral-subhedral Qz1 crystals (100–600 μm in size) commonly
exhibit a distinct dark-gray CL color and is texturally homogeneous
(no zoning or replacement textures) (Figures 5A, B). Qz1 crystals
commonly coexists with pyrite (Figures 5A, B). Early-formed Qz2a
(dark gray) and late-formed Qz2b (light gray) are the two types
of Qz2 crystals. With a distinct border between the two, Qz2b
(anhedral structure) cuts and/or replaces Qz2a, which mostly
occurs as subhedral to anhedral grains, in a vein-like/net-like
structure (Figures 5C, D). Qz3 crystals are separated into two
types: late-formed Qz3b (light gray) and early-formed Qz3a (gray-
black). Anhedral Qz3b typically cuts and/or replaces the subhedral-
anhedral Qz3a (Figures 5E, F).

5.2 Trace element geochemistry

A total of 54 LA–ICP–MS spot analyses were completed
on the pyrite from each of the five generations—including Qz1
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TABLE 1 Descriptions of representative samples at Yanzhupo.

Sample No. Stage Mineral assemblages Orebody No.

ZK3502-12 I Qz-Ank-Py I-1

ZK3502-13 I Qz-Ank-Py I-1

ZK1001-23 I Qz-Ank-Py III

ZK3701-1 I Qz-Ank-Py III

ZK3502-40 I, II Qz-Ank-Py, Qz-Ank-Chl-Py-Ng I-1

ZK3502-44 II Qz-Ank-Chl-Py-Ng I-1

ZK3301-40 II Qz-Ank-Chl-Py-Ng I-1

ZK3301-41 II Qz-Ank-Chl-Py-Ng II

ZK3901-17 II Qz-Ank-Chl-Py-Ng II

ZK3502-45 II, III Qz-Ank-Chl-Py-Ng, Qz-Ank-Cal-Py III

ZK1002-36 III Qz-Ank-Cal-Py I-1

ZK3701-23 III Qz-Ank-Cal-Py I-1

ZK3901-25 III Qz-Ank-Cal-Py II

Abbreviations: Qz, quartz; Ank, ankerite; Chl, chlorite; Cal, calcite; Py, pyrite; Ng, native gold.

(n = 10), Qz2a (n = 12), Qz2b (n = 10), Qz3a (n = 11), and
Qz3b (n = 11); the trace-element compositions are provided in
Supplementary Appendix Table SA1 and illustrated in Figure 6.
Qz1 contains the greatest Ti (0.670 ppm–2.96 ppm),
Mn (4.96 ppm–40.8 ppm), Fe (25.0 ppm–4,363 ppm), Zn
(2.61 ppm–24.5 ppm), and Pb (0.247 ppm–13.9 ppm). Qz2a
has the greatest median contents of Li (12.0 ppm–142 ppm),
Al (48.8 ppm–3,468 ppm), and Ge (2.02 ppm–11.2 ppm). Qz3a
has higher median contents of Na (620 ppm–20,770 ppm),
Mg (7.91 ppm–439 ppm), Al (206 ppm–29,329 ppm), and
Ti (0.139 ppm–29.4 ppm) but lower median contents of Li
(0.520 ppm–23.9 ppm), K (53.5 ppm–1,453 ppm), and Ge
(2.56 ppm–2.61 ppm) compared to Qz3b. Furthermore, the
concentrations of Li, Al, K, Fe, Zn, Ge, As, Sr, and Sb decrease
from Qz2a to Qz2b, whereas the Na, Mg, Ti, Rb, and Pb contents
show the opposite trend. The contents of Na, Mg, Al, Ti, Mn, Fe, Cu,
Rb, and Pb decrease from Qz3a to Qz3b, whereas other elements
show the opposite trend (e.g., Li, K, Ge, Sr, and Sb).

6 Discussions

6.1 Trace element occurrence in quartz

Significant amounts of trace elements, such as Al, B, Ca, Cr, Cu,
Fe, Ge, H, K, Li, Mg, Mn, Na, P, Rb, Pb, Ti, and U, were found
in quartz in earlier geochemical investigations (Müller et al., 2003;
Landtwing and Pattke, 2005; Müller and Koch-Müller, 2009). These
elements are usually present in quartz asmicro-crystalline inclusions
or as replacements within the crystal structure (Jacamon and Larsen,

2009; Rottier and Casanova, 2021). Information on the presence of
trace elements in quartz may be obtained via LA–ICP–MS time-
resolved signal spectra. The uniform distributions of these elements
and their likely presence in the quartz crystal lattice are shown by
the flat and steady time-resolved LA–ICP–MS signals of Al, Na,
K, Mg, Li, Mn, Fe, Ge, and Ti for Qz1 (Figure 7A). On the other
hand, outliers in box-and-whisker plots could represent uniformly
distributed nano-inclusions that LA–ICP–MS is unable to resolve
(Keith et al., 2022; Zhang et al., 2022). Consequently, the high
concentrations (outliers) for Mg in Qz2a, Mg and Al in Qz2b,
and Fe in Qz3 (Figure 6) show that the aforementioned elements
may be nano-inclusions in these quartz varieties. The local signal
maxima of Mg, Al (Figure 7C), and Fe (Figure 7D) likewise show
this. In the meanwhile, the broad ranges of Fe concentrations of
Qz3 (Figure 6) provide more evidence for the occurrence of micro-
inclusion (Zhang et al., 2022).

Additional point defectsmay arise via the substitution ofmono-,
tri-, tetra-, and pentavalent cations in the interstitial or tetrahedral
locations in the hydrothermal quartz crystal structure, according
to earlier research (Rusk 2012; Hong et al., 2024). Three different
substitution mechanisms are possible: (1) replacing Si4+ cations
with trivalent cations (Al3+, Fe3+, Sb+, and As3+) and balancing
it with univalent cations (e.g., Li+, Rb+, K+); (2) substituting two
Si atoms with a combination of trivalent and pentavalent cations
(P5+) to make up for a charge deficit; and (3) directly substituting
a Si atom with tetravalent cations (Ti4+ and Ge4+) based on the
same valence and similar ionic radius (Müller and Koch-Müller,
2009). The concentration of Al exhibits a positive correlation with
K (Figure 8A) and alkali metals (Figure 8B) following the removal of
geochemical outliers from the quartz samples.This suggests that Si4+
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FIGURE 5
Cathodoluminescence (CL) images of quartz from the Yanzhupo deposit: (A, B) Qz1 commonly exhibit a distinct dark-gray CL color; (C, D) Qz2b (light
gray) cuts and/or replaces Qz2a (dark gray); (E, F) light-grey Qz3b replaced Qz3a in patches. Abbreviations: Qz, quartz; Py, pyrite; Ank, ankerite.

is replaced by Al3+ and charge-compensated univalent cations in the
Yanzhupo quartz crystals for all quartz generations (Zhang Y. et al.,
2019). However, the substitution of Al3+ and Sr2+ for Si4+ in the three
quartz generations at Yanzhupo is not supported by the lack of a link
between the quantities of Al and Sr (Figure 8C). In the three quartz
generations at Yanzhupo, in Jiangnan Orogen, South China, there is
a positive association between Al and Ge, even though Rusk (2012)
found no link between Ge and other elements in quartz (Figure 8A).
This provides an indication for the discussion of the occurrence state
of the Al-Ge element in quartz of similar deposits in the world.

6.2 Physicochemical conditions of the
Yanzhupo mineralization

Quartz geochemistry and CL intensity variations in
multiple generations of quartz are influenced by the evolving

physicochemical conditions of hydrothermal fluids (Zhang Y. et al.,
2019; Feng et al., 2020b; Gao et al., 2022; Hong et al., 2024). Research
shows that quartz developed through hydrothermal processes
at temperatures below 350°C typically has less than 10 ppm Ti
contents, whereas quartz formed at temperatures above 400°C
normally contains more than 10 ppm (Rusk et al., 2008).

Titanium median concentrations in quartz at Yanzhupo are
predominantly below 10 ppm (Qz1: 0.743 ppm; Qz2: 0.315 ppm;
Qz3: 0.427 ppm; Figure 6). This indicates fluid temperatures were
likely below 350°C. Such temperatures promote quartz precipitation
over dissolution. According to Fournier (1983), quartz solubility
rises with temperature between 300°C and 450°C. Generally, Ti
contents in quartz are directly proportional to its crystallization
temperature, thus the variations in Ti concentrations from Qz1
(avg. 0.743 ppm) through Qz2 (avg. Qz2: 0.315 ppm) to Qz3 (avg.
0.427 ppm) indicate an initial drop in temperature followed by a
slight rise in temperature during quartz precipitation. Conversely,
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FIGURE 6
Box and whisker plot for trace element contents of the five quartz types from Yanzhupo.

FIGURE 7
Representative LA–ICP–MS time-resolved depth profiles for the Yanzhupo quartz. Abbreviations: Qz, quartz; Al, aluminium; Mg, magnesium; Na,
natrium; Li, lithium; K, kalium; Mn, manganese; Fe, iron; Si, silicon; Ti, titanium; Ge, germanium.
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FIGURE 8
Binary plots of (A) K vs. Al; (B) (Li + Na + K + Rb + Cs) vs. Al; (C) Sr vs. Al; (D) Ge vs. Al for the Yanzhupo quartz.

Ge/Ti ratios decrease with increasing temperature (Rottier and
Casanova, 2021). The average Ge/Ti ratios for Qz1, Qz2, and
Qz3 are 0.65, 11.49, and 5.17, respectively, showing a similar
temperature trend as revealed by Ti contents. Aluminum, as the
predominant trace element found in quartz, can be a reliable
indicator of the solubility of Al in ore-forming fluids, which rises
as the fluid pH drops (Rusk et al., 2008). Elevated Al levels in
quartz may indicate a higher level of fluid acidity in the fluid
(Rusk, 2012; Hong et al., 2024). Aluminum concentrations increase
from Qz1 (avg. 294 ppm) through Qz2 (avg. 238 ppm) to Qz3
(avg. 465 ppm), indicating initial increase in pH followed by a
decrease in pH during the evolution of the system and therefore its
fluids (Figure 6).

According to the afore-discussed temperature and pH
evolution, Qz1 is Ti-rich, Al-depleted (Figure 6), suggestive
of high temperature and pH during the formation of Qz1.
The subsequent temperature and encouraged Qz2a to form.
However, the sudden decrease in Al content from Qz2a to
Qz2b (Figure 6) indicates that it was formed at high pH,
coupled with the closely related relationship between Qz2b and
native gold (Figure 4G), which may be associated with an intensive
water-rock reaction, which may have led to the Stage II Au
precipitation.

6.3 Ore genesis and metallogenic
implications

Gold deposits in the Jiangnan Orogen were variably attributed
to be SEDEX (Gu et al., 2007; Gu et al., 2012), epithermal
(Ye et al., 1994), orogenic (Goldfarb et al., 2001; Ni et al., 2015),
or intrusion-related (Yang et al., 2013; Wen et al., 2016). For the
Yanzhupo Au deposit, a SEDEX-type origin can be excluded since
the mineralization is mostly vein-type that crosscut the sandstone
slate of the Leishenmiao Formation in the Lengjiaxi Group with
sharp contact (Figure 2B).

Some previous studies have used the Al-Ti contents in quartz to
fingerprint the gold deposit types (Rusk, 2012; Zhang Y. et al., 2019;
Feng et al., 2020b; Yan et al., 2020). For theYanzhupo quartz samples,
their Al contents (39.3–29,329 ppm) are obviously higher than
those from typical orogenic gold deposits (100–1,000 ppm) (Rusk,
2012), suggesting that orogenic-type origin is also unlikely. Titanium
contents (0.076–29.4 ppm) of the Yanzhupo quartz fall mainly
outside the range of typical porphyry deposits (>3 ppm) (Rusk et al.,
2008; Rusk 2012). In the Al–Ti diagram (Figure 9), the Yanzhupo
quartz distinctly differs from porphyry and orogenic Au deposits,
but overlaps with epithermal Au deposits, indicating a magmatic-
hydrothermal origin ofAumineralization.This is consistentwith the

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1566088
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Peng et al. 10.3389/feart.2025.1566088

FIGURE 9
Discrimination graphs of Al vs. Ti contents in the different types of deposits. The background color fields come from Rusk (2012).

FIGURE 10
Schematic diagram for the ore formation at Yanzhupo. See text for details. Abbreviations: Qz, quartz; Apy, arsenopyrite; Au, gold; Py, pyrite.

magmatic-hydrothermal ore features (Figure 2B), and magmatic-
hydrothermal ore mineral assemblage (incl. Sphalerite, galena,
pyrite, arsenopyrite, and chalcopyrite) (Figure 4).

Accordingly, we propose the following metallogenic process for
the Yanzhupo deposit (Figure 10):

The magma-derived hydrothermal fluids percolated along
the fault (Figure 10A), and entered the sandstone slate of the
Leishenmiao Formation in the Lengjiaxi Group. The fluid deposited

Qz1 via high temperature and pH values (Figure 10A). With
the continuous ore-fluid injection, the gradual decrease in
temperature gradually encouraged Qz2a to form (Figure 10B).
Subsequently, the ore-fluid deposited Qz2b via intensive water-
rock interaction, which may have induced the Stage II Au
precipitation (Figure 10C). Finally, the sealing of fractures by veins
may have caused the formation of Qz3 under stable conditions
(Figure 10D).
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7 Conclusion

(1) The Yanzhupo mineralization can be divided into three
stages (I) pre-ore quartz-ankerite-pyrite, (II) main-ore
quartz-ankerite-chlorite-pyrite-gold, and (III) late ore quartz-
ankerite-calcite-pyrite.

(2) The hydrothermal quartz at Yanzhupo can be categorized five
generations: texturally homogeneous Qz1, the homogeneous
Qz2a and the younger Qz2b that cut Qz2a, and,
texturally homogeneous Qz3a and the younger Qz3b that
replaced Qz3a.

(3) The main trace elements incorporated into Yanzhupo quartz
generations include trivalent Al3+, which is coupled with
monovalent alkali metals (Li+, Na+, K+, Rb+, and Cs+) and
bivalent cations (Ge2+) substituting for Si4+.

(4) The sudden increase in Al concentrations from Qz2a to Qz2b
indicates that it was formed under high pH conditions, likely
due to intense water-rock interaction, which facilitated the
precipitation of gold in Stage II at Yanzhupo.

(5) The Yanzhupo Au deposit exhibits Al and Ti concentrations
as well as Al/Ti ratios comparable to those in magmatic-
hydrothermal deposits. Additionally, it displays characteristics
typical of magmatic-hydrothermal ores, including mineral
assemblages such as sphalerite, galena, pyrite, arsenopyrite,
and chalcopyrite. This evidence suggests that the deposit is
likely of magmatic-hydrothermal origin.
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