
TYPE Original Research
PUBLISHED 02 May 2025
DOI 10.3389/feart.2025.1569178

OPEN ACCESS

EDITED BY

Qian Sun,
RMIT University, Australia

REVIEWED BY

Xu-Feng Yan,
Sichuan University, China
Nese Yilmaz,
Istanbul University, Türkiye

*CORRESPONDENCE

Jia Xu,
hhuxj@hhu.edu.cn

RECEIVED 31 January 2025
ACCEPTED 23 April 2025
PUBLISHED 02 May 2025

CITATION

Nie X, Xu J, Ge Y and Zhou W (2025) High
spatio-temporal resolution dynamic water
monitoring using multi-source Chinese
Gaofen imagery: a case study in the Eastern
Nile Basin.
Front. Earth Sci. 13:1569178.
doi: 10.3389/feart.2025.1569178

COPYRIGHT

© 2025 Nie, Xu, Ge and Zhou. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

High spatio-temporal resolution
dynamic water monitoring using
multi-source Chinese Gaofen
imagery: a case study in the
Eastern Nile Basin

Xiaoyan Nie, Jia Xu*, Ying Ge and Wenyi Zhou

School of Earth Sciences and Engineering, Hohai University, Nanjing, China

The East Nile Basin (ENB) is a major water source for several African countries,
and the supply, distribution, and management of water resources in the basin
are directly related to the survival and development of millions of people.
However, most of the basin falls within arid or semi-arid regions, and the uneven
distribution of water resources severely limits the development of the countries
within the basin. Achieving accurate monitoring and effective management of
water resources has become a critical issue for sustainable development in this
region. A robust adaptive threshold method considering boundary optimization
was proposed to accurately extract water body information from GF-1and GF-6
WFV imagery. The study analyzed the spatio-temporal dynamic changes of six
key lakes in basin countries, including Egypt, Ethiopia, and Sudan from 2019 to
2024. The findings were as follows: (1) The proposed water extraction method
effectively addressed the issue of uneven spectral index gradients, with an overall
accuracy of over 97.67% and a Kappa value exceeding 95.24%. It was able to
accurately and efficiently extract lakes in arid regions. (2) High spatiotemporal
resolution monitoring revealed the variation patterns of the lakes. The
interannual changes of Tana, Roseires, Merowe, and Nasser were not significant,
with notable seasonal variations, the low-water-level period occurring in July
and the high-water-level period in September or October. For GERD and Toshka,
the interannual variation was large, with each increase occurring between
July and October. (3) The variation in lake areas was primarily attributed to
precipitation in the upstream Blue Nile, artificial water storage by dams, and
other factors. Tana was mainly affected by precipitation, while GERD’s changes
were primarily related to precipitation and its own water storage, Roseires,
Merowe, and Nasser, as artificial reservoirs, were influenced by their own
water storage and the storage in upstream reservoirs, while Toshka’s changes
were related to overflow from Nasser’s high water levels. The current research
findings could provide scientific guidance for water resources assessment and
management in the ENB.

KEYWORDS

GF-1, GF-6, arid region, East Nile Basin, lake area, dynamic monitoring

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1569178
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1569178&domain=pdf&date_stamp=2025-04-30
mailto:hhuxj@hhu.edu.cn
mailto:hhuxj@hhu.edu.cn
https://doi.org/10.3389/feart.2025.1569178
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1569178/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1569178/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1569178/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1569178/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1569178/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Nie et al. 10.3389/feart.2025.1569178

1 Introduction

Lakes account for approximately 95% of the Earth’s surface
freshwater resources, and as a vital water resource, they play an
irreplaceable role in ecological, economic, and social development
(Peter, 1993; Xu et al., 2018). In arid regions, lakes are not
only a primary source of water but also sensitive indicators
of environmental change, with their area fluctuations accurately
reflecting the water balance processes in inland basins (Nilsson
and Grelsson, 1995; Tan et al., 2018). Therefore, scientifically and
systematically monitoring the dynamic changes in lakes in arid
regions is crucial for ensuring regional ecological stability and
effective water resource management.

The East Nile Basin (ENB) in Africa encompasses large areas of
arid land, and themajor countries within the basin (Ethiopia, Sudan,
and Egypt) face development challenges due to water resource
limitations. In July 2020, Ethiopia began filling the Grand Ethiopian
Renaissance Dam (GERD) on the upper Blue Nile to strengthen
its water resource management, with plans to complete the process
within 5–10 years (Kansara et al., 2021). Recently, the escalation
of the Russia-Ukraine conflict has led to restricted grain imports
from Russia to countries like Egypt and Sudan, prompting these
nations to pay greater attention to their domestic water resource
conditions (Gebeltová et al., 2023). The precise monitoring and
effective management of water resources have become key issues
for sustainable development in this region. Therefore, there is an
urgent need for timely and spatially dynamic monitoring of surface
water extent in the ENB, which will provide scientific guidance for
water management, disaster assessment, and ecological protection
in the basin.

Satellite remote sensing technology, with its advantages of
wide coverage, high monitoring frequency, and low cost, provides
effective support for dynamic lake monitoring, particularly in
regions like Africa where ground-based hydrological observations
are limited (Chen et al., 2018).

Remote sensing techniques have been widely employed to
analyze dynamic changes in lake surface areas, predominantly
using internationally available satellite imagery including MODIS,
Landsat, and Sentinel systems (Moser et al., 2014). Utilized MODIS
time-series imagery to monitor wetland lake variations in semi-
arid Burkina Faso (2000–2012), demonstrating that negative water
coverage anomalies coincided with drought periods (Wu et al.,
2023). Combined MODIS and Landsat data to produce continuous
30-meter resolution surface water time-series datasets, effectively
capturing Lake Victoria’s water surface dynamics between 2000
and 2020 (Lan et al., 2024). Developed an automated framework
using Landsat series imagery to reconstruct long-term lake area
changes across three geographical regions, achieving high temporal
data completeness (Ogilvie et al., 2018). Analyzed water surface
fluctuations in seven Merguellil Basin reservoirs (1999–2014)
through multi-sensor Landsat integration, revealing an average
root mean square error of 21,800 m2 when compared with global
datasets, while highlighting Landsat’s limitations in monitoring
lakes smaller than 3 ha (Song et al., 2022). Used Sentinel-2 images
to create a 2020 urban lake dataset for China, demonstrating
superior performance in small lake extraction compared to
existing datasets (Dong et al., 2021). Implemented Sentinel-
1 SAR data for Poyang Lake flood monitoring, successfully

overcoming cloud contamination issues inherent to optical sensors
but encountering false detections caused by image noise (Li et al.,
2022). Achieved improved lake extraction accuracy in complex
environments through synergistic use of Sentinel-1 and Sentinel-2
data, particularly for six representative Chinese lakes.

Since the implementation of China High-resolution Earth
Observation System, Chinese Gaofen (GF) images have facilitated
the construction of an advanced terrestrial observation system,
making high-frequency, large-scale monitoring of surface water
possible (Chen et al., 2022). This system has provided valuable
services and decision support in critical areas such as modern
agriculture (Zhang et al., 2021), environmental monitoring
(Chen et al., 2024), and public safety (Zhang et al., 2024). Research
has shown that GF satellite images meet the requirements for high-
precision monitoring and extensive temporal and spatial coverage
in water body monitoring, with significant potential for application.
These satellites have been successfully used in the monitoring of
near-shore areas (Tan et al., 2024), rivers (Yao et al., 2022), and
inland lakes (Luo et al., 2024). Notably, the network of Gaofen-6
(GF-6) and Gaofen-1 (GF-1) satellites has reduced data acquisition
temporal resolution to 2 days, with Wide Field of View (WFV)
image spatial resolution reaching 16 m, significantly enhancing the
scale and timeliness of remote sensing data acquisition (Xu et al.,
2023). The GF series of satellites greatly meet the demands for high
spatial resolution remote sensing data, gradually changing China’s
reliance on the purchase of foreign commercial satellite data and
strongly supporting the development of remote sensing satellite
applications in China (Chen et al., 2022).

However, most existing studies employing GF imagery have
primarily concentrated on water body extraction using single-date
acquisitions, with a predominant focus on inland lakes in China
(Zhang et al., 2017; Guo et al., 2020; Ge et al., 2022). As the Belt and
Road (B&R) initiative progresses, Chinese satellites are increasingly
providing comprehensive Earth observation data to nations along
the B&R corridors.The implementation of lakemonitoring in Africa
utilizingChinese satellite imagery carries substantial significance for
advancing the global dissemination of China’s remote sensing and
geospatial technological capabilities.

Previous water body monitoring methods primarily relied on
threshold-based approaches to extract water bodies from water
indices (Chang et al., 2015; Lu and Sun, 2023; Naeem et al., 2025).
However, the spectral response of water is affected by factors such
as water depth and sediment content, making it difficult to extract
all water body details accurately with a single threshold in large
water areas (Haibo et al., 2011). Inspired by these challenges,
various machine learning methods (Nagaraj and Kumar, 2022) and
deep learning methods (Gautam and Singhai, 2024) have been
applied to water extraction. However, these algorithms are time-
consuming when applied to large-scale study areas. In this study,
we propose an adaptive threshold method combined with boundary
optimization, which can quickly and accurately extract water body
information from images for precise monitoring of water body
changes in the basin.

In this study, our objective is to collaborate with two Chinere GF
images to achieve high spatio-temporal resolution dynamic water
body monitoring for lakes in the ENB. More specifically, we aimed:
(1) to explore the feasibility of usingGF-1/6WFV images tomonitor
lake area changes in the ENB; (2) to describe the change patterns of
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FIGURE 1
Location map of the study area.

six typical lakes in the basin from 2020 to 2024; (3) to Search for the
causes of changes affecting lake dynamics.

2 Study area and data

2.1 Study area

As shown in Figure 1, ENB (3°20′–31°40′N, 21°50′–48°00′E)
features a complex and diverse topography, stretching from the
rugged Ethiopian Highlands in the east, to the wetlands of Sudan
and Ethiopia in the south, and bordered by the deserts of Sudan
and Egypt in the north and west (Arsano and Tamrat, 2005). The
Blue Nile and the main Nile are the key focus of this study. The
source of the Blue Nile is Lake Tana, located in the northwest of
the Ethiopian Highlands, where rainfall during the Ethiopian rainy
season plays a crucial role in regulating the annual flow of the Blue
Nile and downstream water volumes (Kebede et al., 2005).The peak
flow of the Blue Nile occurs between June and September (Basheer,
2021; Mengistu et al., 2021), during the Ethiopian rainy season.
During the flood period of the Nile River, the Blue Nile contributes
approximately 68% of thewater, which directly influences the timing
of the Nile’s flooding, while in the dry season, it contributes about
17% (Fielding et al., 2017). The Blue Nile is vital to the downstream
countries of the ENB, which experience extreme aridity (Diop et al.,
2021). In this study, six typical lakes in the ENB were selected,
namely, Tana, GERD, and Roseires Lakes in the Blue Nile, and
Merowe, Nasser, and Toshka Lakes in the main Nile.

Lake Tana, a shallow, naturally rainfall-fed lake covering
an area of 3,156 km2, is the largest lake in Ethiopia and the

third-largest in the Nile Basin. Characterized by seasonal water-
level fluctuations of approximately 1.6 m, this oligotrophic
lake has the Blue Nile as its sole surface outflow (Duan and
Bastiaanssen, 2013; Kebede et al., 2006).

GERD, constructed in 2011, began reservoir impoundment in
July 2020 and is expected to reach full operational capacity within
5–10 years. With a structural height of 640 m AMSL and a reservoir
storage capacity of 74 bcm, GERD had impounded approximately
40 bcm of water between 2020 and 2023. It primarily serves
Ethiopia’s hydropower needs, generating 6,450 MW of electricity
(Abtew, 2025; Luna et al., 2024).

Situated approximately 115 km downstream of GERD, the
Roseires Dam, built in 1966 with a height of 78 m AMSL
and a reservoir capacity of 3 bcm, regulates water releases
for on-demand irrigation of adjacent agricultural lands and
produces 280 MW of hydropower. Its operational dynamics
are significantly influenced by upstream water management
practices at GERD (Hassan et al., 2023).

The Merowe Dam, located 350 km north of Khartoum and
completed in 2009, stands 67 m AMSL with a reservoir capacity
of 12.4 bcm. Designed primarily to supply electricity to major
urban centers in riparian nations, it also addresses flood control,
sediment reduction, and centralized agricultural development,
while generating 15 MWof hydropower (Eldeeb et al., 2023; Kansara
and Lakshmi, 2022).

LakeNasser, created in 1968, is one of theworld’s largest artificial
reservoirs, with a maximum depth of 180 m, a surface area of
5,250 km2, and a storage capacity of 162 bcm. It serves critical
roles in irrigation, flood mitigation, and hydropower generation
(2,100 MW installed capacity) (Entz, 1978; Goher et al., 2021). The
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FIGURE 2
Number of images and monitors.

Toshka Spillway, constructed in 1982, which links LakeNasser to the
downstream Toshka Depression. When water levels in Lake Nasser
exceed 180 m AMSL, excess flows are diverted through this spillway
to the Toshka, ensuring operational safety (Bastawesy et al., 2008).

2.2 Data

2.2.1 Satellite remote sensing imagery
The GF-1 satellite, launched on 26 April 2013, is the first

satellite of Chinese High-resolution Earth Observation System. It is
equipped with four 16-meter resolution multispectral WFV(Wide
Field of View) sensors, each having a swath width of up to 200 km.
Together, the four sensors provide a combined swath coverage of
nearly 800 km (Zhou et al., 2017). The GF-6 satellite, launched
on 2 June 2018, is equipped with a single 16-meter resolution
multispectral camera. This camera is capable of capturing imagery
with a swath width of 800 km, allowing it to cover extensive areas
in a single pass (Xia et al., 2022). These WFV data are particularly
useful for large-scale monitoring of terrestrial features.

The data used in this study were sourced from both GF-1 and
GF-6 WFV satellites. The GF-1 WFV data include four bands: blue,
green, red, and near-infrared. On the other hand, GF-6 WFV data
offer additional bands, including red edge I, red edge II, purple,
and yellow. Data from the years 2020–2024 were selected based on
quality, though some months had missing imagery due to seasonal
cloud cover. The number of images and the monitoring frequency
for each lake are illustrated in Figure 2. This selection ensures that
the analysis accounts for the best available data, considering the
potential impact of cloud cover on satellite image acquisition. For
all lakes, except for Lake Nasser, where at least two images are
required for each period, only one image is typically sufficient to
cover the area.

2.2.2 Meteorological data
The HydroBasins dataset (https://www.hydrosheds.

org/products/hydrobasins) was utilized to delineate the sub-
basins of the lakes in the study region, enabling a better
understanding of their catchment areas (Lehner and Grill, 2013).
Meteorological statistics were collected based on these catchments,
with precipitation data sourced from the CHIRPS dataset (https://

www.chc.ucsb.edu/data/chirps), which provides global rainfall data
from 1981 to the present (Funk et al., 2015). For land surface
temperature (LST) data, we relied on the GCOM-C dataset (https://
suzaku.eorc.jaxa.jp/GCOM_C), which provides long-term and
continuous global observations and data collection. The GCOM-
C dataset is instrumental in tracking changes in land surface
temperature, supporting the analysis of climatic conditions and their
effects on the study area. Collaborating with research institutions
that utilize climate models, the GCOM-C satellite helps reduce
temperature rise prediction errors. It provides global observations
approximately every 2 days, particularly inmid-latitude regions near
Japan, enabling accurate monitoring and analysis of land surface
temperature dynamics. This continuous data collection supports
climate research and enhances our ability to predict and understand
temperature changes globally (Shimoda, 2004).

For this study, monthly averaged data from the two datasets,
covering the period from 2020 to 2024, were collected for each lake’s
respective sub-basin.

3 Methods

Formultiple lakes within the basin, this study develops amethod
for fine extraction of water bodies from multispectral images
considering boundary optimization. The time series changes of the
six lakes in the study area from 2020 to 2024 are extracted and
analyzed in conjunction with concurrent climate data. As shown in
Figure 3, the process includes satellite image processing, lake water
body extraction, climate data collection and analysis. The collection
of climate data is discussed in Section 2.2.2, while the other key steps
are elaborated below.

3.1 Satellite image preprocessing

First, the GF1/6 WFV imagery data were preprocessed. The
absolute calibration coefficients provided by the China Centre for
Resources Satellite Data and Application (https://data.cresda.cn)
were applied to radiometrically correct all images, eliminating
sensor-specific errors and ensuring accurate radiometric
measurements. Atmospheric correction was then performed using
the FLAASH model to remove atmospheric interference and
illumination variations affecting surface reflectance. Finally, the
RPC rational function model was employed for orthorectification,
correcting geometric distortions induced by terrain relief and sensor
viewing geometry.

The water body remote sensing index, based on remote sensing
information, is one of the most widely used techniques for water
body extraction. In the pre-processed imagery, lakes are extracted
using the Normalized Difference Water Index (NDWI) proposed
by (McFeeters, 1996), based on the green and near-infrared
bands common to both GF-1/6 WFV. The formula for calculating
NDWI is as Equation 1:

NDWI = (ρGreen − ρNIR)/(ρGreen + ρNIR) (1)

Where, ρGreen is the green band (Band 2) and ρNIR is the near-infrared
band (Band 4) of GF-1/6 WFV.
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FIGURE 3
Overall workflow of our study.

3.2 Lake water body extraction

The Otsu method (Ostu, 1979), a widely used and simple
technique, is employed to determine the initial threshold in the
NDWI grayscale image. This method distinguishes surface water
from the background by maximizing the between-class variance,
and is not affected by image brightness and contrast. While the
Otsu method can efficiently separate large water bodies, it often
results in blurred edges for water bodies. To address this, the region-
based active contour model method proposed by (Zhang et al.,
2010), known as the SBGFRLS model, is introduced. The image is
divided into m × n blocks, each of size K × K pixels, where K is
determined based on image size and computer processing time.The
optimization of the initial water body boundary is performed for
each block.

The level set evolution equation of the SBGFRLS model is as
Equation 2:

∂ϕ
∂t
= SPF(I(x)) · α|∇ϕ|,x ∈Ω (2)

where is the level set, t is time, SPF is the symbol pressure function,
I(x) is the NDWI exponential grayscale image, α is the constant
velocity, and Ω refers to the feature space of the image. Where the

SPF function equation is as Equation 3:

SPF(I(x)) =
I(x) − c1+c2

2

max(|I(x) − c1+c2
2
|)
,x ∈Ω (3)

where c1 and c2 are the average grayscale values inside and outside
the boundary, given by Equations 4, 5:

c1 =
∫
Ω
I(x) ·H(ϕ)dx

∫
Ω
H(ϕ)dx

(4)

c2 =
∫
Ω
I(x) · (1−H(ϕ))dx

∫
Ω
(1−H(ϕ))dx

(5)

The SPF function, based on regional global grayscale
information, ranges from [−1,1]. It has opposite signs near the
boundary, as shown in Figure 4. Therefore, when the contour line is
outside the target, it can contract, and when it is inside the target, it
can expand.

The SBGFRLS model combines the advantages of the GAC
(Caselles et al., 1997) and CV (Chan and Vese, 2001) models,
providing an efficient method to tightly fit the target boundary.
It significantly improves the extraction of complex lake boundary
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FIGURE 4
Illustration of the symbol pressure function.

lines, resulting in more accurate segmentation of water bodies. In
the optimized results the lake area is obtained by using connected
domains according to the lake morphology and only one maximum
connected domain is extracted for all the lakes except Toshka lake
which has multiple connected domains. Finally, manual checks and
corrections are performed on each lake to remove influences caused
by connected rivers, cloud cover during rainy seasons, etc., ensuring
the accuracy of the data.

3.3 Accuracy assessment

Accuracy assessment is a critical component of the image
classification process. In this study, four metrics are used to
quantitatively assess the performance of the proposed water body
recognition method through the confusion matrix: the producer’s
accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and
Kappa coefficient (Kappa). PA represents the probability that true
reference data for a specific class are correctly classified in the
classification results, UA indicates the proportion of validation
points assigned to a class in the classification map that are
accurately classified as that class, OA quantifies the percentage of all
correctly classified validation points relative to the total number of
sampled validation points, and Kappa measures how much better
the classification results are compared to random classification by
accounting for both the agreement between automated classification
and reference data and the agreement arising from random sampling
and reference classification consistency (Cohen, 1960). PA and UA
focus on analyzing omission and commission errors, respectively,
but their interpretation may introduce bias in overall evaluation
due to class imbalance, whereas OA and the Kappa directly reflect
global classification performance, providing robust validation of
the method’s generalizability across diverse scenarios (Stehman,
2006; Pontius and Millones, 2011). The calculation formulas can be
expressed as Equations 6–11:

PA = TP
TP+ FN

(6)

UA = TP
TP+ FP

(7)

OA = TP+TN
TP+ FP+TN+ FN

(8)

Kappa =
p0 − pe
1− pe

(9)

With,

P0 = OA (10)

pe =
(TP+ FP) × (TP+ FN) + (TN+ FN) × (FP+TN)

(TP+ FP+TN+ FN)2
(11)

Where true positives (TP) denote the number of positive
samples correctly classified, true negatives (TN) represent
the number of negative samples accurately categorized, false
positives (FP) correspond to the number of negative samples
erroneously assigned to the positive class, and false negatives
(FN) indicate the number of positive samples incorrectly classified
as negative.

4 Results

4.1 Water body extraction and accuracy
assessment

The boundary optimization effect of Merowe on 18 October
2023, was selected and is shown in Figure 5. Overall, the NDWI
image effectively highlights the lake’s water body. However, the
NDWI values are unevenly distributed across the lake, with the
left side exhibiting brighter spectral indices compared to the right
side. Intercepting three of the regions to show the details of the
effect. Region a: This area represents a river with relatively low
spectral indices. In the initial extraction map, a significant portion
of this region was missed. After boundary optimization, these
darker spectral areas were accurately extracted. Region b: This is
a complex water body area with numerous small tributaries. In
the initial extraction, some of the finer branches were missed.
Following boundary optimization, these small tributaries were
precisely identified. Region c: The initial extraction map already did
a good job of delineating the boundarywater bodies. After boundary
optimization, a small amount of previously unidentified water was
also extracted.

For each lake, one classification result from around
November 2023 was selected. The accuracy was validated
using the method described in Section 3.3.3. Based on lake
dimensions, 800 to 2,000 validation sample points were randomly
generated within the bounding rectangle of the ROI for each
study area. The “water” and “non-water” labels for these
points were assigned through visual interpretation of near-
simultaneous Sentinel-2 (10 m spatial resolution) and GF-1 PMS
(2 m spatial resolution) imagery. Accuracy metrics were then
computed by applying the classification validation methodology
described in Section 3.3.3 to the labeled validation dataset.
Depending on the size of the lake, 800 to 2,000 sample points
were chosen.

The extraction accuracy is presented in Table 1. The results
show that for all lakes, the PA is above 96.33%, the UA is
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FIGURE 5
Detail display of boundary optimization effect: From left to right are
the NDWI spectral index, the initial extraction, and the boundary
optimization result: (a) region a, (b) region b, (c) region c.

TABLE 1 Extraction accuracy of different lake water bodies.

Lake PA (%) UA (%) OA (%) Kappa (%)

Tana 98.75 99.50 99.00 97.95

GERD 98.38 99.87 98.60 95.69

Roseires 99.25 99.50 99.58 99.06

Merowe 96.33 99.48 97.90 95.80

Nasser 96.90 99.69 98.28 96.56

Toshka 97.00 98.98 97.67 95.24

above 99.48%, the OA is above 97.67%, and the Kappa is
above 95.24%. The accuracy metrics obtained in this study are
higher than other similar articles (Buma et al., 2018; Lu and
Sun, 2023; Ssekyanzi et al., 2021) and most public datasets
(Feng et al., 2016; Yu et al., 2013). These results indicate
that the proposed water extraction method performs well and
can provide reliable data support for subsequent analyses. The
proposed method for water extraction demonstrates excellent
performance, as evidenced by the high accuracy metrics. This
method is capable of providing reliable data for further analysis and
applications.

4.2 Dynamic analysis of natural and
artificial water bodies

The lake images before and after each flood season of the Blue
Nile are overlaid in Figure 6, showing the boundary of water body
extraction. The lakes with noticeable area changes are presented in
Figure 7. From Figure 7, it can be observed that the areas of GERD
and Toshka increased significantly during the monitoring period.
The boundaries of Merowe and the Roseires exhibited noticeable
changes before and after each flood, and the area before and after
the 2020 flooding has been selected for presentation in the figure.
As mega-lakes, the Tana and Nassser boundaries have not changed
significantly.

To better understand the variation patterns of each lake, the area
of all lakeswas statistically analyzed and plotted annually in Figure 8,
and by date in a line chart in Figure 9.

From the annual variation, the annual changes in the areas
of Tana, Roseires, Merowe, and Nasser, remain relatively stable.
The area of GERD and Toshka grows significantly. GERD has
consistently expanded from 2020 to 2024, while Toshka expanded
significantly from 2020 to 2023, with a slight decrease in area
between 2023 and 2024.

From time-series variation, Tana, Roseires, Merowe, and
Nasser exhibit similar seasonal variation patterns. Tana’s low-water-
level period occurs around July, and the high-water-level period
around September. The water area fluctuated within the range of
2,972.96–3,078.16 km2, with a change of less than 105.2 km2 over
5 years, which is less than 3.6% of the lake’s total area, indicating
relatively stable area changes. Roseires, Merowe, and Nasser each
experience a low-water-level period around July, with a high-water-
level period beginning in October. The area of Roseires fluctuated
between 154.63 and 568.33 km2, with the maximum area being 3.7
times larger than the minimum. The seasonal amplitude of area
changes has gradually decreased. The area of Merowe fluctuated
between 376.34 and 694.17 km2, showing a similar trend with a
reduced amplitude of seasonal variation. For Nasser, the highest
water level during the high-water-level period has been decreasing
annually. In October 2020, the area was 5,919.05 km2, 5,889.89 km2

inOctober 2021, and 5,887.81 km2 inOctober 2022. However, in the
wet season of 2023, the highest water level was not reached, with the
area recorded at only 5,331.06 km2 in October.The high-water-level
period appeared to have shifted to February of the following year,
with an area of 5722.89 km2, lower than the area during the previous
wet seasons.

GERD began impounding water in July 2020. A total of
five stages of water storage were carried out from 2020–2024.
The images in Figure 6 show that, over the 5 years, the river behind
the dam gradually widened, and the reservoir area expanded. In just
5 years, the narrow river in 2020, almost close to zero, grew into a
large reservoir by 2024, reaching a maximum area of 1,679.11 km2.
On average, about 332.9 km2 of water were stored annually, with
significant changes in area each year. From July to October, the lake
area expanded rapidly, beginning in July and stopping in October,
followed by a slight reduction until the next July, when expansion
resumed. The water storage areas during the flood season for the
5 years were 247.15 km2, 270.28 km2, 516.51 km2, 650.13 km2, and
587.39 km2, respectively. The first 2 years had relatively low storage
areas, both under 300 km2. Starting from the third year, the storage
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FIGURE 6
Lake change imagery: Annual satellite images from 2020 to 2024 depicting pre-flood (up) and post-flood (down) conditions.

area increased significantly, and in 2023, the storage area exceeded
600 km2. The fifth year saw a slight reduction, with a storage area of
less than 500 km2.

Toshka is a spillway lake in Egypt used to maintain the safe
water level of Nasser. When the water level of Nasser exceeds 178 m,
excess water is diverted into Toshka via spillways (Bastawesy et al.,
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FIGURE 7
Significant changes in lake area: (a) GERD, (b) Toshka, (c) Roseires, (d) Merowe.

FIGURE 8
Yearly changes in lake area.
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FIGURE 9
Time-series changes in lake area.

2008). Due to climatic factors, Toshka nearly disappeared before
2019 due to the low flow of the Nile (Abd Ellah, 2021). Between
2020 and 2022, the area of Toshka showed a large correlation
with the seasonal variation of Nasser. During the flood season, the
rapid rise of water levels in Nasser resulted in excess water being
diverted into Toshka, causing the area to expand rapidly at the
beginning of the flood season. After the flood season ended, the area
remained relatively constant until the next year’s flood season. From
2020 to 2022, Toshka’s area increased by 857.6 km2, 788.28 km2,
and 677.25 km2, respectively. However, from 2023 to 2024, Toshka
exhibited a different trend, with no rapid expansion during the
flood season. Instead, its area decreased continuously, shrinking by
246.46 km2 over the 2 years.

4.3 Analysis of climate factors' impact

According to (Ahmed et al., 2024; Luna et al., 2024), the primary
drivers of water resource variability in the Nile Basin (NB) include
climate change and dam regulation during theGERD impoundment

period, consequently, these two factors are exclusively considered in
this analysis.

The climate data was plotted alongside the area change results,
as shown in Figure 10, to analyze the climate’s effect on lake
changes. In terms of precipitation, Tana, GERD, andRoseires receive
abundant rainfall, with a clear seasonal variation in precipitation.
In contrast, Merowe, Nasser, and Toshka experience very scarce
precipitation. A comparison reveals that precipitation decreases as
we move from the upstream Blue Nile to the downstream main
Nile. As for LST, Tana’s temperature typically does not exceed 30°C,
GERD fluctuates within 36.5°C, while the other four lakes reach
maximum temperatures nearing 40°C. The average temperature
increases from the upstream Blue Nile to the downstream
main Nile. The higher the LST, the greater the evaporation
from the lakes.

Upstream areas receive more precipitation and have lower
temperatures, with the lakes primarily influenced by precipitation.
Downstream areas receive less precipitation but have higher
temperatures, making temperature an important factor. During the
months when Merowe and Nasser lakes’ areas are smallest (in July),
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FIGURE 10
Changes in area, precipitation and LST: the left is the precipitation and lake area change map, and on the right is the LST and lake area change map.

temperatures also reach their yearly peaks, leading to maximum
evaporation. For Toshka, during the area expansion period from
2020 to 2022, a shrinkage of the lake area was observed when
temperatures were at their highest. There is a direct relationship
between upstream precipitation and the high-water-level period of
theNile lakes, therefore, next, the effects of precipitation on the lakes
are mainly analysed.

Tana, which receives the most precipitation, shows a delayed
response to precipitation in terms of area change. The lake area
does not increase immediately from the beginning of the rainy
season to the time when rainfall peaks, but reaches an annual
maximum in the subsequent period. For example, there is a
significant increase in rainfall from March-July, but a significant
increase in the size of the lake occurs in the subsequent months
of July-September, followed by a successive decrease in its size
from September-March as rainfall decreases for the dry season.
The changes in the area of the GERD are also closely related to
precipitation. The area begins to rapidly expand every year in July,
when precipitation reaches its peak, and stops growing in October

when rainfall decreases. The rainy season in the upper Blue Nile
Basin, which typically begins in July, delivers substantial water
inflow to the Blue Nile River, resulting in significant water storage
within the GERD reservoir. As rainfall diminishes, GERD ceases
active impoundment and may initiate gradual water releases. The
figure demonstrates an inverse relationship between the surface
area variation of Roseires and precipitation patterns. Because of the
artificial regulation of water by GERD, the water-level dynamics
of the Roseires are predominantly governed by GERD’s artificial
regulation. During the rainy season, GERD prioritizes water
retention, whereas post-rainy season releases modulate downstream
flows to Roseires. As an artificially regulated reservoir, Roseires
further exhibits its own operational cycle: its lake area sharply
increases during initial flood season storage (July) and declines
gradually post-flood (October) through managed releases. The
downstream Merowe and Nasser lakes, being artificially regulated
reservoirswith nearly negligible precipitation input, exhibit identical
seasonal patterns to Roseires. These reservoirs undergo water
storage during the upper basin’s rainy season when the Blue
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Nile experiences peak discharge. Their surface areas typically
reach minima in July, followed by rapid expansion to maxima
in October, then gradually decline until the next flood season
approaches. Toshka, as the spillway lake for Nasser, also receives
almost no rainfall throughout the year, with its water source
coming from the high-water overflow of Nasser. Every July, the
area of Toshka expands rapidly, coinciding with the upstream
rainy season.

In conclusion, LST has little effect on lake area changes. Tana’s
high precipitation provides sufficient water for storage, with area
changes being a delayed response to precipitation in the sub-
basin. The area expansion in GERD reservoir is influenced by
both precipitation and its own storage cycle. Downstream, Roseires,
Merowe, and Nasser reservoirs all store water at the beginning of
the flood season, influenced by the upstream rainy season, causing
the areas to expand. After the flood season ends, water is slowly
released, resulting in a decrease in area. Toshka, on the other hand, is
influenced by Nasser’s water levels, indirectly reflecting fluctuations
in Nasser’s water height.

5 Conclusion

In this study, we analyzed the spatio-temporal dynamic changes
of six typical lakes in the ENB, utilizing time series data from 2020
to 2024 derived from the GF-1 and GF-6 WFV data. The main
conclusions are as follows:

(1) This study developed a robust adaptive threshold method
considering boundary optimization that closely align
with water bodies, based on Chinese GF optical imagery.
This method is suitable for monitoring water bodies in
arid regions. It efficiently and accurately extracted the
six lakes in the study area, with OA of over 97.67%
and Kappa exceeding 95.24%, demonstrating excellent
extraction performance.

(2) By monitoring the lakes from 2020 to 2024, the seasonal
variation patterns of the lakes were identified. The low-water-
level period of Tana occurs in July, and the high-water-level
period in September. For Roseires, Merowe, and Nasser, the
low-water-level period also occurs in July, with the high-
water period in October. However, Nasser did not reach
its annual maximum water level in October 2023. During
the monitoring period, the GERD significantly increased
in size, expanding from a narrow river with an area close
to zero in 2020 to a large reservoir reaching a maximum
area of 1,679.11 km2 in 2024. The major growth occurred
predominantly between July and October each year. Toshka
saw significant expansion between 2020 and 2022,mainly from
July toOctober, but experienced a continuous reduction in area
during 2023 and 2024.

(3) The changes in lake area in the study area aremainly influenced
by precipitation in the upper Blue Nile and the artificial
water storage from dams. Tana, with abundant precipitation,
shows area changes primarily driven by rainfall, with a
certain lag effect. The changes in GERD are mainly linked to
both precipitation and its own water storage, with significant
increases in area during the rainy season, particularly between

July and October. As artificial reservoirs, the seasonal changes
in Roseires, Merowe, and Nasser are influenced by their
own water storage and the storage in upstream reservoirs.
The seasonal variation in these lakes is primarily related
to the timing of their own water storage. The decreasing
visibility of seasonal changes during the monitoring period
could be associated with the large-scale water storage during
GERD’s flood season and the slow release of water during
the dry season. The failure of Nasser to reach its annual
peak water level in October 2023 seems to be linked to the
significant expansion of GERD during the 2023 flood season.
In the case of Toshka, located to the west of Nasser, the
significant area expansion observed annually from July to
October between 2020 and 2022 was likely due to overflow
fromNasser’s high-water period. However, during 2023–2024,
Toshka did not experience the same expansion during the
flood season and instead saw a continuous reduction in area,
possibly due to the large-scale water storage in the GERD,
which prevented Nasser from reaching its high-water level
of previous years.

The advantage of the Chinese GF-1/6 WFV imagery lies in
its wide coverage, high temporal frequency, and spatial resolution,
which can meet the monitoring needs of large-scale study
areas with relatively fewer images. This is conducive to the
routine monitoring and dynamic analysis of water bodies. The
observed lake changes are consistent with actual conditions, fully
demonstrating the feasibility of extracting water body information
from Chinese GF data. It has significant advantages and promising
application prospects.

The boundary optimization method employed in this study
has improved the accuracy of lake boundary extraction. However,
this approach relies on the assumption of homogeneous intensity
distributions in both interior and exterior image regions through
the SPF function, making it sensitive to image quality and
initial water extraction contours, while demonstrating inconsistent
computational efficiency. Future research will focus on refining the
construction framework of the SPF function and exploring adaptive
parameter determination strategies to enhance model robustness
and computational efficiency. Moreover, this investigation was
limited to monitoring six representative lakes in the ENB.
Leveraging the wide-swath advantage of WFV imagery, we plan to
progressively expand the monitoring scope to encompass all lake
water bodies across the entire ENB and ultimately NB regions. This
systematic remote sensing monitoring and analysis of large lake
clusters in NB aims to provide comprehensive spatiotemporal data
support for regional water resource management and ecological
conservation.

In the future, we look forward to fully leveraging the advantages
of Chinese remote sensing satellites in terms of high spatial
and temporal resolution for water resource monitoring. This will
support major strategic and engineering services in cross-basin
water resource monitoring. By integrating data from multiple
types of remote sensing satellites, we aim to achieve continuous
acquisition and comprehensive application of multi-source remote
sensing information. Additionally, we seek to build an automated
and intelligent production system for high-resolution, large-scale,
and long-time series water resource monitoring based on a
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spatiotemporal big data cloud platform, and we hope to expand the
application of Chinese satellite imagery to more scenarios.
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