
TYPE Original Research
PUBLISHED 10 June 2025
DOI 10.3389/feart.2025.1569365

OPEN ACCESS

EDITED BY

Guochang Wang,
Saint Francis University, United States

REVIEWED BY

Guwang Liu,
Chinese Academy of Geological
Sciences, China
JunBo Wang,
Tsinghua University, China
Amjad Hussain,
China University of Geosciences
Wuhan, China

*CORRESPONDENCE

Xiao-Li Meng,
mxlheut@163.com

Bo Chen,
chenbo01@mail.cgs.gov.cn

RECEIVED 31 January 2025
ACCEPTED 27 May 2025
PUBLISHED 10 June 2025

CITATION

Li Y-Y, Meng X-L and Chen B (2025) Research
on green total factor productivity of China’s
mining industry.
Front. Earth Sci. 13:1569365.
doi: 10.3389/feart.2025.1569365

COPYRIGHT

© 2025 Li, Meng and Chen. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Research on green total factor
productivity of China’s mining
industry
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2Development Research Center of China Geological Survey, Beijing, China

As China transitions towards a circular, green, and efficient economy, themining
industry, as a crucial pillar of national economic growth, faces dual challenges
of resource efficiency and environmental governance. Against this backdrop,
this study emphasizes the evaluation of green total factor productivity (GTFP) in
China’s mining industry, aiming to provide scientific insights to environmental
pollution. To overcome the limitations of traditional radial and non-radial Data
Envelopment Analysis (DEA) models, this study adopts the SBM model and
incorporates the Malmquist-Luenberger (ML) index to analyze GTFP from both
static and dynamic perspectives across 31 provinces in China from 2005 to 2021,
and provides specific suggestions.
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1 Introduction

As the global understanding of sustainable development deepens, the green transition
of resource-based industries has become a critical strategic direction for national economic
and social development. China, as the world’s largest producer and consumer of
mineral resources, plays an irreplaceable role in driving economic growth and ensuring
resource supply through its mining industry. The mining industry not only provides
vast amounts of raw materials for industries, energy production, and infrastructure
development but also significantly contributes to employment and fiscal revenue. However,
this traditional growth model is based on high resource consumption and significant
environmental costs (Mohsin et al., 2021).

It is crucial to explore how China can reconcile resource conservation and
environmental protection with sustained economic growth in its mining sector
(Cai et al., 2022; Yu et al., 2019). Particularly in the context of increasing global
resource constraints and environmental pressures, promoting a green, low-carbon, and
sustainable transformation of the mining industry is not only essential for enhancing
the sector’s competitiveness but also for ensuring high-quality national economic
development.

In the mining industry, given the inevitable environmental degradation caused
during the extraction and development processes, Green Total Factor Productivity
(GTFP) has gradually emerged as an important research focus. It aims to assess the
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sector’s capacity to balance resource utilization and environmental
impact. Studies on TFP primarily focus on the application of
parametric and non-parametric methods. Parametric methods
usually estimate TFP by employing production functions, relying
on specific functional form assumptions. Therefore, scholars have
attempted to combine parametric and non-parametric methods
to better measure and analyze TFP. Non-parametric methods,
represented by data envelopment analysis (DEA), avoid assumptions
about production functions and provide a method of measuring
efficiency based on actual data.

In China’s mining industry, the DEA method is widely used
due to its non-parametric nature and its capacity to handle
multiple input and output indicators efficiently. There are various
perspectives for measuring the efficiency of China’s mining
industry. For example, Zhu et al. (2018) employed DEA model
from a global perspective to measure the GTFP of China’s
mining industry. They found that although overall productivity
has improved, there is still considerable room for enhancement
in environmental efficiency, particularly in provinces with high
resource extraction intensity. Chen et al. (2022) analyzed changes
in mining efficiency from a spatiotemporal perspective, revealing
that mining efficiency in the eastern region is significantly
higher than in the western region. Their research suggests that
regional characteristics should be considered by policymakers
to formulate more targeted policies for promoting coordinated
regional development. Zuo et al. (2022) employed a two-stage DEA
model to analyze technological innovation efficiency and ecological
efficiency in China’s mining industry, finding that improvements
in technological innovation efficiency can significantly enhance
ecological efficiency, indicating that technological advancement is
a key driver of green transformation in mining.

Similarly, various calculation methods have been used in TFP
studies. For instance, Wu et al. (2019) introduced a heterogeneous
input-outputDEAmodel in their study of energy and environmental
efficiency in China’s industrial sector, accounting for differences
in resource consumption and pollution emissions across industries
to make efficiency evaluations more realistic. Xiao et al. (2018)
evaluated energy-environment efficiency across sectors in China
using the S-U-SBM model, analyzing the key factors affecting
efficiency. To further quantify the impact of undesirable outputs
(e.g., pollutants) on environmental efficiency, Zhou et al. (2013)
proposed a weighted SBM model, which focused on analyzing
environmental efficiency in China’s industrial sector, revealing that
the environmental efficiency of the mining industry is among the
lowest across all industrial sectors, with high pollutant emissions
being the main cause of low efficiency. Liu and Meng (2018)
used a DEA model incorporating environmental pollutants such as
wastewater and exhaust emissions to evaluate energy efficiency in 20
mining cities in eastern and central China, uncovering the critical
role of technological progress and energy structure optimization in
improving energy efficiency in mining cities.

Substantial scholarly attention has likewise been directed toward
assessing total factor productivity (TFP) in resource-dependent
economies where the mining sector constitutes a cornerstone
industrial pillar. Hosseinzadeh et al. (2016) conducted a firm-
level analysis of efficiency dynamics in the Australian mining
sector between 2008 and 2014 by applying a bootstrap data
envelopment analysis (DEA) approach. The mining sector in

Chile, prominently represented by its copper industry, has been
a focal point of economic analysis. De Solminihac et al. (2018)
employed the traditional Solow methodology to measure total
factor productivity (TFP) through a copper-centric framework,
revealing a paradoxical trend: while capital investment substantially
contributed to sectoral growth throughout the study period, TFP
exhibited a statistically significant decline. This phenomenon is
attributed to the structural limitations of capital-driven expansion
at Chile’s current developmental stage, indicating that mere capital
accumulation cannot sustainably enhance productivity or maintain
growth trajectories in the mining sector. In contrast, Ilboudo
(2014) demonstrated through empirical investigation that foreign
direct investment (FDI) had a positive and statistically significant
correlation with TFP in Chilean mining.

Fang et al. (2009) employed data envelopment analysis (DEA) to
compare the relative technical efficiency performance of listed coal
mining corporations in China and the United States. The findings
revealed that the superior institutional environment and other
systemic advantages in the U.S. context contributed to significantly
higher relative efficiency levels among American coal enterprises
compared to their Chinese counterparts. Mahapatra et al. (2020)
conducted an input-oriented Data Envelopment Analysis (DEA)
assessment to evaluate and rank the relative operational efficiency
of 28 selected open-pit mines operated by a major state-owned
coal corporation in India during the 2018–2019 fiscal year.
Henriksson et al. (2014), Flávia De Castro Camioto et al. (2014),
Phuong (2018), SeribolatAzhibay, 2023; Majola and Langerman,
2023, conducted empirical analyses of mining sectors in Sweden,
Brazil, Vietnam, Kazakhstan and South Africa, respectively,
formulating tailored policy recommendations addressing context-
specific operational challenges.

Scholars have integrated total factor productivity (TFP) in the
mining sector with complementary indicators. Yousefian et al.
(2024) examined the impact of corporate social responsibility
(CSR) on mining sector TFP across Europe, incorporating
both microeconomic and macroeconomic moderators in the
CSR-TFP relationship. Their findings demonstrated statistically
significant positive effects of firm-level CSR implementation on
TFP performance among European mining corporations.

As mentioned above, many studies have explored the
environmental efficiency of China’s mining industry using
traditional radial or non-radial DEA models. However, radial and
non-radial DEA models have their respective limitations. In DEA
analysis, radial models assume proportional changes in all input or
output variables. Yet, in many practical production and operational
environments, resource usage and output changes are often non-
proportional. Radialmodels are particularly inadequate in capturing
these non-proportional changes when dealing with undesirable
outputs such as pollutants. Additionally, radial models are not
suitable for addressing resource overuse or output shortfalls, which
may lead to overestimation of efficiency for certainDecision-Making
Units (DMUs). Nonetheless, radial models have been extended by
introducing environmental constraints to better handle undesirable
outputs, thereby enhancing the accuracy and credibility of results.

To overcome the limitations of radial models, non-radial models
were introduced, allowing for non-proportional adjustments of
inputs and outputs and using slack variables to capture resource
overuse and output shortfalls. While non-radial models address
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TABLE 1 Technical efficiency values of each Province form 2004 to 2009.

Year 2004 2005 2006 2007 2008 2009

Beijing 0.760587 0.773094 0.774289 0.790267 0.912865 0.855204

Tianjin 0.683827 0.687228 0.700729 0.702898 0.755601 0.727576

Hebei 0.705856 0.762695 0.728907 0.706123 0.826036 0.685586

Shanxi 0.776006 0.831707 0.826712 0.829814 1 0.762267

Neimeng 0.619991 0.60308 0.56184 0.555112 0.516303 0.474106

Liaoning 0.671271 0.692164 0.685799 0.644023 0.771737 0.645266

Jilin 0.658235 0.684189 0.652264 0.623649 0.677348 0.604984

Heilongjiang 0.703715 0.719059 0.711878 0.675131 0.73781 0.60855

Shanghai 0.810857 0.811569 0.811364 0.809153 0.805994 0.804598

Jiangsu 0.729046 0.74836 0.795638 0.795696 0.85689 0.808661

Zhejiang 0.74919 0.745029 0.755613 0.758757 0.763753 0.753619

Anhui 0.724666 0.793769 0.792065 0.805504 0.907976 0.786165

Fujian 0.730465 0.73692 0.725567 0.710119 0.711418 0.662541

Jiangxi 0.722345 0.739024 0.750051 0.734667 0.791562 0.725669

Shandong 0.585229 0.634811 0.651449 0.659203 0.803 0.680442

Henan 0.67028 0.720631 0.714469 0.71594 0.832045 0.665849

Hubei 0.683932 0.690033 0.690641 0.677892 0.705914 0.640615

Hunan 0.670673 0.67682 0.664996 0.637284 0.642582 0.587391

Guangdong 0.730114 0.743505 0.729807 0.717481 0.733566 0.711495

Guangxi 0.717166 0.718429 0.706096 0.656203 0.66712 0.64069

Hainan 0.765579 0.767764 0.78191 0.761496 0.789057 0.783615

Chongqing 0.709348 0.72593 0.720325 0.733502 0.745689 0.686938

Sichuan 0.635391 0.644272 0.641934 0.631942 0.710632 0.604153

Guizhou 0.679368 0.685433 0.679895 0.6507 0.661082 0.56848

Yunnan 0.699333 0.699353 0.66854 0.634478 0.667167 0.598416

Xizang 0.797404 0.799729 0.789897 0.783785 0.787077 0.792817

Shaanxi 0.593677 0.617424 0.622236 0.618881 0.681389 0.536817

Gansu 0.696916 0.692828 0.684217 0.685253 0.767987 0.715812

Qinghai 0.72739 0.713911 0.734714 0.708965 0.711583 0.689626

Ningxia 0.767137 0.782098 0.804278 0.800711 0.818949 0.778639

Xinjiang 0.547604 0.55119 0.517089 0.535711 0.615696 0.521535
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TABLE 2 Technical efficiency values of each Province form 2010 to 2015.

Year 2010 2011 2012 2013 2014 2015

Beijing 0.886726 0.9749 0.943735 0.93662 0.929879 0.885965

Tianjin 0.730843 0.798572 0.696309 0.698309 0.717224 0.711732

Hebei 0.725592 0.743528 0.672572 0.608251 0.552416 0.496381

Shanxi 0.886396 1 0.865328 0.800358 0.669965 0.519406

Neimeng 0.490193 0.521352 0.510312 0.530202 0.513565 0.487063

Liaoning 0.670045 0.698083 0.645489 0.643876 0.611658 0.567789

Jilin 0.593988 0.580308 0.565965 0.581479 0.562185 0.523541

Heilongjiang 0.665194 0.683334 0.622026 0.62104 0.582944 0.548122

Shanghai 0.803698 0.805281 0.804827 0.804844 0.804803 0.804743

Jiangsu 0.796224 0.827577 0.781308 0.808154 0.77985 0.738133

Zhejiang 0.754082 0.762886 0.76375 0.765283 0.762575 0.757478

Anhui 0.888952 0.949363 0.877058 0.822739 0.789049 0.679819

Fujian 0.657575 0.651591 0.637053 0.648721 0.639718 0.633468

Jiangxi 0.730648 0.778972 0.773337 0.760773 0.742747 0.731284

Shandong 0.774672 0.856359 0.781338 0.78105 0.730535 0.652534

Henan 0.708836 0.791846 0.680111 0.587827 0.526477 0.457313

Hubei 0.642573 0.643053 0.590705 0.578049 0.582644 0.562867

Hunan 0.552659 0.536107 0.509642 0.489117 0.495363 0.501955

Guangdong 0.721151 0.731297 0.707887 0.709737 0.698342 0.689416

Guangxi 0.64193 0.63093 0.595872 0.591287 0.604531 0.610724

Hainan 0.782134 0.784443 0.779386 0.783053 0.78327 0.785163

Chongqing 0.678158 0.685545 0.641605 0.607747 0.599265 0.590621

Sichuan 0.598644 0.602872 0.596435 0.538076 0.563805 0.526896

Guizhou 0.548576 0.557018 0.532966 0.515865 0.518893 0.494907

Yunnan 0.58776 0.611081 0.583755 0.552503 0.499794 0.482052

Xizang 0.788364 0.79007 0.782544 0.772889 0.769757 0.762896

Shaanxi 0.551796 0.606609 0.54043 0.574776 0.528937 0.487205

Gansu 0.695529 0.700067 0.651907 0.614511 0.620555 0.58635

Qinghai 0.69178 0.682426 0.680712 0.689882 0.684397 0.662448

Ningxia 0.801353 0.800868 0.789169 0.764017 0.740693 0.713037

Xinjiang 0.537996 0.599547 0.605261 0.603142 0.594712 0.572713
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TABLE 3 Technical efficiency values of each Province form 2016 to 2021.

Year 2016 2017 2018 2019 2020 2021

Beijing 0.874653 0.900685 0.920602 0.91755 0.896183 1

Tianjin 0.689876 0.73464 0.781738 0.827357 0.804339 0.972371

Hebei 0.502602 0.540111 0.59716 0.658663 0.650557 0.829625

Shanxi 0.504074 0.612264 0.643231 0.706348 0.660163 1

Neimeng 0.507244 0.565208 0.632555 0.69249 0.691749 0.850484

Liaoning 0.566781 0.634567 0.666327 0.70589 0.680953 0.89779

Jilin 0.526491 0.558917 0.59611 0.626974 0.615336 0.712211

Heilongjiang 0.565919 0.609077 0.664572 0.686657 0.651005 0.875066

Shanghai 0.80537 0.805957 0.805867 0.820197 0.820367 0.83854

Jiangsu 0.737367 0.754405 0.780217 0.766169 0.794848 0.938146

Zhejiang 0.753354 0.757461 0.747781 0.732023 0.716858 0.725233

Anhui 0.64456 0.736313 0.795274 0.789433 0.751829 1

Fujian 0.643439 0.650792 0.66633 0.668507 0.656432 0.680634

Jiangxi 0.716077 0.748908 0.772806 0.78355 0.76971 0.816295

Shandong 0.679661 0.758653 0.756739 0.773754 0.749732 1

Henan 0.431965 0.496017 0.536582 0.577346 0.560855 0.788207

Hubei 0.576715 0.609091 0.639296 0.664938 0.656091 0.746784

Hunan 0.527907 0.546191 0.574732 0.590598 0.591861 0.654616

Guangdong 0.696966 0.720243 0.730065 0.738773 0.735302 0.790557

Guangxi 0.614156 0.616662 0.63031 0.654831 0.647751 0.662182

Hainan 0.786817 0.787648 0.708083 0.684637 0.661434 0.683247

Chongqing 0.601132 0.635855 0.672407 0.677103 0.669965 0.719497

Sichuan 0.523836 0.586381 0.645632 0.699232 0.681974 0.905178

Guizhou 0.491683 0.526179 0.551274 0.573155 0.556559 0.682156

Yunnan 0.489714 0.513997 0.548041 0.610608 0.620965 0.70906

Xizang 0.761665 0.765023 0.721567 0.707133 0.67522 0.678104

Shaanxi 0.530072 0.578947 0.633523 0.702937 0.676322 1

Gansu 0.594486 0.638487 0.655049 0.67422 0.689531 0.825386

Qinghai 0.673535 0.694206 0.713147 0.739481 0.728486 0.821325

Ningxia 0.744244 0.77262 0.781057 0.82712 0.824291 1

Xinjiang 0.593628 0.674401 0.727563 0.805901 0.76477 1
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FIGURE 1
GTFP index and its decomposition indices in various regions from 2005 to 2021.

the asymmetry of resource utilization and output adjustment, they
introduce greater computational complexity and demand higher
data quality. If the number of DMUs is small or the data precision
is insufficient, non-radial models may result in unstable estimations
of the efficiency frontier.

To address the shortcomings of both radial and non-radial
DEA models, Tone, (2010) proposed the epsilon-based measure
model, which has been widely applied in environmental efficiency
evaluations in recent years.

This study proposes a novel environmental efficiency evaluation
model that incorporates the cumulative impact of mining activities
on land occupation and degradation. The model aims to quantify
the environmental efficiency of the mining sector, shedding light
on its environmental shortcomings and potential for improvement.
Initially, the study applies the Epsilon-Based Measure (EBM) model
to estimate the total factor static environmental efficiency (TFSEE)
of the mining industry across China’s provinces. While the EBM
model serves as a robust tool for assessing static efficiency, it has
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limitations in capturing the dynamic changes in efficiency over time
and fails to identify the driving factors behind such changes.

To address this gap, we further employ the Malmquist-
Luenberger (ML) productivity index, which not only reflects
changes in total factor productivity (TFP) but also provides insights
into the dynamic nature of environmental efficiency. By applying
the ML index, we estimate the total factor dynamic environmental
efficiency (TFP) of the mining sector across China’s provinces.
Additionally, we decompose the productivity index to identify the
key drivers of improvements in environmental efficiency. These
drivers may include technological progress, resource utilization
efficiency, policy support, and industrial structure adjustments.

Moreover, this research explores regional and sectoral variations
in the enhancement of environmental efficiency, offers more
targeted recommendations for policymakers. Thus, the aim of this
study is to investigate the characteristics of GTFP using global
data envelopment analysis (DEA). The main contributions are as
follows. First, the EBM model incorporating both radial and non-
radial advantages is structured under the total factor frame work,
which provides a new method for evaluating the TFP of China’s
provincial mining industry. Such work has not been found in
the existing research. Additionally, this study analyzes the changes
in green total factor productivity (GTFP) by applying the global
Malmquist (GM) index. This approach allows for the identification
of the primary factors driving the variations in GTFP within the
mining sector. Furthermore, the study examines the returns to scale,
input excess, output deficiency, and the issue of over-emissions
across different sub-sectors within themining industry.The findings
provide valuable insights into the strategies needed to enhance
GTFP in China’s mining industry.

The remainder of this study is organized as follows. Section 2
presents the research methods used in this study in detail. Section 3
introduces the variable selection and data sources. Section 4
provides the results and discussion. Conclusions will be drawn and
corresponding policy implications proposed in Section 5.

2 Research methods

The traditional DEA model uses radial and oriented
measurements but overlooks the slack variables. Avkiran and
Rowlands (2008) considered that although the non-radial and non-
oriented SBM model can avoid the shortcomings, the traditional
radial and oriented DEA model may overestimate the regional
environmental efficiency. In the traditional DEA model, radial and
orientedmeasurements are employed, but the model slack variables,
which can limit its accuracy in evaluating efficiency. However,
the relationship between resources, energy consumption (input
variables), and pollutant emissions is inherently “inseparable.”
This relationship is radial and varies according to the ratio of α
(0 < α ≤ 1) in the presence of undesirable outputs. In contrast, a
“separable” and non-radial relationship exists between other input
variables and output variables. Neither the traditional DEA model
nor the SBM model can adequately address situations where input
and output variables exhibit both radial and non-radial evaluation
characteristics simultaneously. To overcome this limitation, Tone,
(2010) proposed a hybridmodel that integrates both radial and non-
radial distance functions. This model, incorporating a parameter,

was named the EBM model by Tone. The EBM model addresses
some of the shortcomings of both the DEA and SBM models,
particularly in environmental efficiency evaluation, and has been
widely adopted in this field.

In this study, the EBM model is applied to calculate the total
factor productivity (TFP) of China’s provincial mining industry. By
utilizing the EBM model, we aim to obtain efficiency scores that
are closer to the actual values, thereby improving the accuracy and
reliability of the results. This enhances the credibility of the research
and provides a more robust foundation for further analysis.

An input-oriented EBM model under constant returns to scale
(EBM-I-C) is established, as shown in Formula 1:

γ∗ =minθ− εx
m

∑
i=1

wi
−si
−

xik

subject to:
n

∑
j=1

xijλj + si− = θxik, i = 1,…,m (1)

n

∑
j=1

yrjλj ≥ yik, r = 1,…, s

λj ≥ 0, si− ≥ 0

In this model, γ
∗
represents the optimal efficiency score of the

EBM model, where 0 ≤ γ
∗
≤ 1. The variables xik and yik refer to

the i th input and output variables for the kth DMU, respectively.
The subscript k identifies the DMU under evaluation, while m and
s represent the number of input and output variables, respectively.
The coefficient λ denotes the linear combination coefficient for
the DMU. The parameter θ is related to the radial portion of the
model, and si

− represents the slack of the i th input variable. The
variable wi

− signifies the relative importance of each input variable,
subject to the condition that∑mi=1wi

− = 1(wi
− ≥ 0). Additionally, εx is

a key parameter linking the radial and non-radial slack conditions,
constrained by 0 ≤ εx ≤ 1. This parameter reflects the significance of
the non-radial component in the efficiency calculation. When εx =
0, the EBM model simplifies to a radial model, and when εx = 1, it
becomes the SBMmodel.

Considering the presence of undesirable outputs in this study,
we extend the EBM-I-C model from Formula 1 to a non-oriented
EBMmodel designed to account for such outputs.Thismodification
is illustrated in Formula 2 below.

γ∗ =min
θ− εx∑

m
i=1

wi
−si
−

xik

φ+ εy∑
s
r=1

wr
+sr
+

yrk
+ εb∑

q
p=1

wp
b−sp

b−

bpk

subject to:
n

∑
j=1

xijλj + si− = θxik, i = 1,…,m (2)

n

∑
j=1

yrjλj − sr
+ = φyrk, r = 1,…, s

n

∑
p=1

bijλj + spb− = φbik,p = 1,…,q

λj ≥ 0, si−, sr+, spb− ≥ 0

In Formula 2, btk stands for the tth undesirable output of the
DMUk; sr+ and sp

b− represent the slacks of the r th desirable output
and the p th undesirable output, respectively. Similarly,wr

+ andwp
b− 
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correspond to the weights assigned to the r th desirable output and
the p th undesirable output.

The EBM model described above focuses on analyzing
production technology at a specific point in time. However, the
production process is typically long-term and continuous, with the
level of production technology evolving over time. When panel
data is available for DMUs, it becomes possible to examine changes
in productivity and analyze the impact of efficiency and technical
changes on these productivity shifts by Malmquist Total Factor
Productivity (TFP) index (1953). Färe et al. (1992) employed the
DEA model to calculate the Malmquist index for the first time,
and decomposed the Malmquist index into efficiency change and
production technological change to reflect the change of production
frontier. Chung et al. (1997) applied the directional distance function
incorporating undesirable output to the Malmquist index, and the
obtained productivity index was named theMalmquist–Luenberger
productivity index. The Malmquist-Luenberger productivity index
is based on the directional distance function. ML needs to define
directional distance functions of two adjacent different periods:

D⃗t+1
0 (x

t,yt,bt;g) = sup{β:(yt,bt)} + βg ∈ pt+1(xt)}

Each Chinese province in certain year can be regarded as a
DMU, then following theML indexmethod, theGTFP in themining
industry of province p0 between t and t+ 1 is defined as follows:

GTFPt+1t = √
1+ D⃗t+1

0 (x
t
p0,y

t
p0,b

t
p0;y

t
p0′ − b

t
p0)

1+ D⃗t+1
0 (x

t+1
p0 ,y

t+1
p0 ,b

t+1
p0 ;y

t+1
p0′ − b

t+1
p0 )
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0 (x
t
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Then, GTFP is further decomposed into the product of EC index
and TC index to dig out the causes of productivity change. The
functional expression is as follows:

GTFPt+1t = EC
t+1
t ×TC

t+1
t

ECt+1
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Where GTFPt+1t measures the dynamic change of the GTFP
in China’s mining industry from period t to t+ 1, and GTFPt+1t >
1 indicates GTFP improvement, representing that resource
development gets more desirable outputs and less environmental
pollution. EC represents the efficiency change index, where ECt+1

t
measures the shift in the production possibility frontier of technical
efficiency from period t to t+ 1. When ECt+1

t = 1, it indicates that
efficiency changes do not contribute to GTFP growth. A value of
ECt+1

t > 1 implies an increase in the EC index, positively influencing
GTFP, while ECt+1

t < 1 indicates a decrease in the EC index, having

a negative impact on GTFP. TC refers to the technical change index,
and TCt+1

t  evaluates the shift in production technology from period
t to t+ 1. When TCt+1

t > 1, it suggests technological progress, which
has a positive effect on GTFP, and the reverse holds for values
less than 1.

3 Variable selection and data sources

In this study, we define the input variables for China’s mining
industry based on its specific characteristics. The primary inputs
include labor, capital, and land use. Labor input is represented by
the average annual number of employees in the mining sector, while
capital input is represented by capital stock, which is estimated
using the perpetual inventory method. Land use is measured by
the registered area approved by mining licenses, which reflects the
spatial extent of mining activities.

The desirable output in this context is the industrial total
output value of the mining sector, which represents the economic
production of the industry. On the other hand, the undesirable
output is the cumulative area of land degraded or occupied due to
mining activities, which reflects the environmental costs of resource
exploitation. It is worth noting that the data are lagged, and our
research data cover up to 2021.

Data for labor input, capital input, and industrial total output
value are sourced from the China Industrial Statistical Yearbook.
The data for the approved registered area and the cumulative area
affected by mining come from the China Land and Resources
Statistical Yearbook. The fixed asset investment price index and the
producer price index for industrial products are provided by the
National Bureau of Statistics, which are used to adjust for inflation
and ensure consistency across time periods.

4 Results and discussion

The technical efficiency values of 31 provinces from 2004 to 2021
are listed in Tables 1–3. GTFP index and its decomposition indices
in various regions from 2005 to 2021 are shown in Figure 1.

The provinces with higher GTFP are Shandong, Shanxi,
Shaanxi, and Xinjiang. These provinces have abundant mineral
resources, including coal, iron ore, rare metals, and new energy
minerals. These provinces have implemented strict environmental
regulation policies aimed at controlling pollution and protecting
the ecological environment. More advanced technologies and
equipment have been adopted in the process ofmineral development
and processing, which not only improves production efficiency
but also reduces environmental pollution and resource waste. By
optimizing the development and utilization of mineral resources,
the rational allocation of resources has been achieved, and
the overall production efficiency has been improved. Obtained
funding and technological support from the government or
international investors, which helps promote technological
innovation and sustainable development in the mineral industry.
Actively participating in international cooperation and exchanges,
learning advanced mineral development and environmental
protection technologies from other countries, these experiences
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and technological exchanges can help improve their green total
factor productivity.

The changes of GTFP in Beijing, Tianjin, Shanghai, Zhejiang,
Fujian, Hainan, Qinghai, Ningxia and Xizang are relatively stable.
These regions are distributed in different areas of China. Beijing,
Tianjin, Shanghai, Zhejiang and Fujian are in the east, Hainan is in
the southern coastal area, and Qinghai, Ningxia and Xizang are in
the west. These regions have diverse types of mineral resources. The
eastern regions, such as Beijing, Tianjin, Shanghai, Zhejiang, and
Fujian, have abundant resources such as aquatic products, oil, iron
ore, salt, etc., Due to their geographical advantages. Hainan, as an
island province, also has its unique resource advantages.Thewestern
regions ofQinghai, Ningxia andXizang are rich inmineral resources
and have great development potential, although their natural
conditions are relatively poor. The mineral resources in the eastern
region play an important role in the overall economic development.
Due to its long history of development, advantageous geographical
location, high cultural quality of workers, strong technical strength,
and strong industrial and agricultural foundation, this region has a
strong industrial and agricultural foundation. Although there is a
gap in economic development and technological management level
between the western region and the eastern and central regions,
due to their relatively late development history, these regions have
enormous potential for mineral resource development.

The changes in GTFP in Hebei, Jiangsu, Guangdong, Hubei,
Hunan, Henan, Jiangxi, Anhui, Chongqing, Sichuan, Guizhou,
Yunnan, Gansu, Guangxi, Inner Mongolia, Liaoning, Heilongjiang,
and Jilin are relatively significant. The fluctuation of green
total factor productivity in various regions is influenced by
various factors, including technological progress, technological
efficiency, geographical proximity, economic structural differences,
environmental pollution and resource consumption, as well as
policy and market factors. These factors have varying degrees
and directions of influence in different regions, leading to
fluctuations in GTFP.

Compared with change rate of technology, the fluctuation of
change rate of efficiency in various regions is relatively stable. China’s
mining industry hasmade significant progress in adopting advanced
technologies such as big data, artificial intelligence, and the Internet
of Things. The integration and application of these technologies
have greatly improved the efficiency and accuracy of mining in
management, and resource assessment. Change rate of technology
has a greater impact on the GTFP Index.

5 Conclusion

As a special industry, the research onGTFP ofmineral resources
is very important. The GTFP of China’s mining industry has
shown an overall downward trend for a period, but has rebounded
in recent years. The innovation of green technology and the
upgrading of industrial structure have had a significant positive
impact on the GTFP of China’s mining industry. China’s mining
industry made significant progress in technology, especially in the
application of big data, artificial intelligence, and the Internet of
Things.The development and application of these technologies have
made mining more efficient and accurate in mining, management,
resource assessment, and other aspects. Compared to 2020, the

change rate of technology in various provinces and cities in China
has been improved in 2021.

The mineral resources involves multiple aspects such as
industrial structure, market structure, technological progress,
and government support. Through analysis, we found that: (1)
Technological innovation promotes the improvement of green
mining technology; (2) Appropriate policy support can reduce
regional disparities and promote regional coordination; (3)
Improving resource utilization and environmental management
can promote the sustainable development of the mining industry.
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