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GEOCLASS-image – a versatile
machine learning environment
for ice-surface classification
from high-resolution image data

Silas Twickler, Ute Herzfeld* and Thomas Trantow

Geomathematics, Remote Sensing and Cryospheric Sciences Laboratory, Department of Electrical,
Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, United States

GEOCLASS-image is an open source cyberinfrastructure (CI) for automated
classification of spatial surface structures based on high-resolution image data,
consisting of a data-driven and physically informed neural network (NN) system
and a data analysis tool for, currently, submeter resolution satellite image data
(Maxar WorldView data). The objective of this paper is to introduce GEOCLASS-
image v2.0, which provides a solution for two important problems in machine
learning in the geosciences: (1) Version 2.0 presents an approach for creating,
exporting and sharing labeled training datasets for cryospheric classification
tasks for which such datasets do not currently exist. GEOCLASS-image (v2.0)
offers options for user-friendly, system-immanent application using a graphical
user interface (GUI), and additionally for importing and exporting data sets to
facilitate interoperability with other software, a key for advancing Open Science.
(2) Combining the advantages of a purely data-driven convolutional NN and
a physically driven NN, a new combined NN architecture, termed VarioNet, is
derived using a weighted fusion approach that includes one or several additional
blocks. The GEOCLASS-image CI, demonstrated here for classification of 11
different glacier surface types which include crevasse classes and water-based
classes, extracted from Maxar WorldView1 and WorldView2 data, is expected to
generalize to similar classification problems in other geoscience disciplines and
any high-resolution satellite imagery.

KEYWORDS

physically driven neural network, data-driven neural network, satellite remote sensing,
image classification, glaciology, deep learning, convolutional neural network (CNN),
open science

1 Introduction

The objective of this paper is to describe the capabilities and uses of the
GEOCLASS-image cyberinfrastructure (CI), a machine-learning (ML) system that
facilitates automated classification of spatial surface structures based in high-resolution
image data (Herzfeld et al., 2023). GEOCLASS-image is a data-driven and physically
constrained neural network (NN) system, designed to integrate knowledge in physical
sciences and computer sciences, rather than relying primarily on computer sciences as
the domain for development of ML approaches (Herzfeld et al., 2024). Application of
GEOCLASS-image allows to derive physical process understanding from signatures of
physical processes that are recorded in high-resolution satellite imagery. Results include
parameterized information in the form of thematic maps (time series of segmented
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satellite imagery) that can be used for geophysical interpretation
or to inform numerical modeling. With an easily usable graphical
interface and the option to load high-resolution image data from
satellites and other sources, GEOCLASS-image meets a need in
the cryospheric sciences community for a versatile classification
system whose application does not require understanding of
computational principles. Here, we describe GEOCLASS-image
(v2.0) CI (Herzfeld et al., 2025), an advancement of the open-
source GEOCLASS-image (v1.0) CI (Herzfeld et al., 2023) and its
importance to the geoscientific community.

The GEOCLASS-image CI is situated in the intersection of
(1) geosciences, specifically, glaciology, (2) remote-sensing image
classification and (3) development ofML systems, specifically, neural
networks. The wide acceptance of Convolutional Neural Networks
(CNNs) (Deng et al., 2009; Krizhevsky et al., 2012; Lin et al.,
2013; Simonyan and Zisserman, 2014; Tai et al., 2015; He et al.,
2016a; b; Huang et al., 2017; Xiang et al., 2018; Song et al.,
2019; He et al., 2021; Camps-Valls et al., 2021) may create the
perception that CNNs make any other of NNs superfluous. In
geoscience applications, this is not the case. De facto, there is a
need for physically driven NNs, which allow the incorporation of
the geoscientist’s understanding of those spatial processes that drive
the expected outcome of a NN.

1.1 The glaciological problem

In order to motivate the need for a data-driven, physically
informed approach to ML in the geosciences, we introduce the
glaciological problem that will be utilized for the development
and evaluation of our classification approach. The ML approach
described in this paper is derived using the case study of an Arctic
glacier system during surge, the Negribreen Glacier System (NGS)
in Svalbard as seen in Figure 1. The NGS is a complex Arctic surge-
type glacier that started accelerating in 2016 for the first time in over
80 years and continues to surge at present (2025) (Herzfeld et al.,
2021; Trantow andHerzfeld, 2024b; Lefauconnier andHagen, 1991).
A surge is an acceleration of a glacier or glacier system to 10–200
times (200 for the NGS) its normal, quiescent-time velocities. In
general, surge-type glaciers flow in quasi-cycles, where long periods
of normal flow (quiescent phases) are interspersed with short surge
phases of rapid acceleration, wide-spread surface deformation and
large-scale mass transfer throughout the glacial system (Harrison
and Post, 2003; Jiskoot, 2011; Trantow and Herzfeld, 2024a).

Figure 2 provides exemplary aerial imagery of the structural
deformations observed in the NGS in July 2017 when ice-surface
speeds were highest. For a marine-terminating glacier system like
the NGS, the mass transfer throughout the glacier system results
in rapid calving of the heavily crevassed ice and thus mass transfer
from the glacier system into the Arctic Ocean. Mass transfer during
the height of the acceleration phase in summer 2017 accounted for
around one percent of global sea rise in just 3 months (Herzfeld et al.,
2021; Trantow and Herzfeld, 2024b; Herzfeld et al., 2024).

The complicated and hazardous nature of surging glacier
systems calls for the need to fully understand the physical processes
that occur during a surge at various spatiotemporal resolutions,
which requires a large and comprehensive database and in turn,
the infrastructure to efficiently analyze these data. In this paper,

we demonstrate the capability of GEOCLASS-image to extract
information on the acceleration phase of the NGS by classifying
surface crevasses and melt captured in high-resolution satellite
imagery. Crevasses of different types form as the surge progresses,
which reflect the dynamic forces the ice experiences (Herzfeld and
Zahner, 2001; Herzfeld et al., 2013). The complexity of this problem
illustrates that geophysical knowledge is required to effectively
design and evaluate a ML system for understanding the physical
processes involved in the surge phenomenon.

In turn, the multitude of many different ice-surface types
that occur in close proximity as a consequence of the rapid
transformation of the glacier surface during surge makes the NGS
an ideal testbed for development of an advanced ML approach that
combines the advantages of a physically constrained NN and a data-
driven CNN. The resultant NN, developed and trained for the NGS,
can be expected to generalize to many other types of Arctic and
subArctic glacier systems, such as those in Greenland, Alaska and
the Canadian Archipelago.

1.2 Image classification

In addition to physical knowledge, large amounts of data
are needed to extract the complex information described in the
glaciological problem section, and the data needs to effectively
capture the relevant processes under investigation. In contrast,
advance of NNs, specifically CNNs, has been supported by and
measured against a relatively small collection of published bench-
mark data sets (He et al., 2016a; b; Song et al., 2019). As
they are unrelated to geosciences, these data sets are not useful
to advance knowledge in the geosciences. Development of the
GEOCLASS-image CI has relied on utilization ofMaxarWorldView
image data (Herzfeld et al., 2024). Generalization to facilitate use of
other data sets is one of the objectives of the software described here.

1.3 NNs in the geosciences

A review of NNs, especially in the geosciences and in (satellite)
image classification is given in (Herzfeld et al., 2024). An under-
researched problem in NN development is the creation of labeled
training data sets (Meyer and Pebesma, 2021) of sufficient quality
and size to allow training of deep networks, such asCNNswithmany
layers (Goodfellow et al., 2016; Song et al., 2019; Herzfeld et al.,
2024). To address this gap, GEOCLASS-image includes a module
for labeling training data and an approach for increasing the
size of such training data sets through a combination of expert
knowledge and NN action (Herzfeld et al., 2024). In GEOCLASS-
image (v2.0), additional options to further increase versatility in
labeling and training are realized. Other challenges associated
with advancing remote-sensing-data classification, especially in
the Earth sciences, identified in the literature (e.g.,.Song et al.
(2019); Meyer and Pebesma (2021); Virts et al. (2020); Liu et al.
(2020), include a need for development of image-classification-
problem-specific CNN architectures and time-efficiency of training
CNNs for image classification. GEOCLASS-image (v2.0) addresses
all three. In this paper, we build on approaches described in
(Herzfeld et al., 2024), such as using a shallow, physically driven
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FIGURE 1
Map of the Negribreen Glacier System (NGS), Svalbard. Region of interest outlined by polygon. Background image: Landsat-8 RGB image acquired 5
August 2019. Inset: Location of the NGS in the Arctic archipelago of Svalbard.

network to increase training image quantity, to then drive the
training of a deep network, and present alternatives to this approach.
Here, we will introduce a new, combined NN model (VarioNet)
that integrates a geostatistically-informed multi-layer perceptron
(VarioMLP) (Herzfeld and Zahner, 2001) and a relatively shallow
CNN (ResNet-18) (He et al., 2016a). ResNets are a family of so-
called residual networks with depths of up to 1,001 layers (He et al.,
2016a; b, 2021), of which ResNet-18 is the one with the least number
of layers. In GEOCLASS-image, we use a form of ResNet, because
ResNets have been found to excel at image classification problems
andResNet-18 is sufficient for the task at hand (Herzfeld et al., 2024).

To facilitate open science, we include a summarized user guide
for the GEOCLASS-image (v2.0) CI, including software download,
data set labeling, training andNNmodel derivation and application.

2 Approach

2.1 Overview of GEOCLASS-image

GEOCLASS-image is designed as a user friendly CI dedicated
to ML and image classification for cryospheric scientists and
geoscientists in general, as described in (Herzfeld et al., 2024). In
order to achieve this goal, a multi-step approach is needed, which is
visualized in the flow diagram in Figure 3. A basic understanding of

the workflow of GEOCLASS-image is required to provide context to
the advancements in the new version of GEOCLASS-image (v2.0),
which range from technical data-handling to a more complex ML
approach that facilitates the design of a combined neural-network
architecture.

The GEOCLASS-image workflow includes the following steps:

(1) Data Loading
(2) Dataset Creation
(3) Labeling of split-images
(4) Specification of Training Parameters
(5) Run Training
(6) Run Testing
(7) Visualization of Results
(8) Data Saving

2.1.1 High-level overview of the workflow
Data Loading (Step 1) includes visualization of one or several

satellite images of the study area and provides utility tools that allow
interaction of the user with the study area, here, the region of the
Negribreen Glacier System, though a graphical user interface (GUI).
Coordinate transformations are handled in this step. Central to the
GEOCLASS approach is the identification of crevasse types, or other
glacier surface types such as melt streams and melt ponds, in small
subsets of the satellite image, called “split-images”. The creation of a
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FIGURE 2
Negribreen Glacier System during surge, overview and surface structures. Aerial photographs collected during the 2017 airborne geophysical
observation and ICESat-2 validation campaign over the NGS Negribreen campaign (Geomathematics, Remote Sensing and Cryospheric Sciences
Laboratory, University of Colorado Boulder). Photographs by U. Herzfeld and T. Trantow (Flight 2, 2017–07–15) (Herzfeld and Trantow, 2021). (a)
Overview of the NGS during the acceleration phase of the surge in July 2017. The heavily crevassed surface of the surging Negribreen (background)
contrasts the smooth surface of slow-moving Ordonnansbreen (foreground and background right). Surface melt streams are visible on the
Ordonnansbreen ice surface indicated as darker features in the foreground of the photograph. (b) Calving front of Negribreen, where heavily crevassed
ice advances into the Arctic sea. Ordnonnansbreen in background. (c) Heavy crevassing caused by the surge in the foreground, with minimal or no
crevassing in the background (lower Negribreen). (d) Shear crevasses caused by the surge (Negribreen). (e) Fields of parallel crevasses formed by the
surge (upper Negribreen). (f) Surface melt stream on non-surging Ordnonnansbreen (view upglacier).

good set of labeled training data is key to a successful classification
and typically a bottleneck in the acceptance of a new ML approach
in a geoscience discipline, as highlighted in the introduction. To this
end, sets of split-images are created from a loaded satellite image
in step (2) “Create Dataset” and then labeled in step (3) using the
module “Split ImageExplorer”. Alternative to using theGUI for data-
set creation and labeling, crevasse classes can be identified for pre-
existing split-images, stored in a directory with a subdirectory for
each surface type class. A labeled dataset resultant from steps (2)
and (3) is then ready for use in the training of several ML models
in the next steps (4)–(7), with saving of the labeled data sets carried
out in step (8). Repeating steps can be employed for optimizing
the labeled training dataset, improving class association, and
optimizing training parameters until a well-functioning NN model
is achieved.

Step (4) summarizes specification of the NN architecture and
related training parameters. GEOCLASS-image (v2.0) offers three
machine learning models: These include a data-driven (ResNet-
18), a physically driven (VarioMLP), and a combined (VarioNet)
neural network type: The purely data-driven model looks at the
unprocessed image values, whereas the physically driven model
takes physically determined parameters derived from image values
as input, and the combined model builds on both architectures.
The integration of the two basic models, ResNet-18 and VarioMLP,
into a computationally combined model constitutes one of the core
advancements of GEOCLASS-image (v2.0) over GEOCLASS-image
(v1.0), see Section 2.2. The diversity of ML models enables multiple
approaches, enhancing the versatility of the cyberinfrastructure.

Steps (5)–(8) revolve around the creation and management of
datasets. In order to satisfy the need of datasets in the cyrosciences,
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FIGURE 3
Flow diagram of GEOCLASS-image (v2.0), showing operation steps, inputs/outputs, datasets, configuration files and the feedback loop for dataset
labeling and NN training.

intuitive forms of dataset management and creation are necessary.
This requires the user to be able to create and save large datasets
in a condensed form to reduce the size of these files. These datasets
must also be adjustable and easy to edit to increase usability. Once
a dataset is created, the user must be able to use this to train and
test at least one of the ML models. Through a feedback loop, steps
(4)–(8) allow for variability in the parameters used to train each
model which gives the user more control over the training and
validation process. Once a model is trained, this model can then be
used to classify all split-images in a dataset. One can then save these
predictions to create large datasets (8), or use the predictions to train
more complex models.

2.2 Advancement of surface classification
in GEOCLASS-image (v2.0)

In this paper, we describe advancements of surface classification
using the GEOCLASS-image CI on three different levels:

2.2.1 Utility functions
First, we introduce improvements to the technical

implementation that are on the level of the user interface and the
input/output of GEOCLASS. The most significant changes include

the ability to write out training data sets. However, these changes
facilitate the higher-level advancements of our NN infrastructure,
the creation of shareable, labeled training data sets as are essential
for advancing the use and broader acceptance of GEOCLASS by the
glaciological and other science communities, where users may not
have in-depth skills in ML. This addresses topic (2) discussed in the
introduction.

2.2.2 Combined neural network architecture
A core piece of the work presented in this paper is the

introduction of a new approach for the derivation of a combined
neural network architecture (VarioNet) that leverages the
advantages of two types of NNs, a physically driven neural network
with a MLP for class association (VarioMLP) and a convolutional
neural network (ResNet-18). The physically driven NN utilizes
the connectionist-geostatistical classification method (Herzfeld
and Zahner, 2001), which in itself combines two steps into a NN
structure: The first step is an automated analysis of spatial structures
detectable in high-resolution image data using vario functions, the
second is a class association using a MLP. Central to the derivation
of the combined NN architecture for VarioNet is a weighted fusion
approach that includes one or several additional blocks in the sense
of (He et al., 2016a), see Figure 4, as described in Section 4.3.
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FIGURE 4
VarioNet NN design, architecture and training flow, integrating and combining ResNet-18 and VarioMLP by addition of a third NN architecture
component. This third NN component consists of n MLP Blocks, specified by the user (here, n = 1) with the final dimension of the block equaling 64 ⋅ n.
The input dimension, i, for these blocks is determined by n, with i corresponding to the total number of classes specified by the user for the first block,
and i equaling 64 ⋅ n for all other blocks. The size of the final fully connected layer of each network also corresponds to the total number of classes
specified by the user (here, 11).

The previous version GEOCLASS-image (v1.0) (Herzfeld et al.,
2024) has facilitated an integration of the two approaches, “deep
learning” and physically constrained neural networks. Representing
the deep learning approach by the relatively shallow CNN, ResNet-
18, and using the connectionist-geostatistical classification method
implemented in the form of VarioMLP, we took the following
approach for a synthesis of the two methods, creating VarioCNN:
In essence, VarioMLP is employed to create optimized labeled
data sets using a feed-back loop, which then were used to train
VarioCNN, using the CNN, ResNet-18 for training. In contrast,
VarioNet, to be developed in this paper, realizes a combination at
the level of weighted fusion as a component of the neural network
architecture.

2.2.3 Determination of weights in the fusion
component of VarioNet

The two models, VarioMLP and ResNet-18, are being integrated
using a weighting scheme, which is part of the combined
structure for VarioNet. While it is easy to recognize that each
model has its own advantages, the determination of weights
that measure their respective contribution is a problem that we
examine using two different approaches. First, we use a discrete
optimization. Second, we explore and apply the concept of adaptive
weighting.

2.2.4 Capturing the complexity of the surge
process by a classification with 11 different
crevasse and water-based ice-surface types

To capture the complex nature of a surge in an Arctic glacier
system and the large variety of spatially heterogeneous surface
structures that result from this process, we develop a classification
scheme based on 11 distinct surface classes, which we use to create
a labeled training dataset and subsequently to train the ML model,
VarioNet. This capability is a step forwards towards the solution of
the glaciological problem (Topic 1 in the introduction).

2.2.5 Upward compatibility
While the functionality of GEOCLASS-image (v2.0) is upward

compatible with GEOCLASS-image (v1.0), the main benefits of the
GEOCLASS-image (v2.0) CI result from its modular design. This
allows for improvements and expansions as needed. Because the
approach used for this software is modular, it can prove effective in a
wide range of applications. Specifically, ML tactics and techniques
can be easily applied to cryospheric problems allowing scientists
to utilize the vast data currently accessible through Open Science
practices.TheGEOCLASS-image software also allows users to create
their own labeled datasets without hand-labeling all the images.
This feature is crucial to the cryospheric sciences and applications
community, as large labeled training datasets are lacking, requiring
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scientists to hand-label datasets.While hand-labeled datasetsmay be
more accurate, depending on the labeler, many ML models require
large datasets on the magnitude of 10,000 images for generalized
predictions (Krizhevsky et al., 2012; Herzfeld et al., 2024).

2.3 Geophysical application and data sets

The evolution of the current surge in the Negribreen Glacier
System will be employed to evaluate the performance of the
GEOCLASS-image software. To the end, we will utilize a crevasse-
centered approach (Mayer and Herzfeld, 2000; Herzfeld et al.,
2004; Trantow and Herzfeld, 2018; Herzfeld et al., 2022),
building on the physical knowledge that crevasses are the surface
signature of the deformation that results from glacial acceleration
during the surge (Section 1 and see Mayer and Herzfeld (2000),
Herzfeld et al. (2014), Herzfeld et al. (2024).

In order to study this glaciological phenomenon using
GEOCLASS-image, high-resolution satellite imagery of the NGS
from the surge is needed as input data. Specifically, sub-meter
spatial resolution is required for the crevasse-centered approach.
This requirement is met by the panchromatic band from Maxar’s
WorldView satellites. The panchromatic band offers the highest
resolution in WorldView and many other satellites, making it
the most suitable source for spatial classification. Maxar satellites
have collected optical satellite image data, which are available for
cryospheric science uses as value-added products through the
Polar Geospatial Center and the NASA Commercial SmallSat Data
Acquisition (CSDA) Program, these are a widely used form of
commercial imagery data (NASA, 2025; Polar Geospatial Center,
2025). Images for the tests of the GEOCLASS-image software
range from May of 2016 to August of 2022 (Herzfeld et al., 2024).
Each WorldView satellite has a revisit time of approximately 1.5
days, making it well-suited for monitoring the rapidly changing
glaciological features of a surging glacier (Earth Observation Portal,
2023a; Earth Observation Portal, 2023b). However,WorldView data
are optical image data and as such are affected by cloud cover, which
often limits ground views in the Arctic. In consequence, only a
relatively small number of useful datasets exist for the study of the
surge in the NGS (Herzfeld et al., 2024). Airborne geophysical data,
including image, time-lapse and lidar altimeter data, collected over
theNGS in 2017, 2018, and 2019 by the second author and her group
at the Geomathematics, Remote Sensing and Cryospheric Sciences
Laboratory, University of Colorado Boulder, are used for evaluation
of the labeled training data set and the results of the classification
based on different neural network models derived here (Herzfeld
and Trantow, 2021). This is used to determine the accuracy and
effectiveness of the GEOCLASS-image software and the different
machine learning models provided in its cyberinfrastructure.

The use of machine learning to classify complex crevasse
structures has been demonstrated for other surge type glaciers
such as the Bering-Bagley Glacier System, Alaska (Herzfeld and
Zahner, 2001; Herzfeld et al., 2013), using nine classes. In the study
that introduces and applies GEOCLASS-image (v1.0), six different
crevasse classes are employed: Undisturbed Snow, One Directional,
Multidirectional, Shear, Shear/Chaos, and Other. Here, we expand
the surface types for the classification, as seen in Figure 5 to
include water-based features: Melt Streams/Ponds and Sea Ice, along

with nine crevasse-derived classes that are essential for capturing
the complexity of the integrated ML system, VarioNet, developed
in this work.

3 Uprades to GEOCLASS-image utility
functions

After the first release of the GEOCLASS-image CI many
changes were made to the individual programs inside the CI. A
number of small changes were implemented for optimization and
to increase the ease of use of these programs; however, significant
changes were made to increase the versatility of GEOCLASS-
image. These upgrades were implemented to give the user more
options for training, testing, creating datasets, and more. The goal
of these improvements is to broaden the applications of the software
and increase the user variability to fit individual needs. These
modifications were also made for Open Science as it improved the
output datasets available through this public software. In summary,
software upgrades were installed to increase the versatility of input
used, approaches used, and the output created.

3.1 Versatility of input

To derive a training data set, split-images are created from
the WorldView data set and labeled by surface type (class type).
In GEOCLASS-image (v1.0), the only way to view these labeled
images, create datasets, and train the model was by use of the
GUI. Due to the format of these datasets, one could only create
a dataset for the specific area of interest, limiting the datasets to
a single glacial system. The upgrades in GEOCLASS-image (v2.0)
enable users to employ training images without geo-referencing
data, from multiple glaciers and separate regions, which allows for
more general datasets and classifications. In addition to using the
GUI, labeled training images can now be exported into a directory
that contains a subdirectory for each crevasse/surface class, thus
facilitating application of the labeled training data sets within as well
as independently of GEOCLASS-image. The new process allows us
to create benchmark data sets in glaciology, suitable for assessment
of classification approaches.

Another implementation for versatility of input comes in the
sizing of the split-images created. While v1.0 already allowed the
user to change the image size for a dataset, there was no reason for
these images not to be square in shape as ResNet-18 excels with
square images. For the second release of GEOCLASS-image it was
deemed that the use of 3-4-5 images (sides proportional to 3 and
4, with the diagonal proportional to 5) could improve computation
time and increase accuracy for VarioMLP. This geometry allows for
pixel intensity values for real pixels as every lag step would relate to
a pixel. Using square images with VarioMLP allowed for this along
the sides of the image but the diagonal never corresponded to a real
pixel value.

3.2 Versatility of output

In order to properly accommodate for the need of datasets in the
cryospheric community, several enhancements to the CI were made
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FIGURE 5
Example split-image for the physically derived crevasse classes. These classes were created based on the underlying physics and dynamics that
cause the crevasse to form. (a) Class 1: Undisturbed Snow, (b) Class 2: Slow Moving Ice, (c) Class 3: Shear, (d) Class 4: Parallel, (e) Class 5: Parallel with
Shear, (f) Class 6: Subordinate Shear, (g) Class 7: Multidirectional, (h) Class 8: Multigenerational, and (i) Class 9: Chaos. This figure also includes
examples of split-images used for the water based classes (j) Class 10: Melt Streams and Melt Ponds, and (k) Class 11: Sea Ice. WorldView2 data set:
WV02_20160625170309_1030010059AA3500_16JUN25170309-P1BS-500807681050_01_P004_u16ns3413.tif. WorldView1 data set: WV01_
20170530144716_1020010060152E00_17MAY30144716-P1BS-501481791090_01_P004_u16ns3413.tif. WorldView1 data set:
WV01_20180526211954_102001007158CA00_18MAY26211954-P1BS-502347313040_01_P005_u16ns3413.tif.

allowing for greater versatility in the saving of datasets. Through
a new variable in the configuration file, the user can now save all
predictions in a dataset. Another addition to the configuration file
allows the user to save “equal” datasets. This feature allows the user
to create a dataset in which the class with the least associated images
sets the maximum class size. For the other classes, the images with

the highest confidence will be saved until the total number of images
for that class is equal to the maximum class size. The confidence
is calculated based on the probability that the image labeled by
the model is the correct class, as formulated in Section 5.3.2. This
minimizes the bias in the network and serves to prevent over-
classification for classes with the largest number of images labeled.
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4 Deriving a combined neural network

There are three approaches available to the user in GEOCLASS-
image (v2.0): a data-driven approach through ResNet-18, a
physically driven approach through the use of VarioMLP, and
combination of the previous approaches with VarioNet. The data-
driven approach has proven critical for many aspects of image
recognition and classification.The reliance on every pixel causes this
approach to have a high computational cost but will have a high
accuracy if each class is visually different. The constraints of this
approach can be seen in the networks inability to be validated with
physical phenomena. With no physical constraints, the network can
make predictions off incorrect patterns it finds leading to a poor
performance on validation datasets.

Unlike the data-driven ResNet-18, VarioMLP is considered
a physically driven approach due to the input data trained on.
The network is driven based on vario functions, which give
insight to the structural patterns found inside the image. These
patterns occur on the basis of ice dynamics, which are confined
by the physics of the glacier. Since vario functions are used to
differentiate between the different physically derived patterns, it
would reason that vario functions are physics-based data, making
VarioMLP a physically driven approach (Herzfeld and Zahner,
2001). However, with increasing complexity, this approach decreases
in effectiveness as different classifications of crevasses can cause
similar underlying patterns that VarioMLP could mistake. The
relationships between vario functions and surface signatures of
the surge process are further described in Herzfeld et al. (2004),
Herzfeld et al. (2024).

A newMLmodel, VarioNet, combines both approaches through
a weighted fusion of the respective models’ outputs before passing
this through a NN structure. The user can control the weight
of each approach through the basic weight function y = αx+ βx′

where y is the input to the model, α and β are the weights
where α+ β = 1, and x and x′ are the output of ResNet-18 and
VarioMLP respectively.

4.1 VarioMLP

Given that crevasses form as a result of physical processes,
a physically driven model can be expected to prove effective in
their classification. VarioMLP is a physically driven multi-layer
perceptron with back-propagation of errors that uses the geospatial
data from the first order vario function of the image (Herzfeld and
Zahner, 2001; Herzfeld et al., 2024). An example of how these vario
functions may look can be seen in Figure 6. The vario function γ is
calculated based on Equation 1 for every valid pixel indexed by i,
with the user specifying the total number of lag steps n.

γ (h) = 1
2n

n

∑
i=1
(z(xi) − z(xi + h))

2 (1)

In this equation z(xi) represents the pixel intensity taken at xi,
and h is the distance separating each measurement where n ⋅ x is
the dimension of the image in that direction. To limit edge effects,
a lag threshold is used to limit the range of the first pixel in each
pair. The lag threshold will then determine the total lag-steps as
the original dimension gets scaled by the lag threshold, and this

becomes the maximum extent for the first point thus limiting the
number of pairs. After the vario function is calculated in every
direction, the image goes through a random rotation. This rotation
is to account for the spatial variability across a crevasse, for instance,
ice that only crevasses in a single directionwould have differing vario
functions depending on the direction ofmotion of the glacier, which
varies spatially. From tests of how vario functions are effected by
rotations and flips, it was determined that there are only four unique
combinations of directional vario functions. Because of this, only
three directional vario functions, horizontal, vertical, and one of the
diagonals, are used as the input of VarioMLP. The architecture of
VarioMLP revolves around an input node per vario-function value.
For example, for an image with 33 lag-steps this would be 99 as
there are three directions, each with 33 lag-steps. The size of the
output node corresponds to the total number of classes being used
as specified in the configuration program (Herzfeld and Zahner,
2001). The last variable for the architecture of VarioMLP is the
number of hidden layers. The optimal hidden layer size found for
the majority of ice-surface classification was [5,2]. Increasing the
number of hidden layers can lead to an over-complication of the
network typically resulting in overfitting (Herzfeld et al., 2024).

With the use of VarioMLP, the GEOCLASS-image approach
does not require any preprocessing or data enhancement
such as despeckling. The vario function component of the
original connectionist-geostatistical method facilitates the
extraction of spatial signatures from noisy data and data with
missing pixels (Herzfeld and Zahner, 2001).

There are two different vario function scripts used for
GEOCLASS-image. The first is only used when the split-images
are of a certain size. If the split-images were saved in a shape
proportional to a 3-4-5 rectangle, then this spatial characteristic
is used to optimize the calculated vario function. This script uses
the proportionality of the image to have a different lag step in each
direction corresponding. For example, if an image of size [201, 268]
was used with a lag-threshold of 0.5, the total lag number would
be 33 as 201⋅0.5

3
= 268⋅0.5

4
= 33.5 which is rounded down to 33. In

the vertical direction the pixel intensity would be calculated every
3 pixels, in the horizontal every 4, and in the diagonal direction
every 5 pixels. The advantages of using images of this proportion
are two-fold as all the gray values are calculated from real pixels
and the geometry allows for faster calculations. If an image does
not have this intrinsic geometry, the image is cropped to its smallest
dimension, then the lag step is calculated from the specified total
amount of lag steps and the new dimensionality of the image.
While calculating the vario functions for these images, the pixel
intensity will be recalculated from the nearest pixel. This is due to
the geometry of squares as the diagonal has the length of the sides
multiplied by√2.

4.2 ResNet-18

Deep learning has led to many breakthroughs in image
classification (He et al., 2016a; He et al., 2016b, He et al., 2021).
ResNet-18 is a branch of widely used deep residual networks
(ResNets) that has 18 deep layers, making it faster but less accurate
than deeper versions of ResNet (He et al., 2016a). While there are
many pretrained versions of ResNet-18 available for use, due to
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FIGURE 6
Visual and structural analysis for an example of two ice-surface classes, a melt stream (Class 10) and a parallel crevasse (Class 4). Structural analysis was
conducted through the calculation of directional vario functions in GEOCLASS-image (v2.0). split-images selected from a WorldView-2 image from
06/26/2016 Note the visually similar appearance of the associated vario fucntions for both classes. Vario functions calculated with a lag step of three
for the vertical, four for the horizontal, and five for the diagonal with a total of 33 lag steps. (a) Melt stream. (b) Directional vario function for melt
stream split-image. (c) Parallel crevasse. (d) Directional vario function for parallel crevasse split-image. WorldView2 data set: WV02_20160625170309_
1030010059AA3500_16JUN25170309-P1BS-500807681050_01_P004_u16ns3413.tif.

the lack of cryospheric datasets, the ResNet-18 architecture was
used in the form available on pytorch. The main issue with using
deep networks for image recognition is the degradation problem
where network accuracy can decrease if the model passes a certain
depth (He et al., 2016a). Another issue that is rather unique to
the world of geosciences is the absence of physical validation of
image classification. For deep, data-driven networks, like ResNet-
18, image classification is based off raw pixel data. While this can
be effective for many image classification problems, the network
can form incorrect perceptions as there is no physical information
being taken from the image. This limitation can be seen in the
melt type classifications, image data may be similar to a crevasse
but structurally they are very different. A second example of the
limitations of ResNet-18 is the fact that it typicallymisclassifies Shear
crevasses as will be demonstrated and analyzed in Section 6.2. In

Figure 7a, ResNet-18 accurately predicts the images it is trained on
but fails to perform as well on the validation dataset, resulting in
overfitting. This flaw for geophysical application calls for the need
of a combined approach that utilizes a data and physically driven
machine leaning models (Reichstein et al., 2019).

4.3 VarioNet

The combination of data-driven and physically driven ML
models is achieved with the creation of VarioNet, new in v2.0 of
GEOCLASS-image. This ML model uses a data-fusion technique
to combine the full architecture of VarioMLP and ResNet-18
as shown in Figure 4. The combined architecture allows for the
network to make predictions based off structural patterns from
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FIGURE 7
Graphs of training loss and validation loss, created during model training, used for model evaluation. (a) Example of an overfitting situation, from a
ResNet-18 training run. While the training loss approaches zero, the validation loss remains high. Training and validation loss do not converge. (b)
Example of a good training process, indicating good model performance. Validation and training losses decrease at similar rates and converge.
Example from from the training of VarioNet with 50 normal epochs and 10 fine epochs.

the ice surfaces as well as utilizing deep residual learning based
on the raw pixel data. A combined network can be more effective
for structurally based image classification. VarioNet combines the
important geospatial features unique to these complex classifications
withmodernML to provide data andphysically based predictions on
structurally complex ice-surfaces.

In the flow diagram in Figure 4 we see that VarioNet is trained
as follows: We train VarioMLP and ResNet 18 separately, using the
same labeled training data set. Then, the raw outputs (in the form
of logits, which are un-normalized scores the network assigns for
each class per image) for each network are combined in a weighted
fusion approach, illustrated by the curved flow arrows in Figure 4.
The logits fromboth neural nets (VarioMLP andResNet-18) become
the inputs of a MLP. This MLP was coded to follow the logic and
architecture of ResNet as described in He et al. (2016a) with a
user-scalable depth to accommodate for a variety of classification
tasks. The MLP consists of n blocks, where each block has (1) a
fully connected layer that scales the input to a dimension of 64 ⋅
n, (2) ReLu activation, (3) another fully connected layer with same
number of input nodes as output nodes, (4) a downsample layer with
the same input and output dimensions as the first fully connected
layer. Once the training data passes through all the blocks, the
data is passed through a final fully connected layer with an output
dimension equal to the total number of classes specified by the user.

While designing VarioNet, experiments were conducted to
determine the optimal architecture. These trails included modifying
the number of blocks, the scale factor, and the addition of a
bottleneck layer as described by He et al. (2016a). VarioNet was
tested with one, three, and five blocks, scale factors of 32, 64, 128,
and 256, and bottleneck layers of various sizes were implemented at
different points in the flow diagram. It was determined that for the
classifications in this paper, VarioNet performed best with one block,
no bottlenecks, and a scale factor of 64.

5 Application: surface classification,
NN derivation, and optimization

5.1 Creation of dataset

To evaluate the performance of the three networks on
geophysically confined classes, a relatively complex dataset was used
for training. This dataset consists of nine classes which relate to the
type of crevasse formed and two classes representing melt features
(streams/ponds) and sea ice. The individual classes for this new
dataset are as follows: Undisturbed Snow, Slow Moving Ice, Shear,
Parallel, Parallel with Shear, Subordinate Shear, Multigenerational,
Multidirectional, Chaos, Melt Streams/Ponds, and Sea Ice. These
classes were developed by expanding upon previous classifications
performed using the GEOCLASS-image CI (Herzfeld et al., 2024).
Example split-images for each class can be visualized in Figure 5.
A total of 750 split-images were labeled, with 600 images used
for training and the other 150 images used for validation. With
the exception of Melt Streams/Ponds and Sea Ice having 50
and 25 labeled images, respectively, 75 images were labeled for
all crevasse-based classes to reduce biasing from an unequal
dataset. As seen in Figure 8, these split-images were sourced
from the following WorldView dataset: WV02_20160625170309,
WV01_20170530144716, WV01_20180526211954. Given the high
spatial, visual, and structural variability for Subordinate Shear, Melt
Streams, Melt Ponds, and Sea Ice images, it was theorized that
these would be the hardest classes to detect, and thus VarioNet
should have the highest accuracy for these classes. ResNet-18
was hypothesized to excel for Undisturbed Snow, Slow Moving Ice
and visually distinct crevasse classes such as Shear, Parallel, and
Parallel with Shear. For more structurally complex classes such as
Multigenerational, Multidirectional, and Chaos it was expected that
VarioMLP would outperform ResNet-18.
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FIGURE 8
Labeled Dataset used for classification experiments. (a) Labeled images taken from the 2016 WV image, (b) images labeled from the 2017 WV dataset,
(c) training and validation imagery from the 2018 WV image, and (d) legend for the labels WorldView2 data set: WV02_20160625170309_
1030010059AA3500_16JUN25170309-P1BS-500807681050_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20170530144716_
1020010060152E00_17MAY30144716-P1BS-501481791090_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20180526211954_
102001007158CA00_18MAY26211954-P1BS-502347313040_01_P005_u16ns3413.tif.

5.2 Training

Universal training and testing scripts are used in the
GEOCLASS-image CI, allowing the user to specify all parameters
in the configuration file and run one program for training and
another for testing regardless of the model. In the configuration
file, there are a variety of parameters the user can control to change
how the models are trained. Some of these parameters are universal,
such as the train with images parameter, while some are specific
to the model being trained. The universal parameters are (1) train
test split, (2) train with images, (3) use Compute Unified Device
Architecture (CUDA), (4) number of epochs, (5) learning rate, (6)
batch size, (7) activation and (8) optimizer which are standard
parameters for NN training (Maas et al., 2013; Nair and Hinton,
2010; Kingma and Ba, 2014; Goodfellow et al., 2016; Luebke, 2008;
Shorten and Khoshgoftaar, 2019) or specific to VarioMLP and
introduced in (Herzfeld et al., 2024).

For the purposes of this paper, a train test split of 0.8 was used,
meaning 80% of the labeled data was used for training while the
other 20% was used for validation of the network. The network’s
performance on the training and validation datasets is tracked using
training and validation losses. These losses are calculated based on
Equations 2 and 3 where L is the loss, N is the size of the dataset,
C represents the total number of classes, y represents the label for
each split-image fed through a model and ŷ is the label predicted
by the model.

L = 1
N

N

∑
i=1

Loss(yi, ŷi) (2)

Loss (y, ŷ) = − 1
N

N

∑
i=1

C

∑
k=1

yi,k log(ŷi,k) (3)

These calculated losses are then saved in the form of a machine
learning graph as seen in Figure 7. The graphs are used to determine
network performance such as underfitting or overfitting. When a
network performs well, both training and validation loss will be low

and converge as the number of epochs increases, as exemplified in
Figure 7b. Train with images, as the name entails, uses the folder
of images specified in the configuration file to train the specified
model if the variable is true. The use of CUDA allows for parallel
computing using the computer’s graphics processing unit (GPU)
to reduce training time. The rest of the universal parameters are
parameters seen across machine learning applications and will
vary based on the needs of the user. For the purposes of the
experiments in this paper, a learning rate of 5e-5, batch size of
2, Leaky Rectified Linear Unit (Leaky ReLU) activation, and the
Adam optimizer were used (Maas et al., 2013; Nair and Hinton,
2010; Kingma and Ba, 2014). For the number of epochs, multiple
values were used. In order to observe the longterm behavior of
each model, an epoch size of fifty was used. A high number of
epochs was used to get a sense of over or under training as well as
giving a good estimation of how many epochs were needed for an
accurate prediction. The remaining training parameters are specific
to VarioMLP or VarioNet (Herzfeld et al., 2024). As previously
stated, VarioMLP allows for the user to specify the hidden layers.The
user is also able to change the number of lag steps for the calculation
of the vario function in the configuration file.

5.2.1 Training VarioNet
The input for VarioNet is a weighted combination of outputs

produced by ResNet-18 and VarioMLP meaning the training
processes is more involved than that of ResNet-18 or VarioMLP.
Although VarioNet uses the same universal training and testing
scripts used for ResNet-18 and VarioMLP, to get optimal weights for
ResNet-18 and VarioMLP, the user has to run a separate training
program. This program trains ResNet-18 and VarioMLP on the
labeled dataset and their weights are saved inside the working folder.
This feature allows VarioNet to load pre-trained versions of these
networks in order to increase the accuracy of the combined network.
Once theweights of ResNet-18 andVarioMLP are saved, one can run
the universal training and testing scripts on VarioNet. It’s important
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to note that after training ResNet-18 andVarioMLP, a variable called
train indiceswill be updated in the configuration file.This is to ensure
that the same images are being used for training and validation
while training Resnet-18 and VarioMLP as when training VarioNet
to minimize bias. While training VarioNet, there are two stages to
optimize the training process. First, VarioNet is trained the same
way the other models are trained, using the same number of epochs
and learning rate to get a general classification. Next, the training
program ensures that all of theweights are unfrozen and the learning
rate is lowered to fine tune the whole network. The latter stage will
train the network for the amount of time specified by the number of
fine epochs in the configuration file.

5.3 Experiments for optimization of
weights in a fused neural network

To investigate the relative importance of integrating two
different NN types, a CNN and a physically driven MLP, into a
single neural network structure, we conducted three experiments to
optimize theweights of the respectiveNN types.Thefirst approach is
discrete optimization to determine optimal weights.The second and
third approaches utilize adaptive weighting, with different formulas
for weight determination.

5.3.1 Discrete weight optimization
To find the optimal weights for VarioNet with fusion, the lowest

validation loss achieved during training and the validation accuracy
of the network were tracked. The optimal weights were determined
using a stepwise discrete optimization with an interval of 0.1. As
seen in Table 1, the resultant optimally weighted combined NN
is achieved by weights of β = 0.45 for ResNet18 and α = 0.55 for
VarioMLP. Surprisingly, VarioNet performed adequately regardless
of the weights as the accuracy on the validation dataset never
dropped below 91%. This indicates that VarioNet extracts necessary
information from the input logits, despite how the logits were
weighted before fusion. For example, when driven with α = 0.95 and
β = 0.05 VarioNet had an accuracy of 92.5%, even thoughVarioMLP
had an accuracy of 52.3%, see Section 6.1. This is significant
because it suggests that the superior performance is intrinsic to the
architecture of VarioNet.

5.3.2 Adaptive weight optimization
To avoid the need of sensitivity studies for future classification

tasks, an option was added to automatically calculate fusion weights
for each image, motivated by an approach described in Zhang et al.
(2018) where the confidence of a CNN is used to determine whether
a model should use a CNN or MLP to classify each image.

The confidence for each network is calculated from each logit,
defined in Equation 4 where z is the logit, W is the weights matrix,
x is the input feature vector, and b is the bias vector. The confidence,
derived from the softmax function described in Equation 5, gives
an array of length N where zn ∈ [0,1] and ∑

N
1 zn = 1, where n is

the indexed class and N is the total number of classes. For each
class n, the output from the softmax function of zn represent the
probabilities that the image belongs to class n. The predicted class
for each image is then selected based on the class with the highest
confidence.

TABLE 1 11 Class fusion weights sensitivity study.

ResNet-18 weight Accuracy Min validation loss

0.95 92.4 0.637

0.85 92.6 0.630

0.75 92.5 0.638

0.65 92.2 0.612

0.55 92.6 0.650

0.45 94.0 0.620

0.35 91.8 0.635

0.25 92.8 0.582

0.15 91.8 0.638

0.05 92.5 0.641

The idea of adaptive weighting is that the weights are initialized
using a softmax function,which can either depend on the confidence
of the CNN alone (Equation 6) or be formulated in a symmetric
fashion using the confidence of both network types (Equation 7).
The adaptive weighting process evaluates confidence for each small
batch of training images and then recalculates the measure as the
process continues. This is illustrated in Figure 9.

Following a similar logic as that used by Zhang et al. (2018),
the first method of adaptive fusion was derived. For this method,
the weight of ResNet-18, β, is determined from the confidence
of ResNet-18 as seen in Equation 6. For the second method, it
was assumed that when ResNet-18’s confidence is low, VarioMLP’s
confidence would also be low, and that the most accurate prediction
would come from VarioNet using approximately equally weighted
logits from both VarioMLP and ResNet-18. The equation for β for
this method can be found in Equation 7 with z representing the
logits from ResNet-18 and y representing the logits from VarioMLP.
For every method the weight of VarioMLP was determined by the
following equation: α = 1− β where α,β ∈ [0,1].

The distributions of β, as seen in Figure 9, shows the
confidence of VarioNet increasing as β increases for both methods.
Incorporating the inverse confidence of VarioMLP increases the
overall accuracy of VarioNet, the accuracy of VarioNet at lower
values of β, and the average value of β. From these findings it was
determined that the second method is more robust and accurate
and was therefore implemented in VarioNet for the second release
of GEOCLASS-image.

z =Wx+ b (4)

softmax(zn) =
ezn

∑N
j=1

ezj
, forn = 1,2,…,N (5)

β =Max (so ftmax (z)) (6)

β =
Max (so ftmax (z)) + [1−Max (so ftmax (y))]

2
(7)
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FIGURE 9
Plots showing the effect of beta, the weight of ResNet-18, on the confidence of VarioNet on testing data. Points are colored by density with the scale
showing the normalized densities that range from zero to one. (a) This plot shows which beta values were used for training data when beta was
calculated based off the confidence of ResNet-18. (b) This plot was created from the same dataset as (a) but beta was calculated based on both
ResNet-18’s and VarioMLP’s confidence.

As seen in Figure 9a, adaptive weighting with Equation 6 tends
to result in a close correlation between β and the confidence of
VarioNet. This nearly linear relation indicates that the adaptive
weighting process is not able to shift effectively between the
weights of MLP and CNN. Therefore, the logic behind using a
combinedmodel is rendered useless as its performance is exclusively
dependent on one of the approaches. Equation 7 resulted in a more
even weighting with lower β values relating to high confidence
for VarioNet as seen in Figure 9. As a result of the symmetrical
approach taken with Equation 7, VarioNet is able to shift away from
the CNN and towards a balanced weighting between ResNet-18 and
VarioMLP for the optimally combined result.

5.3.3 Optimized weighted fusion
For a visual comparison in the difference of discrete and

adaptive fusion using Equation 7, both trained models of VarioNet
were used to classify all split-images over the NGS from the
WV dataset described in Section 5.1. The resulting predictions
can be seen in Figure 10, where both models resulted in a very
similar spatial distribution of classes. These similarities can also
be visualized in Figure 11a with discrete weighting resulting in a
slightly higher accuracy for Class 6: Subordinate Shear. Adaptive
weighting resulted in an accuracy of 92.5% without fine tuning
and as seen in Table 2, an accuracy of 95.5% with the optimal
fine tuning learning rates. Discrete weighting was able to slightly
increase the accuracy of VarioNet on the validation dataset to 94.0%.
However, as can be visualized in Figure 11b, fine tuning decreased
the accuracy of VarioNet on Subordinate Shear meaning the total
accuracy the fine-tuned discretely weighted model of VarioNet
barely increased to 94.1%.

Overall, discrete weighting will give less freedom to the network,
decreasing training time and allow the user to gain a better
sense of how the weights of ResNet-18 and VarioMLP will affect
the predictions from VarioNet based on the classification task.
Adaptive weighting will increase training time as it recalculates
the fusion weights for ResNet-18 and VarioMLP each batch. As

a result, this method can be used for more complex classification
tasks where the optimal fusion weights vary heavily depending on
the class. As shown in Table 1, VarioNet performed consistently
across different weightings, indicating that recalculating weights
by batch will have minimal impact on classification results
for this study.

6 Application and validation

After VarioNet, ResNet-18 and VarioMLP were trained with
the same hyperparameters, as detailed in Section 5.2, the epoch
with the lowest validation loss was selected from the plots in
Figure 12 for each model. Using the GEOCLASS-image CI, the
models were loaded with weights corresponding to the epoch
selected for each model: 49 for VarioNet, 48 for ResNet-18 and
42 for VarioMLP. These trained models were then applied to
classify all 33,234 split-images from the same WorldView dataset
used for labeling, as described in Section 5.1. The GUI allows
individual analysis of each model’s prediction and confidence levels,
as well as comparison of the full-scale spatial class distribution
against prior domain knowledge for validation. The CI also allows
for a quantitative analysis through the validation dataset created
during training.

6.1 Validation dataset analysis

The complete labeled dataset created by each model, VarioNet,
ResNet-18 and VarioMLP, was subset to only include the split-
images that were used for validation through the variable train
indices as described in Section 5.2. These datasets were then used to
determine each network’s overall accuracy as well as give a class-by-
class analysis as seen in Figures 11, 13. As detailed in Section 5.3.3,
VarioNet performed adequately regardless of the fusion method
used. As seen in Figure 11a, discrete weighting resulted in better
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FIGURE 10
Classification results from VarioNet trained with discrete (a–c) and adaptive (d–f) weighting. For adaptive weighting, Equation 7 was used to determine
fusion weights. Classifications are arranged in chronological order from 2016 (a, d) till 2018 (c, f). The two weighting methods result in nearly identical
predictions for the 11 classes (g). WorldView2 data set: WV02_20160625170309_1030010059AA3500_16JUN25170309-P1BS-500807681050_
01_P004_u16ns3413.tif. WorldView1 data set: WV01_20170530144716_1020010060152E00_17MAY30144716-P1BS-501481791090_01_P004_
u16ns3413.tif. WorldView1 data set : WV01_20180526211954_102001007158CA00_18MAY26211954-P1BS-502347313040_01_P005_
u16ns3413.tif.

FIGURE 11
Histograms to visualize how VarioNet behaves under different training conditions. VarioNet was trained and validated with the same dataset where the
accuracy for each class was calculated based on the validation dataset. (a) This graph shows the effect of adaptive weighting on the accuracy of
VarioNet for a 11 class prediction. The light tan histograms shows the optimal weights found from Table 1 where the weight of ResNet-18 was 0.45 and
0.55 was the weight for VarioMLP. The dark brown histograms represent the accuracy of VarioNet when using adaptive weights. Both tests were trained
without fine tuning. (b) This histogram shows the effect of fine tuning VarioNet. The light tan bars represent an additional 10 fine epochs with a learning
rate of 5e-6, where the dark brown relates to training without fine tuning. The same discrete weights as in (a) were used for both tests. The labels
correspond to the classes as seen in Figure 14J.
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TABLE 2 Learning rate sensitivity study, training and testing were conducted with the same dataset over 50 normal and 10 fine epochs, using adaptive
weighting.

Learning rate Fine learning rate Accuracy Min validation loss

5e-4 5e-6 93.6 0.254

5e-5 5e-6 95.5 0.344

5e-5 5e-7 94.0 0.339

5e-6 5e-8 71.4 2.235

FIGURE 12
Training and validation loss graphs for the 11 class predictions from the three NN types trained. All networks were trained and validated with the same
dataset and hyperparameters for 50 epochs. (a) Smooth training loss graph for ResNet-18 showing overfitting. (b) Smooth raining loss graph for
VarioNet showing slight overfitting. (c) Noisy training loss graph for VarioMLP showing overfitting.

accuracy for Subordinate Shear, but a lower accuracy for Sea Icewhen
compared to discrete weighting. With 10 epochs of fine tuning, the
accuracy from discrete weighting for Subordinate Shear drastically
decreased, as seen in Figure 11b.This resulted in the overall accuracy
on the validation dataset increasing from 94.0% to 94.1%. With
adaptive weights, the accuracy of VarioNet slightly decreased to
92.5% when trained for 50 epochs, but increased up to 95.5% from
fine tuning with the optimal learning rate as seen in Table 2.

The accuracy of the three models is evaluated for each ice-
surface class in Figure 13. Of the three models, VarioNet resulted
in the highest validation accuracy for Slow Moving Ice, Parallel,
Subordinate Shear and Multigenerational Crevasses. On the other
hand, VarioNet did not have the lowest accuracy for any class,
compared to ResNet-18 and VarioMLP. As a result, this combined
NN resulted in the highest accuracy when compared to the
other networks available through GEOCLASS-image. Although
ResNet-18 labeled more of the validation dataset correctly for the
following classes: Unidsturbed Snow, Shear, Parallel with Shear, Melt
Streams/Ponds and Sea Ice, it had an overall accuracy of 89.2%.
This decrease in overall accuracy is the result of relatively poor
performance for Subordinate Shear and Multidirectional crevasses.
While VarioMLP labeled only 52.3% of validation images correctly,
this model correctly labeled 100% of the validation images for
the Multidirectional and Chaos classes. VarioMLP performed the
worst on Shear crevasses in the validation dataset, having a lower
than 40% accuracy for Shear and Subordinate Shear. However,
as seen in Section 6.2 VarioMLP has a tendency to correctly classify
the shear types, while also producing false positives.

6.2 Geophysical validation and
interpretation

The time series of the three classifications from VarioMLP,
ResNet-18 and VarioNet allow a geophysical interpretation of the
evolution of the surge in the NGS, based on surface signatures
of two types of geophysical processes that occur during the
surge: (1) Deformation and (2) occurrence of supraglacial water
(see, Figure 14). The interpretation is based on the results from
this classification, augmented by airborne field observations of
the surge and satellite image analysis (Herzfeld et al., 2024;
Herzfeld et al., 2021; Herzfeld et al., 2022; Trantow and Herzfeld,
2024b). In 2016, the surge had affected only a small area near
the calving front of the glacier. The surge started upstream of the
calving front, in a region where three heavily crevassed across-
flow regions are seen in Figure 8a and then quickly progressed
downglacier, reaching the calving front by the time the 2016
imagery was collected. All three models capture the complex
crevasse types (Shear, Subordinate Shear, Multidirectional) in the
2016 image correctly, however, there are significant differences in
the correct association of the individual classes by each network.
Generally, VarioMLP and VarioNet individually perform well at
detecting the longitudinally oriented regimes, whereas ResNet-18
is best at recognizing the transverse-oriented crevasse fields as
Multidirectional.

New to this classification is the inclusion of water-based surface
classes, specifically, Melt Streams/Ponds and Sea Ice. The Sea Ice
class was introduced to prevent misclassification in the region in
front of the calving front, where, during the surge, large amounts of
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FIGURE 13
Histogram for the accuracy of the three NN types, ResNet-18 (dark brown), VarioNet (tan), and VarioMLP (purple), trained on the same 11 class dataset.
VarioNet was trained using the optimal discrete weights found in Table 1, all networks were trained with the same hyperparameters for the same
number of epochs, 50. The labels correspond to the classes as seen in Figure 14j.

calved ice mixed with seasonally receding sea ice (see, Figures 2a,b).
Inclusion of the Sea Ice type is largely needed because the location
of the ice front changed rapidly during the surge. Trantow and
Herzfeld (2024b) observed the formation of a retreating bay in July
2017, an area between Ordonnansbreen and Negribreen, which was
partly filled with icebergs and partly with open water. A similar
scenario may explain the identification of a smooth surface (labeled
as Undisturbed Snow by VarioMLP, Figure 14c).

The occurrence of surface melt streams is typical for slow-
moving ice, which characterizes the entire Ordonnansbreen
(the side glacier joining Negribreen from the north,
Figure 1; cf. Figure 2f). VarioNet classifies Melt Streams/Ponds
correctly, an ability that is inherited from ResNet-18.

An essential component of the classification of structural surface
signatures, or results of deformation in general, is the ability to
classify Shear (Herzfeld et al., 2004). Shear is almost completely
missed by ResNet-18, which is a result of the solely data-driven
classification of ResNets and CNNs in general (Herzfeld et al.,
2024). VarioMLP tends to correctly identify shear types, however,
it also renders false positives. VarioNet has an ability to overcome
both these deficiencies. This ability is a key property of the
VarioNet approach.

Parallel and Parallel Shear always occur in the uppermost
regions of the area that has been affected by the surge expansion.
This characteristic is captured to some extent by all three neural
network types across all three years. As the kinematic wave of

the surge advances into non-surging ice, thin parallel crevasses
form first (see, (Herzfeld et al., 2021), and the imagery included
there). Parallel Shear should occur between regions of Parallel and
Shear, something ResNet-18 fails to demonstrate. VarioNet tends to
label one-directional crevasses as Parallel Shear as opposed to just
Parallel. VarioMLPhas a tendency to correctly classifyParallel Shear,
more so than the class Parallel. For these classes as well, VarioNet
results in the best recognition and classification of Parallel and
Parallel Shear.

Some misclassifications that occur may be attributed to
differences in surface reflectance in the original imagery, as opposed
to differences in structural change. For example, the class Slow
Moving Ice in the 2016 and 2017 classification maps does include
Slow Moving Ice, however, the extent of Slow Moving Ice is much
larger than the orange regions. Differences in material properties
such as progressing firn saturation affect the classification likely as
a result of a labeling bias.

A definite strength of the neural network experiments presented
here is that the thematic maps resultant from VarioNet correctly
show the expansion of the surge and the location of the shear
zones, which are features that have escaped many previous mapping
attempts. Especially, the shear along the northern and southern
margins, depicted as Subordinate Shear. ResNet-18 applied to
the 2017 imagery (Figure 14d) has a tendency to misclassify
Multidirectional, where the actual classes are Multigenerational
or Shear. VarioNet does better in this regard. In general, the

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1572982
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Twickler et al. 10.3389/feart.2025.1572982

FIGURE 14
Results of ice-surface classifications from three NN types for the evolution of NGS from June 2016 to May 2018 visualized through WorldView-1 and
WorldView-2 imagery. All the networks were trained and validated with the same dataset. VarioNet was trained using the optimal discrete
weights found in Table 1. (a) Classification resultant from ResNet-18 for 2016. (b) Classification resultant from VarioNet for 2016. (c) Classification
resultant from VarioMLP for 2016. (d) Classification resultant from ResNet-18 for 2017. (e) Classification resultant from VarioNet for 2017. (f)
Classification resultant from VarioMLP for 2017. (g) Classification resultant from ResNet-18 for 2018. (h) Classification resultant from VarioNet for 2018.
(i) Classification resultant from VarioMLP for 2018. (j) Legend for the classifications results. WorldView2 data set: WV02_20160625170309_
1030010059AA3500_16JUN25170309-P1BS-500807681050_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20170530144716_
1020010060152E00_17MAY30144716-P1BS-501481791090_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20180526211954_
102001007158CA00_18MAY26211954-P1BS-502347313040_01_P005_u16ns3413.tif.

complex classes of Chaos andMultigenerational/Multidirectional are
difficult to differentiate. The summer of 2017 marked the height
of the acceleration in Negribreen, rendering complex deformation
that transformed pre-existing crevasse types to Multigenerational
and Chaos. In VarioNet, these classes indeed dominate in the
lower region of the NGS, encompassing the area where crevassing

already occurred in 2016, and adjacent areas. Among the three
models, VarioNet excels at identifying regions where the ice
was still undisturbed, labeled here in a simplified fashion as
Undisturbed Snow.

In summary, VarioMLP demonstrates strong performance in
capturing structurally complex patterns, while ResNet-18 is more
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effective at recognizing spatially simpler imagery in areas that
deviate significantly from the training data. Closer analysis shows
that only a few split-images were selected from the 2016 transverse
crevasse fields for training. Overall, VarioMLP demonstrates a
distinct ability to distinguish between classes that appear similar
in pattern but differ in crevasse formation, which is driven by
ice surface deformation during spatially complex transformations.
VarioNet has the ability to overcome the weaknesses of the input
models, ResNet-18 and VarioMLP, and as a result, the time series
of maps resultant from VarioNet renders the best representation
of the crevasse provinces and their evolution during the surge in
2016–2018. In addition, VarioNet produces the highest confidence
for evolution of the surge. As seen in Figure 15, ResNet-18 has a high
confidence for uncrevassed regions, but this confidence drastically
drops in the heavily crevassed central regions. Although VarioMLP
has low confidence for all regions of the NGS, VarioNet is able to
classify the crevassed areaswith a higher confidence thanResNet-18.

The approach taken in this paper, as visualized in Figure 4,
to combine a data-driven CNN and a physically based MLP,
successfully created a network that overcomes the shortcomings
of each individual approach. VarioNet combines the advantages of
both models, ResNet-18 and VarioMLP, rendering a NN model
that allows classification of a structurally large and complex region
(33,234 split-images) from a labeled data set of 750 images with a
80/20% split for training and validation data.

7 Summary, conclusions and outlook

7.1 Summary

GEOCLASS-image is a CI for classification of ice-surface
types of glaciers based on high-resolution satellite image data.
The software has been implemented for application to MAXAR
WorldView1 and WorldView 2 imagery.

The objective of this paper is to describe and demonstrate the
capabilities of the second release of GEOCLASS-image. Specifically,
to showcase a new NN that combines a data and physically based
approach. This paper also serves as a software description with
a more detailed walkthrough of the software that is available
on GitHub (Herzfeld et al., 2025).

Thenew version includes several generalizations and capabilities
that increase the applicability and versatility of the software
significantly. The main achievements that set GEOCLASS-image
(v2.0) apart from GEOCLASS-image (v1.0) (Herzfeld et al., 2023)
are as follows:

(1) Labeled training data sets: Version 2.0 presents a solution to
the problem of creating labeled training data for cryospheric
problems for which such data do not currently exist.

(2) GEOCLASS-image (v2.0) includes an approach for the
derivation and training of a new NN architecture, termed
VarioNet, that combines the advantages of a data-driven
and physically driven NNs, by integrating the physically
driven VarioMLP with the data-driven ResNet-18 through
introduction of an additional NN component.

As seen in Table 3, the main functionalities of GEOCLASS-
image can be broken down into subsections with the majority of

implemented improvements for GEOCLASS-image (v2.0) relating
to the management of datasets. Most of these improvements appeal
to the ease of use and versatility and aim to broaden the applications
of the software.

7.2 Main results

7.2.1 Versatility of input and output
GEOCLASS-image (v1.0) was created with a user-friendly

GUI to offer an appealing framework for users in the cryospheric
science and applications community that would not require much
understanding of ML. However, the GUI-centered approach
resulted in some limitations, which have been resolved in v2.0
through implementation of several improvements regarding
versatility of data input and output. GEOCLASS-image (v2.0)
now offers options for user-friendly, system immanent training
and application using the GUI, as well as for importing and
exporting datasets to facilitate interoperability with other software,
essential for advancing Open Science. For input, GEOCLASS-
image has the ability to include additional images outside of the
area of interest, which may complement images selected from
the uploaded WorldView data, resulting, for example, from a
different application. For output, in addition to using the GUI,
labeled training images can now be exported into a directory
that contains a subdirectory for each crevasse/surface class, thus
facilitating application of the labeled training data sets within and
independently of GEOCLASS-image. The new process allows us to
create benchmark data sets in glaciology, suitable for assessment of
classification approaches.

7.2.2 Open science
Open Science calls for sharing and improving the accessibility of

datasets, which the updates to the GEOCLASS-image infrastructure
hope to accomplish as they and have been tested to ensure ease of
use and functionality. The biggest improvement for Open Science
comes from the changes to the Split Image Explorer. The Split Image
Explorer has been modified to specifically aid in the creation of
datasets for the cryospheric community. These changes not only
simplify the process of saving datasets, but also added needed
options to customize these datasets. All of these options have been
created with ease of use in mind and can be modified through the
configuration file allowing users to easily switch between desired
settings. In addition, these improvements allow users to create
datasetswith the same amount of images in each class, for the desired
classes, a feature implemented to improve the effectiveness of labeled
training datasets for machine learning applications. Lastly, another
important upgrade is an option for saving predictions from multiple
scenes. Now the user is able to save every single prediction above
a specified confidence threshold, which allows for the creation of
larger and more accurate datasets.

7.2.3 VarioNet
The publication of GEOCLASS-image (v2.0) includes a

prototype combined neural network (VarioNet) that takes structural
calculations, previously realized in the connectionist-geostatistical
approach that results in VarioMLP, and input directly from images,
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FIGURE 15
Results of ice-surface classifications from three NN types for the evolution of NGS from June 2016 to May 2018 visualized through WorldView-1 and
WorldView-2 imagery. All the networks were trained and validated with the same dataset. VarioNet was trained using the optimal discrete
weights found in Table 1 (a) Confidence resultant from ResNet-18 for 2016. (b) Confidence resultant from VarioNet for 2016. (c) Confidence resultant
from VarioMLP for 2016. (d) Confidence resultant from ResNet-18 for 2017. (e) Confidence resultant from VarioNet for 2017. (f) Confidence resultant
from VarioMLP for 2017. (g) Confidence resultant from ResNet-18 for 2018. (h) Confidence resultant from VarioNet for 2018. (i) Confidence resultant
from VarioMLP for 2018. (j) Legend for confidence results. WorldView2 data set: WV02_20160625170309_1030010059AA3500_16JUN25170309-
P1BS-500807681050_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20170530144716_1020010060152E00_17MAY30144716-P1BS-
501481791090_01_P004_u16ns3413.tif. WorldView1 data set: WV01_20180526211954_102001007158CA00_18MAY26211954-P1BS-502347313040_
01_P005_u16ns3413.tif.

as is typical in CNNs for image classification, specifically ResNet-
18. VarioNet employs a data fusion approach as follows: VarioMLP
and ResNet-18 are first trained separately, using the same labeled
training dataset. In a second training step, the raw outputs of
VarioMLP and ResNet-18, or so-called logits (unnormalized scores
the network assigns for each class per image), are combined and

passed through one or several additional NN blocks. These logits
are then fused together through discrete or adaptive weighting.
VarioNet includes a two-step training process where the latter stage
lowers the learning rate and re-trains to fine-tune the model for the
classification of more complex ice surfaces. The VarioNet approach
facilitates differentiation between visually or structurally similar
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TABLE 3 Main features of GEOCLASS-image in release v1.0 and v2.0.

Categories Features Release v1.0 Release v2.0

(A) Utility Scripts

Universal coordinate system transform x x

Vis. of image/glacier overlap x x

GUI-based creation and manipulation of Region of Interest
and export of UTM coordinates

x x

(B) Geostatistical Methods: Functions
First-order vario function x x

3-4–5 vario functions when applicable x

(C) Dataset Management

Generalized split-image dataset class x x

Visualization of vario functions x

Generalized split-image dataset creation tool x

Custom options for saving prediction datasets based on
confidence values

x

Universal split-image dataset loader x x

GUI-based labeling of individual split-images x x

GUI-based batch-labeling of split-images x x

GUI and visualizations dynamically adapt to creation of new
classes

x x

Labeled images automatically saved to folder x

Integration of multiple satellite images x x

Integration of images from other glaciers x

(D) Machine Learning Models

VarioMLP (Multi-layer perceptron) model x x

Resnet-18 (CNN) model x x

VarioNet (Combined) model x

(E) Machine Learning Training Validation and Visualization

Universal training script x x

Universal testing script x x

Implementation of CUDA for optimized training x x

Fine Tuning for VarioNet x

Use of raw images for training and testing x

Overall classification visualization x x

Visualization of losses x x

Threshold visualization of classification confidence values x x

Visualization of split-image location from classifications x x

Blue x’s signify features that have been updated between v1.0 and v2.0. The features are organized by the subsystems functionality and placed into one of the following categories: Utility Scripts,
Geostatistical Methods, Dataset Management Machine Learning Models, and Machine Learning and Validation.

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2025.1572982
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Twickler et al. 10.3389/feart.2025.1572982

classes. This type of data fusion approach allows the user to leverage
the effect each network has on the final network. The benefits of this
approach are apparent when comparing the predictionmaps created
by each NN available through GEOCLASS-image. Specifically,
VarioNet performs best in situations where classes originally missed
by the data-based approach are over classified by the physically-
based approach. This is best exemplified in the Shear and Sea Ice
classes in Figure 14.

7.3 Conclusion

An efficient, scientific software tool should be easy to use,
expandable, accurate, and tested rigorously. The GEOCLASS-image
(v2.0) CI serves to aid remote sensing analysis conducted by
cryospheric scientists and offers an intuitive, user friendly tool
that facilitates image classification over complex ice surfaces. The
GEOCLASS-image software is designed using a modular approach
that allows for improvements and expansions. For the second release
of GEOCLASS-image, the modularity of the design was tested
through the addition of new features, programs, and a new model
architecture. The additional features and NN were tested through
ice-surface classifications for the current surge in the NGS. The
multitude of different crevasse classes that occur in close proximity
as a consequence of the rapid transformation of the glacier surface
during surgemakes theNGS an ideal testbed for the creation of aNN
that combines the advantages of a physically constrained NN and a
data-driven CNN. The resultant NN can be expected to generalize
to other types of glacier systems, such as those in Greenland, Alaska
and the Canadian Archipelago.

Through the classification of the NGS with each type of NN,
it is evident that VarioNet is a promising combined approach for
image classification of complex geophysical processes, such as the
surge of an Arctic glacier. The predictions produced by VarioNet
were nearly identical for discrete and adaptive weighting, hinting
at the importance of the NN block utilized by VarioNet. With
both weighting methods VarioNet is capable of overcoming the
shortcomings of the data-driven ResNet-18 and physically based
VarioMLP to produce a more geophysically accurate prediction for
the surge of the NGS from 2016 until 2018.

The second release of GEOCLASS-image has only been tested
with Linux Ubuntu 22.04.4 and used for the Negribreen Glacier
System, Svalbard, and a basic classification of the Bering Glacier
System, Alaska.

7.4 Outlook

The GEOCLASS-image cyberinfrastructure, realized here for
Maxar WorldView1 and WorldView2 satellite imagery, can be
expected to generalize easily to classification of any high-resolution
satellite imagery. Applications in this study are carried our for
a specific cryospheric sciences problem, the classification of
glacier surface types, but computationally similar applications
can be envisioned in other geoscience disciplines, including land
surface classification, land-cover/land-use classification and sea-ice
classification.
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