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Introduction: The stability evaluation and deformation prediction in
geotechnical engineering depend on accurate rock mass mechanical
parameters (RMMPs). The selection of these parameters directly influences the
reliability of analysis. The conventional techniques used to assess the RMMPs
face considerable challenges in real-world applications, which necessitates the
need to investigate novel approaches.

Methods: This paper proposes a displacement back-analysis (DBA) approach
that utilizes support vector regression (SVR) optimized by differential evolution
grey wolf algorithm (DE-GWO) to invert the RMMPs, which improves global
optimization capability and inversion accuracy. Firstly, the uniform test design
method is employed to outline the RMMPs for inversion, anddisplacement
calculations are performed using FLAC3D to generate learning and testing
samples. Secondly, the DE-GWO, particle swarm optimization (PSO), genetic
algorithm (GA), and SVR are integrated to identify the optimal superparameters,
while the nonlinear mapping relationship between inversion parameters and
displacements is established. Finally, themechanical parameters to bemeasured
are inversed based on field-measured displacements. This model is utilized
to invert the RMMPs for a mining site located in Yunnan Province, and the
inversed RMMPs are utilized for forward analysis. The results demonstrate that
the DE-GWO-SVR method achieves the best results but requires the shortest
inversion time.

Results: The inversed RMMPs fall within acceptable ranges, while the error
between the forward and monitored displacements is less than 10%, with a
maximum deviation of 9.52%. This research introduces an innovative approach
for assessing the RMMPs.

KEYWORDS

rock mass mechanical parameters, displacement inversion, uniform test, differential
evolution grey wolf algorithm, support vector regression (SVR)
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1 Introduction

With the long-term exploitation of shallow mineral resources,
numerous high and steep slopes have formed in open-pit mines
worldwide. During the mining process, the study of slope stability
and the analysis of support methods have become unavoidable
technical requirements (Li et al., 2024). These tasks rely on precise
mechanical parameters of slope rock masses as their foundation.
Therefore, in slope remediation projects, accurately obtaining
the mechanical parameters of slope rock masses is particularly
critical. Prior to the construction of geotechnical engineering
projects, scientific research institutions often create specific
designs according to established specifications. In this context,
the appropriate selection of RMMPs is crucial for assessing the
stability and predicting the deformation of engineering structures
(Liu et al., 2024; Zhou YJ. et al., 2024). Erroneous parameter values
can indirectly lead to significant issues, such as structural collapse
or resource wastage, due to overly conservative designs.

Traditional methods for determining the RMMPs include
laboratory testing, empirical estimation, and in situ testing (Liu et al.,
2022; Umbach andMiddendorf, 2024). In-situ testing often requires
substantial manpower and financial resources (Liu et al., 2023;
Guo et al., 2021; Liu et al., 2020), resulting in lengthy testing cycles
(Andhika, 2023). Given these constraints, researchers aim to identify
reliable, convenient, and cost-effective techniques for evaluating
the RMMPs while advancing traditional testing methodologies
(Zhao et al., 2022; Li et al., 2023; Hu, 2023). Consequently,
researchers closely pay attention to raw observation data related to
undetermined mechanical parameters of rock masses and use them
as a prototype for parameter inversion. Displacement monitoring,

recognized as one of themost accessible and expedient forms of data,
has garnered significant attention (Zhang et al., 2021). As a result,
the back-analysismethod that utilizes field-measured displacements
has become a focal point of research in this field, as this method can
compensate for the limitations of traditional methods, such as high
variability and cost.

In recent years, rapid advancement of computer technology
has led to the development of various machine-learning-based
inversion methods (Wu et al., 2024; Pan B et al., 2024; Chen et al.,
2024). Zhuang et al. (2019) proposed a DBA model based on SVR
optimized by the Multi Strategy artificial fish swarm algorithm
(MAFSA) for identifying mechanical parameters. The application
of this method for the inversion of RMMPs in the Heshi Tunnel
demonstrated significant effectiveness. Additionally, Zhang et al.
(2021) developed an intelligent optimization algorithm that merges
PSO technology with Gaussian process machine learning (GP)
theory, and subsequently integrated this algorithm with the finite
difference method (FDM) to develop a DBA method termed PSO-
GP-FDM. This method was applied to the back-analysis of the
RMMPs at the Tai’an pumped storage power station. The above
inversionmethod ignores the problem that the optimization process
can easily fall into local optimal solutions, which leads to poor
stability in the optimization process and problematic inversion
results (Luo et al., 2024; Wang et al., 2024; Zhou Y. et al., 2024). To
this end Li et al. (2022) integrated the Grasshopper Optimization
Algorithm (GOA), known for its superior global optimization
capability, with Gaussian Process Regression (GPR), a machine
learning with strong fitting capabilities, to tackle the challenges
of time-intensive numerical calculations. The GOA-GPR-FLAC3D

approach that arises from this integration serves as a tool for DBA

FIGURE 1
Schematic representation of the SVR model.
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FIGURE 2
Social hierarchy of wolves.

TABLE 1 Mathematical model of the DE algorithm.

Step Model expression

Mutation Di(t+ 1) = Xrl + Fr • [Xr2(t)−Xr3(t)]

Crossover Ui(t+ 1) =
{{{
{{{
{

Di, j(t+ 1)i f rand < Cr or j = sn

Xi, j(t)otherwise

Selection Xi(t+ 1) =
{{{
{{{
{

Ui(t+ 1) i f f(Ui(t+ 1)) ≤ f(Xi(t))

Xi(t) otherwise

∗Di stands for variant individuals; t is the current iteration number; Fr is the scaling factor
with a value of 0–1; r1, r2, and r3 are integers that are not equal to each other in the interval
1-N, and N is the population number; Cr is the crossover probability; rand is a random
number ranging from 0 to 1; Sn represents a random dimension; U i (t+1) is the new
offspring; and Xi (t) is the parent.

in underground engineering. Chong et al. (2018) introduced a DBA
method based on a Gradient Boosting Regression Tree (GBRT) and
Firefly Algorithm (FA), where GBRT serves as an example-based
learning method to replace numerical modeling, and the algorithm
is utilized for back-analysis. However, these methods require a
relatively large number of samples, leading to slow inversion during
the optimization process (Guo et al., 2022; Lin et al., 2023).

To address the challenge of large sample requirements, this
study selects the SVR, which necessitates fewer samples for effective
inversion.This algorithm is also adept at handling high-dimensional
practical problems such as nonlinear issues. Furthermore, the
rationality of parameter selection during the SVR inversion process

significantly influences the practicability and reliability of the
model. This paper employs a novel grey wolf algorithm (GWO) to
optimize SVR parameters, which imitates the hierarchical structure
of wolves and demonstrates a strong optimization potential (Shial
and Sahoo, 2023). To mitigate the tendency for local optimization
inherent in the algorithm, this study combines the differential
evolution algorithm (DE) with the GWO to form a coupled
differential evolution grey wolf optimization algorithm (DE-GWO).
This algorithm enhances the global search capabilities through
mutation, crossover, and selection to optimize efficient intelligent
optimization algorithm of the support vector regression (SVR).
Compared with the traditional Bayesian inversion method, which
uses probabilistic sampling method and requires a large number
of samples, DE-GWO-SVR uses populations for intelligent global
search without a priori assumptions, dramatically improves the
computational efficiency by parallel searching, and subsequently
adopts SVR kernel function, which has a relatively small demand
for samples, for regression, which has an obvious improvement in
adaptability to nonlinear problems.

Herein, the DE-GWO-SVR algorithm for the inversion of
RMMPs is established, and the training and testing samples are
constructed in conjunction with FLAC3D. The examination of three
essential mechanical parameters—elastic modulus E, cohesion c,
and internal friction angle φ—necessary for inversion design of
field-measured displacement demonstrates the algorithm’s reduced
computation time and enhanced inversion efficiency. The viability
of this inversion approach is confirmed through back-analysis
by comparing the results of numerical simulations with field-
measured data.
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FIGURE 3
Flow chart of mechanical parameter inversion of the DE-GWO-SVR model.

FIGURE 4
Geographic location of the mine. (a) Map of China; (b) Map of Yunnan Province; (c) Open pit mine slopes; (d) Slope inversion regional profiles.

2 Algorithm principle

2.1 SVR

SVR, proposed by Cortes and vapink V in the 1990s (Ajin and
Segoni, 2024; Cortes and Vapnik, 1995), has emerged as a highly
successful supervision technique in recent years. This learning
model offers advantages such as lower sample requirements and the
ability to handle nonlinear data. SVR, which serves as a branch of
SVM, is specifically designed for fitting nonlinear data.

Given the training sample D = {(x1,y1), (x1,y1),…, (xm, ym)},
where yi∈R, the objective is to learn a regression model such that
f(x) closely approximates y, with w and b as the model parameters to
be determined.

SVR utilizes the regression function of Equation 1 to map the
input space into a high-dimensional feature space for hyperplane
establishment (Ren et al., 2023).

f(x) = wTφ(x) + b (1)
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FIGURE 5
3D finite difference model of slope and layout of monitoring points (a) 3D finite difference model of slope (b) layout of monitoring points.

wherew is the weight vector that controls smoothness, b is the offset
parameter, and φ(x) is the mapping function from low dimension to
high dimension.

The goal of SVR is to minimize the distance between
the hyperplane and the farthest sample point, so that the
data can be fitted by the hyperplane (Dai and Hu, 2024;
Wang et al., 2022). The SVR schematic is shown in Figure

1. To avoid excessive penalization, a threshold is set around
the regression line of the model, which allows all data points
within this threshold to incur no penalties for their errors
(Qin et al., 2022).

The optimization objective of SVR is shown in Equation 2:

min
w,b

1
2
‖ω‖2 (2)
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FIGURE 6
Laboratory uniaxial compression test.

The insensitive loss function is Equation 3:

lε(z)
{
{
{

0 |z| ≤ ε

|z| − ε |z| > ε
(3)

Consequently, the optimization problem for the SVRmodel can
be articulated as in Equation 4:

min
w,b

1
2
∥ w∥2 +C

m

∑
I=1

lε( f(xi) − yi) (4)

In practical applications, determining the appropriate ε to
ensure that the majority of data points are contained within
the interval presents a significant challenge; thus, the relaxation
variable ξi, ̂ξi is introduced to relax the interval requirements of the
function appropriately while allowing some samples not to be in the
interval.

Equation 5 can be rewritten as:

min
w,b,ξi, ̂ξi

1
2
∥ w∥2 +C

m

∑
I=1
(ξi, ̂ξi)

s.t. f(xi) − yi ≤ ε+ ξi
yi − f(xi) ≤ ε+ ̂ξi

ξi ≥ 0, ̂ξi ≥ 0, i = 1,2,…m

}}}}}}}}}
}}}}}}}}}
}

(5)

Introducing Lagrange multiplier μi,α. As in Equation 6:

L(w,b,α, ̂α,ξ, ̂ξ,μ, ̂μ) = 1
2
∥ w∥2 +C

m

∑
i=1
(ξi + ̂ξi) −

m

∑
i=1

ξiμi −
m

∑
i=1

̂ξi ̂μi

+
m

∑
i=1

αi( f(xi) − yi − ε− ξi)

+
m

∑
i=1
̂αi(yi − f(xi) − ε− ̂ξi)

(6)

The partial derivatives of α from b must be zero. This process
adheres to the KKT condition, and we obtain Equation 7:

w =
m

∑
i=1
( ̂αi − αi)xi s.t. 

αi( f(xi) − yi − ε− ξi = 0

̂αi(yi − f(xi) − ε− ̂ξi = 0

αi ̂αi = 0,ξi ̂ξi = 0

(C−αi)ξi = 0, (C− ̂αi) ̂ξi = 0

(7)

The solution obtained is as in Equation 8:

f(x) =
m

∑
i=1
( ̂αi − αi)x

T
i x+ b

b = yi + ε−
m

∑
j=1
( ̂αj − αj)xTi xi

(8)
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FIGURE 7
Analysis of inversion results. (a) E of limestone (b) c of limestone (c) ϕ of limestone (d) E of porphyry (e) c of porphyry (f) ϕ of porphyry.

TABLE 2 Calculation results of RMMPs.

Lithology E/Gpa RMMPs c/MPa φ/°

Limestone 5.1 0.70 35

Porphyry 2.5 0.40 30

2.2 DE-GWO

2.2.1 Grey wolf algorithm
Sang-To et al. (2022) proposed the grey wolf optimizer

(GWO) algorithm in 2014 to achieve optimization objectives. The
GWO is characterized by fewer adjustable parameters and fast

convergence speed (Zhu et al., 2024), and has attracted extensive
attentions in parameter optimization process.

Duringhunting, thewolves followastrictpyramidsocialhierarchy.
The highest-ranking grey wolf, α, holds decision-making power. The
remaining grey wolves who cooperate in predation are ranked as β,
δ, and ω, respectively. Lower-ranked wolves serve their superiors
and dominate the ranks below. The social hierarchy of wolves
is shown in Figure 2.

During the algorithm’s optimization stage, the population’s
positions are updated by Equation 9:

D = |C •Xt
P −X

t|

Xt+1 = Xt
P −A •D

(9)
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TABLE 3 Value range of RMMPs.

Lithology Limestone Porphyry

Parameters to be
inversed

E/Gpa c/MPa φ/° E/MPa c/MPa φ/°

Parameters

1 4.1 0.20 25 1.5 0.20 20

2 4.2 0.25 26 1.6 0.22 21

3 4.3 0.30 27 1.7 0.24 22

4 4.4 0.35 28 1.8 0.26 23

5 4.5 0.40 29 1.9 0.28 24

6 4.6 0.45 30 2.0 0.30 25

7 4.7 0.50 31 2.1 0.32 26

8 4.8 0.55 32 2.2 0.34 27

9 4.9 0.60 33 2.3 0.36 28

10 5.0 0.65 34 2.4 0.38 29

11 5.1 0.70 35 2.5 0.40 30

12 5.2 0.75 36 2.6 0.42 31

13 5.3 0.80 37 2.7 0.44 32

14 5.4 0.85 38 2.8 0.46 33

15 5.5 0.90 39 2.9 0.48 34

16 5.6 0.95 40 3.0 0.50 35

17 5.7 1.00 41 3.1 0.52 36

18 5.8 1.05 42 3.2 0.54 37

19 5.9 1.10 43 3.3 0.56 38

20 6.0 1.15 44 3.4 0.58 39

21 6.1 1.20 45 3.5 0.60 40

where D is the distance between grey wolf and prey; t is the number
of iterations in the optimization process; Xp(t) and X(t) are the
positions of the prey and the search individual after the t-th iteration,
respectively; and A and C are the optimization process parameters.
As shown in Equation 10.

a(t) = 2(1− t/Tmax)

A = 2ar1 − aC = 2r2
(10)

where Tmax denotes the maximum number of iterations for the
optimization process. Throughout this process, the parameter a
gradually decreases from 2 to 0, while r1 and r2 are random values
ranging from 0 to 1.

The three leading wolves, α, β and δ, are considered to have the
best knowledge of prey locations. Therefore, during iterations, the

top three optimal fitness values are assigned to these leading wolves,
and then these wolves collectively determine their movement
directions and automatically update their positions according to this
information. This process is expressed in Equations 11, 12

{{{{
{{{{
{

Dα = |C1 •Xt
α −Xt|

Dβ = |C2 •X
t
β −X

t|

Dδ = |C3 •X
t
δ −X

t|

(11)

{{{{{{{
{{{{{{{
{

X1 = Xt
α −A1 •Dα

X2 = X
t
β −A2 •Dβ

X3 = X
t
δ −A3 •Dδ

Xt+1 = (X1 +X2+X3)/3

(12)
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TABLE 4 Orthogonal design table of inversion test scheme.

Protocol E c φ

Option 1 1 7 9

2 2 14 18

3 3 21 5

4 4 6 14

5 5 13 1

6 6 20 10

7 7 5 19

8 8 12 6

9 9 19 15

10 10 4 2

11 11 11 11

12 12 18 20

13 13 3 7

14 14 10 16

15 15 17 3

16 16 2 12

17 17 9 21

18 18 16 8

19 19 1 17

20 20 8 4

21 21 15 13

where Dα, Dβ, and Dδ are the distances between the remaining
individuals in wolf pack ω and the three leading wolves α, β,
and δ, respectively; X1, X2 and X3 indicate the next movement
directions of the remaining individuals in wolf pack ω under the
leadership of the three leading wolves α, β, and δ, respectively; Xt

β
and Xt

δ are the control parameters after t iterations; A2 and C2 are
the control parameters corresponding to the leading wolf β; A3
and C3 are the control parameters corresponding to the leading
wolf δ.

2.2.2 DE algorithm
The DE algorithm follows three steps of mutation, crossover,

and selection to enhance the global search capability. Its
mathematical model is outlined in Table 1 (Zu et al., 2022).The tests
demonstrate the algorithm’s effectiveness in addressing complex
optimization challenges, including discontinuous and multi-peak
problems.

2.2.2.1 Mutation operation
The fundamental principle involves calculating the vector

difference between two randomly selected individuals from the
population, which is subsequently combined with the individual
that is being mutated. The mutation operation is pivotal to the DE
algorithm’s robust global search capability.

2.2.2.2 Crossover operation
Exchange elements between the individual undergoingmutation

and the new mutated individual from step (1).

2.2.2.3 Selection action
The algorithm retains the offspring when they outperform their

parents; otherwise, the parents are carried forward to the next-
generation.

2.2.3 Inversion of RMMPs based on DE-GWO-SVR
The following steps outline the proposed methodology, as

illustrated in Figure 3:

Step 1: The inversion range of RMMPs is determined through
a combination of laboratory rock mechanics tests and
numerical simulations. A dataset is constructed using the
orthogonal test method, and then it is divided into a
training set and a testing set.

Step 2: The size and value range of parameters are set for the
DE-GWO and SVR algorithms. Initialize the grey wolf
population, including the parent, variation, and offspring
populations. The values of C,φ that need to be optimized
determine the position of each wolf.

Step 3: Execute the DE-GWO algorithm to update position of
grey wolf in the main layer, and take the optimal solution
of the updated position of the grey wolf in the main layer
as the final solution.

Step 4: The model is developed using the optimally updated
optimal parameters C∗,φ∗ through iteration, and the SVR
algorithm is utilized to invert the RMMPs.

Step 5: The inversed RMMPs are input into the three-dimensional
numerical model for displacement forward analysis. The
calculation results are compared with field-measured
displacements for accuracy assessment (Wu et al., 2021).

3 Engineering application

The study site is a metal mine located in Yunnan Province.
The geographic location of the mine is shown in Figure 4, which
is characterized by a combination of open-pit and underground
mining. The upper section of the mine was mined through open-
pit mining, with a designed bottom elevation of 1,384 m, a closed
circle elevation of 1,834 m, a final boundary slope height of 120 m,
a concave open-pit slope height of 420 m, and a tota. l slope
height of 540 m. Following the completion of open-pit mining,
ultrahigh slopes were formed. Currently, after optimizing the
open-pit boundary, the western slope is in a state of expansion,
which necessitates urgent stability analysis for both the slopes
and underground mining. Accurate mechanical parameters of rock
masses are essential for follow-up work. This study primarily
focuses on determining the mechanical parameters for limestone
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TABLE 5 Data samples range for the parameter inversion model.

Sample number Displacement/mm Sample number Displacement/mm Sample number Displacement/mm

1 4.52 8 3.86 15 3.30

2 4.20 9 3.29 16 3.09

3 3.73 10 3.46 17 3.16

4 3.87 11 3.29 18 3.05

5 3.81 12 3.14 19 2.83

6 3.39 13 3.76 20 2.66

7 3.62 14 3.20 21 2.64

TABLE 6 Parameters for SVR after DE-GWO optimization.

DE-GWO
optimization
algorithm

Penalty factor “b” Loss parameter“g”

Limestone

E c 22.3803
29.6242

0.01014
4.83451

φ 69.8948 999.9952

Porphyry

E c 642.212
995.370

364.203
367.162

φ 629.951 84.9819

and porphyry. Due to difficulties in accurately determining the
mechanical parameter values of weak interlayers, these parameters
are derived from relevant research findings.

3.1 Calculation model and layout of
monitoring points

The 3D model uses the final open-pit bottom elevation as the
coordinate origin, and the simulation range involves the western
slope of the stope. The upper section of the slope consists of
limestone, while the lower section comprises porphyry, which is
intersected by the F6 fault. The peak of the slope reaches an
elevation of 1,914 m, while the lowest elevation is recorded at
1,534 m. Monitoring points for slope displacement are arranged
at the model elevation of 1,800 m, as illustrated in Figure 5.
The model is comprised of 196,070 nodes and 241,272 elements,
where the grids around the slope monitoring points are refined as
Mohr Coulomb (Binaya et al., 2023) constitutive model.

3.2 Load application and excavation steps

The loads considered in the inversion calculation using FLAC3D

include initial self-weight stress resulting from the slope’s self-
weight, tectonic stress induced by long-term crustal movements,

and self-weight stress arising from equipment production and
transportation.

Excavation is conducted progressively in accordance with the
actual situation of the site during lateral expansion.

3.3 Determination of the parameter
inversion range and test scheme

Given that Poisson’s ratio exhibits minimal variation during the
mechanical parameter reduction process, it is not considered in the
inversion. Instead, the inversion focuses on parameters sensitive to
deformation, including the E, c, and φ, while the parameters of the
fault are excluded from the inversion process.

The mechanical parameters of limestone and porphyry are
obtained through laboratory rock mechanics tests and Hoek‒Brown
strength criterion reduction. The rock specimens of limestone and
porphyry were divided into two groups of five pieces each, which
were immersed in water for 48 h, after which uniaxial compression
tests were carried out, after which uniaxial compression tests were
performed as depicted in Figure 6:

Based on the field investigation and indoor uniaxial
compression test results, the mechanical parameters of the rock
mass are calculated by the Hooke Brown strength criterion
(Table 2).

Considering that the surrounding rock of the slope at the site
is affected by weathering and other factors, the calculation results
are different from the actual rock mass mechanical parameters,
in order to derive the accurate mechanical parameters of the
rock mass, the authors set the up and down ranges with each
parameter as a benchmark on the basis of the calculation results,
and finally determined the 21 group of parameters, see Table 3
for details.

Uniform test design scientifically selects representative test
combinations through orthogonal tables to cover the comprehensive
information of multiple factors and levels with the least number
of times, which is both efficient (reducing resource consumption),
balanced (evenly distributing test points) and easy to analyze
(clearly comparing the effects of the factors), and is widely
used in the fields of industrial optimization, scientific research
experiments, etc., which can significantly improve the research
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FIGURE 8
Comparison of model training runtimes.

FIGURE 9
Comparison between expected and predicted values.

efficiency and reliability of multivariate problems (Wang, 2024).
This approach not only significantly lowers the number of test
points but also successfully achieves the intended test outcomes.
By considering influencing factors and test levels, a uniform
design table U2

∗
(1 217) is selected, with Columns 1, 3, and 4

utilized for scheme combinations. The test scheme is outlined in
Table 4.

The inversion process is based on the DE-GWO-SVR model.
The RMMPs in the aforementioned test scheme are assigned to
the 3D slope model, and simulation calculations are conducted
using FLAC3D to determine the displacements at variousmonitoring

points, so as to form the data samples required for the parameter
inversion model, as illustrated in Table 5. A total of 21 combination
schemes are utilized. All samples are employed in the training
set, and from this set, 5 groups are randomly chosen to form the
testing set.

4 Analysis of inversion results

Based on the data samples for inversion models, DE-GWO,
PSO and BP are used to optimize the c and g of the SVR.
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FIGURE 10
Fitness curves.

TABLE 8 Inversion values of mechanical parameters.

Lithology E/MPa c/MPa φ/°

Limestone 5.1604 0.8247 34.1804

Porphyry 1.8364 0.2987 30.1175

The parameters for SVR optimized by DE-GWO are presented in
Table 6.

The optimized parameters are input into the SVR, machine
for model training, which establishes a nonlinear mapping
relationship between the RMMPs, to be inverted and the
simulated displacements. The comparison results between the
inversed and original parameters of limestone and porphyry are
displayed in Table 7.

Table 7 reveal that the inversed parameter values are within
the specified design ranges, which indicates their validity and
effectiveness. The inversion accuracy of the three inversion
models for the mechanical Figure 7 parameters of limestone and
porphyry is elucidated through histograms and error bars. Among
those, the DE-GWO-SVR model exhibits the highest inversion
accuracy, followed by the PSO-SVR and GA-SVR models, with
the PSO-SVR model outperforming the GA-SVR model. The
training time consumption statistics of the three inversion models
are shown in Figure 8, and it can be seen that the DE-GWO-
SVR model used in this paper has the shortest time consumption
compared to the other two models.

Finally, the DBA method utilizing the SVR optimized by the
DE-GWO proposed in this study is employed to invert the RMMPs

in the western slope of the mine. The measured displacements
are substituted into the model, which focuses on analyzing the
predicted internal friction angle of limestone. The comparison of
predicted and expected values and the fitness curves are illustrated
in Figures 9, 10, respectively.

The RMMPs are detailed in Table 8
To further validate the accuracy and reliability of the DBA

method, the inversed mechanical parameters are reassigned to
FLAC3D for forward analysis, and the simulated displacements are
compared with the field-monitored displacements. This simulation
incorporates both the gravity stress field of the overlying strata and
the tectonic stress field to account for their combined effects on
excavation.

The vertical stress at the top of the model reflects the stress
generated by the self-weight of the overlying strata, with a unit of
Pa. The calculation process is shown in Equation 13:

Szz = γh

γ = ρg
(13)

where SZZ represents the Z-direction gravitational stress; γ
indicates the unit weight of the overlying strata; h denotes the
distance from the bottom of the model to the surface. ;ρ denotes
the density.

The tectonic stress fields are applied along the model’s X and
Y directions, respectively, and they are assigned values based on
the in situ stress measurement data from nearby mines as shown in
Equations 14, 15 (Yuan et al., 2022):

σl = 1.33+ 0.047H (14)
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FIGURE 11
Displacement nephogram.

TABLE 9 Comparison of measured and simulated slope displacements after slope expansion.

Monitoring
points

Measured
displacement
(mm)

Simulated
displacement
(mm)

Monitoring
points

Measured
displacement
(mm)

Simulated
displacement
(mm)

ccjc01 0.0012 0.0012 ccjc06 0.0030 0.0030

ccjc02 0.0021 0.0019 ccjc07 0.0027 0.0026

ccjc03 0.0026 0.0027 ccjc08 0.0019 0.0018

ccjc04 0.0032 0.0034 ccjc09 0.0011 0.0012

ccjc05 0.0039 0.0040 ccjc10 0.0009 0.0011

σh,max = 0.0401H+ 4.2364 (15)

The open-pit bottom elevation is 1,385 m, with a burial depth of
approximately 500 m and a density of 2.68 g/cm3. The self-weight-
induced vertical stress at the open-pit bottom is calculated to be
13.4 MPa,while themaximumhorizontal tectonic stress ismeasured
at 24.286 MPa.

TheS-Bmethod is employed to establish the initial geostress field
of themodel through gradient loading, anddisplacement constraints
are applied to model boundaries.

Multiple monitoring points are arranged within the stope. The
displacements of 10 monitoring points, which are arranged from
high to low elevation, are selected for analysis.

The displacements at monitoring points are extracted from the
numerical model, as illustrated in Figure 11. The inversed RMMPs
are applied to the 3D model.

Upon completion of the slope expansion project at an elevation
of 1850m, the displacements monitored at various measuring points
presented in Table 9.

A comparison between Table 9 and Figure 12 reveals that the
error between the measured and simulated displacements at each
monitoring point is less than 10%, demonstrating the accuracy and
reliability of this method.

5 Discussion

This paper proposes a new inversion method of RMMPs of
slope using differential evolutionary gray wolf algorithm to optimize
the support vector regression, using displacement as the inversion
means to link the intelligent algorithm, numerical simulation and
the determination of the RMMPs, but the method also suffers from
the limitations, the limitations are that the inversion accuracy of the
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FIGURE 12
Comparison between the measured and simulated displacements.

rock mechanical parameters of the rock mechanical parameters of
the hard rock slopes is high, and the accuracy of the inversion will
be decreased if the slope contains multiple faults. Secondly, when
creating the sample library, each set of data needs to be analyzed by
numerical simulation once.

6 Conclusion

With the continuous advancement of artificial intelligence
models, their roles in classification and regression prediction across
various fields have become increasingly significant. However, many
researchers have overlooked the challenges posed by local optimal
solutions in optimizing intelligent models. This paper introduces an
approach utilizing the DE-GWO algorithm to optimize the SVR,
offering a new strategy for inverting the RMMPs.

(1) The value range of RMMPs is determined through field and
laboratory tests. A parameter inversion design scheme is
established utilizing the uniform test design method. The
training and testing sets for the intelligent algorithm inversion
model are constructed through numerical simulations.

(2) The DE-GWO algorithm is utilized to optimize the SVR
by incorporating three processes—mutation, crossover, and
selection—to boost its global search capability. This approach
establishes a nonlinear mapping relationship between
inversion parameters and the displacements, ultimately
allowing for the prediction of RMMPs.

(3) a comparison of the inversion accuracy of DE-GWO, PSO,
GA, and SVR for RMMPs reveals that the DE-GWO-SVR

model achieves the highest accuracy, and the mechanical
parameters are within the acceptable ranges, indicating
the feasibility of this approach. The inversed mechanical
parameters are incorporated into the 3D numerical model
for forward analysis. The displacements calculated based
on the inversed mechanical parameters match well with
the field-monitored displacements, with an error of less
than 10%.

Currently, there is no established standard for parameter
optimization and inversion methodologies. The DE-GWO-SVR
model proposed in this work is still in an exploration stage.
Nevertheless, its reliability has been demonstrated by comparing
it with the other two optimization models, which offers a
new approach for ascertaining the RMMPs in geotechnical
engineering.
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