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Background: Accurate precipitation forecasting is crucial for various sectors,
such as agriculture, hydrology, and disaster management. In recent years,
machine learning (ML) techniques have proven invaluable in improving the
accuracy of rainfall prediction and identifying the complex relationships
between precipitation and other meteorological variables.

Methods: This paper presents acomprehensive analysis of the use of
multivariable statistical and MLmodels to predict monthly rainfall at 13 locations
in the eastern Amazon. Each model is trained separately for each month,
allowing for a tailored representation of precipitation patterns and variations.
Additionally, the performance of these models is evaluated via the time series
cross-validation technique and an independent test.

Results: The results indicate that for the points Serra Sul, Açailândia, and Ponta
da Madeira, the multivariable models yielded the best monthly performance in
72.23% of the cases, mainly during the rainy season.

Discussion: Our results highlighted several important aspects of precipitation
prediction at different points across the selected study region, particularly
concerning the influence of exogenous variables (mainly u10, t2m, TSA, and
TNA) on precipitation in most months. Additionally, our findings indicate that
the ARIMA, XGBoost, and CNN-1D models outperformed the other models in
monthly rainfall forecasting for the Serra Sul, Açailândia, and Ponta da Madeira
regions, respectively.
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1 Introduction

Precipitation is a natural phenomenon that plays an important
role in the hydrological cycle, climate regulation, and maintenance
of ecosystems. Precipitation forecasting is crucial for various
socioeconomic activities, especially in regions with complex and
variable rainfall patterns, such as the Amazon region, where
municipalities are strongly affected by extreme floods and droughts
that affect river hydrology (Karen et al., 2017; Bauer et al., 2018).

Obtaining meteorological data is essential for making effective
rain forecasts, understanding weather patterns, and performing
numerical modelling to issue warnings for extreme rainfall events.
The most accurate meteorological data records are those measured
in situ at weather stations. However, remote regions, such as the
Amazon, do not have a high density of weather stations or at least
30 years of data (the minimum period to perform climate studies,
according to the World Meteorological Organization). Therefore,
it is necessary to choose other meteorological databases. Other
types of data, such as 1) gridded data interpolated via measured
variables and an interpolation method to create values at each
grid point (e.g., Xavier et al., 2022 and GPCC - Schneider et al.,
2016); 2) satellite data, from which different variables can be
inferred (e.g., IMERG - Sharifi et al. (2016) and CMORPH -
Joyce et al. (2004); 3) mixed methods with satellite data and
interpolation schemes (e.g., CHIRPS - Funk et al. (2015) and
MERGE - Rozante et al. (2020)); and 4) reanalysis data, which result
from combining observed data (weather station and satellite data)
with numerical modeling results (e.g., ERA5 - Hersbach et al. (2020)
and JRA55 - Kobayashi et al. (2015)).

The main subseasonal to seasonal prediction methods are based
on statistical and dynamic models (Vitart and Robertson, 2019).
Notably, dynamic models yield good predictability at the weather
scale (1–10 days), but at the scale used in this paper (subseasonal to
seasonal), they do not perform well (Toth and Buizza, 2019). At this
temporal scale, forecasts of short-term spatial scale patterns are lost
(approximately 15 days are currently available); for example, it is not
possible to predict cold fronts, stability lines, etc., and therefore, it
is not possible to accurately predict how much rain or how many of
temperature fluctuations will occur on a specific day (if it is more
than 15 days after day 0). Nevertheless, several large-scale spatial
patterns are still predictable (El Niño, La Niña, tropical Atlantic
dipole, and Madden-Julian oscillation, among others). Thus, it is
possible to predict the trend of an atmospheric or oceanic pattern
(if the pattern is above or below the historical average), such as the
precipitation or temperature pattern (Toth and Buizza, 2019).

Accurate seasonal predictions are available for tropical
South America (Sampaio and Silva Dias, 2014), but subseasonal
predictions, such as one-monthly cumulative precipitation, are
a new area in the field of meteorological prediction, and only a
few centers do such forecasts, with even fewer providing publicly
available data (some examples are NMME-USA, CanSIPs-Canada,
APCC-South Korea, INMET-Brazil and CPTEC/INPE-Brazil).

As cited above, oceanic patterns are important for predicting
monthly precipitation with both dynamic and statistical models.
In this work, we choose oceanic phenomena that affect the
tropical South American climate: the El Niño-Southern Oscillation
(ENSO), Tropical Atlantic gradient (TAG), and South Atlantic
gradient (SAG). ENSO is the positive (El Niño) or negative (La

Niña) sea surface temperature (SST) anomaly in the equatorial
Pacific (Marengo et al., 2012; Tedeschi et al., 2013; Tedeschi
and Sampaio, 2022), and TAG is the gradient in SST between
northern and southern tropical Atlantic (Nobre and Shukla, 1996;
Münnich and Neelin, 2005). Moreover, the SAG is similar to the
TAG but in the South Atlantic instead of the Tropical Atlantic
(Espinoza et al., 2014; Bombardi et al., 2014).

Some published works have addressed the use of ML and
statistical techniques in precipitation prediction or in other
correlations between meteorological variables and the occurrence
of floods, specifically in some regions of the Amazon. Anochi et al.
(2021) compared the results of extreme gradient boosting
(XGBoost) with those of deep learning and the Brazilian Global
Atmospheric Model to predict precipitation over South America.
Meteorological data collected between 1980 and 2016 were used,
and the input information for theMLmodels included precipitation,
surface pressure, surface air temperature, 850 hPa air temperature,
specific humidity, and zonal and meridional wind components (u10
and v10, respectively). The results indicated that the precipitation
predictions for the Amazon region for austral summer and autumn
were associated with considerable errors. On the other hand, for
the austral winter and spring seasons, the prediction error was
minor. Similarly, Alves et al. (2023) presented a method for monthly
precipitation forecasting based on an artificial neural network
(ANN) and the Group Method of Data Handling (GMDH) with
SSTs extracted from monthly precipitation data in a specific area of
the municipality of Marabá, located in the southeastern region of
Pará state, as the input. After a variable selection step, the intelligent
model was used to obtain themeanmonthly SST in predefined areas
while considering temporal lag. For ANN training, precipitation
data from the Climate Prediction Center were used. The results
demonstrated the effectiveness of the GMDH method for monthly
precipitation prediction. Taveira et al. (2023) addressed the use
of a statistical model based on the probability function of the
Gamma distribution to calculate the monthly rainfall probability
for the municipality of Rio Branco, which is located in the state
of Acre, Brazil. The data used to develop the model pertain to
monthly precipitation levels from 1970 to 2021, obtained from
INMET station 82,915. The model results indicate that, for a 95%
probability, themonthly rainfall values ranged from 1.48 to 3.78 mm
for the months of June, July, and August (dry season) and between
22.41 and 175.14 mm for the remaining months (rainy season).
Most recently, James and Calheiros (2024) investigated the impact
of precipitation data balancing on rainfall forecasting for a location
in the interior of the state of Amazonas, Brazil. In this study, an
ANN model was used to perform hourly rainfall forecasting on
the basis of regressive data of this meteorological variable, which
were obtained from rain gauge instruments, two disdrometers,
and a radiometer. The results of this study, which were conducted
with data from 18 February 2022, indicate that the model achieved
root mean squared error (RMSE) values between 2.54 and 7.77 for
the test data.

Additionally, some published studies have focused on employing
machine learning models to predict river flooding in the Amazon
region on the basis of precipitation data from various localities.
Vieira et al. (2021) explored the prediction of river flooding in
the Amazon region. In this work, the authors employed a genetic
algorithm to select themeteorological variablesmost correlatedwith

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1576377
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tedeschi et al. 10.3389/feart.2025.1576377

flooding in the Xingu River Basin, which is located in the state of
Pará. Among the analyzed variables were precipitation, SST, and
atmospheric pressure at sea level in Darwin and Tahiti. Similarly,
Mesquita et al. (2023) investigated the use of ML models for flood
forecasting in the Xingu River via precipitation data. This study
proposed the use of a convolutional neural network (CNN) fed with
recurrence plot (RP) data to forecast floods in the Xingu River.
The proposed model utilized monthly precipitation information
and maximum effluent levels of the river between 1974 and 2019.
The results indicate that the CNN with RP outperforms other
ANN-based models, achieving MAE values of 50.74 for the test
data. Recently, Filho et al. (2024) developed a model based on an
ANN trained with hourly precipitation data and the levels of three
effluents to forecast floods in the Branco River, which is located
in the Amazon Basin. The rainfall data used were obtained from
the PDIRnow model between 2015 and 2022, whereas the effluent
data were collected from stations near the rivers. The ANN model
achieved RMSE values ranging from 1.27 to 2.18 for a forecasting
horizon between 6 and 24 h.

Based on these previous studies, this work presents a novel
approach by being the first to statistically evaluate the correlation
between multiple meteorological variables and precipitation at
selected points in the eastern Amazon. Additionally, this study is the
first to investigate a fragmented forecasting strategy, where models
are trained separately to predict rainfall for each specific month.
By assessing the performance of statistical and machine learning
models during both the rainy and dry seasons, this research provides
new insights into the predictability of precipitation patterns in the
region, advancing beyond previous works in the field.

2 Materials and methods

2.1 Study area

This study was carried out for 13 specific points in the eastern
Amazon. Figure 1 shows the studied points and their locations.
Some reasons for choosing this region are as follows: 1) the Amazon
basin is the largest and one of the most biodiverse places in
the world (Nobre et al., 2021), and the East Amazon Basin is
especially strongly affected by SST anomalies in the equatorial
Pacific and Atlantic (Andreoli et al., 2012; Pezzi and Cavalcanti,
2001; SOUZA et al., 2000); 2) the Itacaiunas Basin has some mining
companies operating in it, but many preserved areas also exist;
because of this, many studies have been conducted in different
areas of the basin (Souza-Filho et al., 2015; 2016; Cavalcante et al.,
2020; 2021; Pontes et al., 2022); and 3) one of the largest and
most important logistical corridors in Brazilian mining is located
in this region.

The Amazon basin is characterized by a tropical climate,
specifically, a monsoon regime (two well-defined seasons, on
the basis of the quantity of rain). Notably, the rainy and dry
seasons occur in different months in different parts of the
basin. An analysis of data from the selected points (Figure 1)
reveals that the rainy season at southern points occurs between
November and April, whereas at northern points it occurs between
January and July.

2.2 Data

The studied region does not have official stations weather
with a great quantity of data (at least 30 years), in all interested
points. So it is necessary to choose some gridded data. The ERA5
(Hersbach et al., 2020) reanalysis was chosen because although
it is not the best option for precipitation (Lavers et al., 2022;
Jesus et al., 2024; Polasky et al., 2025), this data set contains all
the atmospheric and oceanic variables used in this study. And in
this case, all variables are in the same earth system. This dataset
was created by the European Centre for Medium-Range Weather
Forecast (ECMWF). This dataset contains hourly and monthly data
and covers the period from 1940 to present. Data for all areas of
Earth are available, with grids of different sizes (31 km, 62 km, 0.5°,
and 1.0°) and 37 pressure levels (1,000–1 hPa). In this study, only
surface (1,000 hPa) and monthly data collected between 1979 and
2022 were used, with a spatial resolution equal to 0.5° in latitude
and longitude. The chosen variables were precipitation, SST, zonal
and meridional winds (u10 and v10, respectively) at 10 m, and air
temperature at 2 m (t2m).

Precipitation is commonly correlated with other atmospheric
and oceanic variables (Guo et al., 2014; Djibo et al., 2015).
After some initial analysis, we selected u10, v10, and t2m at the
prediction points and different SST indices defined by the scientific
community on the basis of important oceanic patterns, such as
ENSO, TAG, and SAG, for correlation analysis. The indices used
wereNiño 1+2, Niño 3, andNiño 4 in the equatorial Pacific; Tropical
Northern Atlantic (TNA) and Tropical South Atlantic (TSA) in
the tropical Atlantic; and North-South Atlantic (NSA) and South-
South Atlantic (SSA) oscillations in the Atlantic. The corresponding
regions are shown in Figure 2.

2.3 Precipitation prediction pipeline

The proposed computational pipeline used to predict monthly
precipitation, illustrated in Figure 3a, involves several sequential
stages that encompass preprocessing, time series cross-validation
(TSCV), and independent tests.This pipeline can be used to establish
forecasting models and assess their performance in predicting
monthly precipitation prediction.

The raw data extracted from ERA5 are preprocessed in several
steps and conditioned for training monthly forecasting models,
as illustrated in Figure 3b. The preprocessed steps do not include
analysing themissing values because ERA5 data do not havemissing
values in their time series. The TSCV is used to evaluate the
generalizability of the model and select the best hyperparameter
set for each model trained with the dataset for a specific month.
Independent tests are employed for each model to evaluate the
prediction horizon in reference to the observed data.

In the following subsections, each part of the proposed pipeline
is explained in detail.

2.3.1 Preprocessing
The proposed preprocessing stage illustrated in the second box

in the pipeline Figure 3a shows in greater detail in Figure 3b. In
the preprocessing stage, the raw monthly total precipitation (TP)
data extracted from the ERA5 dataset are scaled by converting the
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FIGURE 1
Monthly precipitation climatologies (mean monthly precipitation from 1979 to 2010, unit: mm/month) at each studied point (red points). The bar charts
illustrate the seasonal distribution of rainfall, highlighting distinct rainy and dry season patterns between the points located in southeastern Pará
and Maranhão.

FIGURE 2
Oceanic regions used to calculate the indices Niño 1+2, Niño 3, Niño 4, TNA, TSA, NSA, and SSA based on SST anomalies.

data from m/day to mm/month. This conversion is achieved by
multiplying the total precipitation by the number of days in the
month and by 1,000 (e.g., the TP is multiplied by 31,000 for October
months).Theprocessed TP represents the target variable for training
the forecasting models.

In parallel, the raw SST data are processed to extract the mean
temperatures for theNiño 1+2,Niño 3,Niño 4, TNA, TSA,NSA, and

SSA regions. These seven oceanic variables are grouped with t2m,
u10, and v10 data to compose the input variable set for training the
forecastingmodels. A one-period lag (f(t-1)) is applied to these input
variables to ensure that the TP is predicted with past weather data,
as shown in the orange rounded rectangle.

The next step of preprocessing involves joining the input and
target data in a single dataset anddividing it bymonth. Eachmonthly

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1576377
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tedeschi et al. 10.3389/feart.2025.1576377

FIGURE 3
Proposed pipeline for training the monthly precipitation forecasting models. (a) The general pipeline encompasses preprocessing, TSCV, and
independent test stages; (b) Preprocessing stage of the meteorological variables.

dataset is then split into training and test datasets. The training
dataset encompasses the measurements between the years 1979 and
2010, whereas the test dataset corresponds to the years between
2011 and 2022.

All the steps described above and illustrated in Figure 3b were
implemented in the Python 3 language with the Pandas, Numpy, and
NetCDF4 packages.

2.3.2 Model selection and evaluation metrics
Following preprocessing, the model selection stage involves

implementing TSCV combined with Bayesian optimization,
using the monthly training datasets. This strategy selects the
best set of hyperparameters for the forecasting models by
month. The TSCV method used in the proposed pipeline
employes the expanding window approach, where the training
fold is expanded over time for k-folds (Vien et al., 2021;
Bergmeir et al., 2018).

The Bayesian optimization minimize the average root mean
squared error (avRMSE) obtained by all the folds in the TSCV by
tuning the model with different combinations of hyperparameters.
In this optimization approach, a probabilistic model is used
to estimate the relationship between the input parameters
and the objective function, and the model that achieves the
lowest error given the allowable ranges of hyperparameters
is selected (Head et al., 2018).

The avRMSE is calculated with Equation 1, which yields the
average error among the N ∈ ℤ+ validation folds based on the

observed and predicted precipitation values.

avRMSE =
RMSEk=1 +RMSEk=2 +⋯+RMSEk=N

N
(1)

The RMSE metric used to evaluate the model in each fold of
the TSCV and in the independent test is expressed by Equation 2.
The mean absolute error (MAE) also is employed to evaluate the
performance of the models in the independent test and can be
calculated by Equation 3. The observed precipitation is represented
by y(t), and ŷ(t) is the predicted precipitation for the t-th sample
of a total of M ∈ ℤ+ samples, which represents the total number of
samples in each validation fold or the total number of samples in an
independent test.

RMSE = √ 1
M

M

∑
t=1
[y (t) − ŷ (t)]2 (2)

MAE = 1
M

M

∑
t=1
|y (t) − ŷ (t)| (3)

To investigate the contributions of meteorological and climatic
variables to the models’ prediction, an explainability analysis
was conducted using the SHAP (SHapley Additive exPlanations)
method. This approach enables the quantification of each variable’s
impact on the model outputs, offering insights into spatial and
seasonal variations (Liu et al., 2023). The analysis was carried out
for different seasons in each region, including summer (January to
March), winter (June to August), and transitional periods. Extreme
values were identified and examined to assess their implications
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for meteorological events and potential modeling limitations.
This comprehensive approach supports more robust conclusions
regarding the interaction between local and global climatic factors.

Model selection via TSCV and Bayesian optimization, the SHAP
analysis, as well as the RMSE and MAE metrics calculation were
performed via the Python packages Scikit-Time, Sckit-Learn, Scikit-
Optimize, and SHAP respectively. The Supplementary Material file
provides the hyperparameter ranges employed in the Bayesian
optimization of the models.

2.4 Machine learning and statistical models

The forecasting models employed for predicting monthly
precipitation include machine learning and autoregressive statistical
models. The ML algorithms used are the recurrent neural
network (RNN), long short-term memory (LSTM), gated recurrent
unit (GRU), one-dimensional convolutional neural network
(CNN-1D), and extreme gradient boosting (XGBoost) models.
The statistical models used are autoregressive with exogenous
inputs (ARX), autoregressive moving average with exogenous
inputs (ARMAX), autoregressive integrated moving average with
exogenous inputs (ARIMAX), and autoregressive integratedmoving
average (ARIMA) models.

Each aforementioned model was separately trained and
fine-tuned using TSCV to predict rainfall specifically for each
month, with monthly training datasets. For instance, RNNjan and
ARIMAjan were trained to predict rainfall exclusively in January,
while RNNmay and ARIMAmay were trained to perform the same
task exclusively for May.

The ARX and ARMAX models are stationary techniques
widely employed in time series analysis. These models aggregate
autoregressive characteristics from the series and the information
from exogenous inputs (Shumway and Stoffer, 2017; Nelles, 2001).
The ARMAX model also includes a moving average process.
Equations 4 and 5 express the mathematical structures of the ARX
and ARMAX models, respectively. X ∈ ℝg and ϵ ∈ ℝg represent the
g-dimensional input vector with the exogenous variables and the
corresponding random disturbances, respectively. β, ϕ, and θ are
the g-dimensional vectors of model coefficients related to the input
vector, autoregressive term, and moving average terms, respectively.

y (t) = βX (t) +
p

∑
j=1

ϕjy (t− j) + ϵ (t) (4)

y (t) = βX (t) +
p

∑
j=1

ϕjy (t− j) +
q

∑
k=1

θkϵ (t− k) + ϵ (t) (5)

ARIMAX and ARIMA are nonstationary models with
aggregated and integrated components in their mathematical
formulas (Alsharef et al., 2022; Shumway and Stoffer, 2017;
Tangirala, 2015). Equations 6, 7 express the mathematical structures
of the ARIMAX and ARIMA models, respectively, where Δd

represents the d-th derivative of an integrated component.

Δdy (t) = βX (t) +
p

∑
j=1

ϕjy (t− j) +
q

∑
k=1

θkϵ (t− k) + ϵt (6)

Δdy (t) =
p

∑
j=1

ϕjy (t− j) +
q

∑
k=1

θkϵ (t− k) + ϵt (7)

Figure 4 illustrates the generic architecture of theML algorithms
employed in this work to predict precipitation. The RNN, LSTM,
GRU, and CNN-1D models are based on the neural network
architectures shown in Figure 4a. RNNs are connectionist models
that represent sequential dynamics through cyclic patterns within a
node structure, with nodes called recurrent neurons (Lipton et al.,
2015). Node decisions are based on the current input and the output
from the previous neuron in the network (Salem, 2022).

The LSTM model has an augmented RNN architecture
developed to process time series information using gating signals
at memory neurons to control the flow of information and address
long short-term dependence and vanishing gradient issues (Yu et al.,
2019; Lipton et al., 2015). The controlled flow of information among
the memory neurons allows the LSTM model to store various time
dependencies with distinct characteristics (Lindemann et al., 2021).

Similarly, the GRU model was introduced by Cho et al. (2014)
as an alternative to traditional models; it employs mechanisms that
complement time series prediction via improved integration with
short-term information (Lindemann et al., 2021). Compared with
LSTM, the gatedmemory neuron of aGRUhas a simplified structure
based on gating systems that allow past information to be discarded.

CNN-1D is a convolutional neural network architecture
designed to handle one-dimensional sequential data and perform
tasks such as regression, classification, and feature extraction
(Guessoum et al., 2022; Kiranyaz et al., 2021). This algorithm is
composed of kernels associated with convolutional layers, pooling
layers, and dense fully connected layers, as shown in Figure 4a.

XGBoost is an ensemble ML algorithm that was proposed
by Chen and Guestrin (2016) and is used in classification and
regression problems. This algorithm groups and trains decision
trees via the gradient-boosting method based on the recursive
residual of training for consecutive trees to reduce estimation errors
(Ali et al., 2023). The output of XGBoost is the average response
from each output hz(X) generated by each trained decision tree Z,
as shown in Figure 4b.

The autoregressive and ML models were implemented via the
Python packages Scikit-Time, XGBoost, and TensorFlow.

3 Results

The results presented in this section refer to the analysis
of precipitation predictions at points Serra Sul (SES), Açailândia
(ACA), and Ponta da Madeira (PDM). The results obtained for the
remaining 10 points are provided in the Supplementary Material.

3.1 Precipitation prediction for Serra Sul

The results obtained with all the models for the TSCV and the
independent test for monthly precipitation prediction in the Serra
Sul region are shown in Table 1, and in Figures 5a,b, respectively.

A comparison of the results obtained in the two analyses reveals
that the XGBoostmodel predominantly achieves the lowest avRMSE
values at the monthly scale, as highlighted in Table 1, with values
ranging from 21.286 to 72.968.

An evaluation of the impact of varying time window lengths
(TWLs of 3, 4, 5, and 6 months) within the validation fold
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FIGURE 4
Architecture of ML models. (a) Diagrams of the RNN, GRU, and CNN-1D models; (b) Diagram of XGBoost structure.

for March, the month with the most critical rainfall patterns
in the SES region, revealed no statistically significant differences
in the performance of the ARIMA model. This conclusion
is supported by the Kruskal–Wallis test (p-value = 0.9991).
The distribution of RMSE values across TWLs is illustrated in
Supplementary Figure S1a.

On the other hand, Figure 5a shows that in the independent test,
the ARIMA model achieves the lowest RMSE values over 5 months
of the year, predominantly displaying the best performance, with
values ranging from 7.631 to 77.677 (see Supplementary Table S21).
Similarly, the MAE values obtained by ARIMA model show the

lowest prediction error in 5 months, with values ranging from 5.536
to 68.524, as shown in Figure 5b. Comparatively, XGBoost achieves
optimal performance among the tested models in only 3 months for
this location, as indicated in Table 3.

Specifically for the rainy season in Serra Sul (betweenNovember
and April), the ARIMA model yields RMSE values between 40.847
and 77.677 and MAE values between 32.640 and 68.524 in the
independent test, whereas for the dry season (between May and
October), the values for RMSE vary between 7.631 and 76.965
and MAE vary between 5.536 and 66.583, with the lowest value
occurring in July (see Supplementary Tables S21, S33). Compared
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TABLE 1 avRMSE results for the TSCV analysis with the models for monthly precipitation prediction at SES.Ṁ

Month ARX ARMAX ARIMAX ARIMA RNN LSTM GRU CNN-1D XGBoost

Jan 109.238 107.747 155.666 83.824 133.749 258.276 152.013 125.412 87.102

Feb 226.720 225.932 167.668 112.036 184.793 130.304 183.608 85.116 83.272

Mar 88.169 90.467 139.744 89.469 120.396 148.560 114.572 108.334 72.968

Apr 92.617 92.254 125.855 87.290 83.208 135.202 86.448 76.778 78.201

May 53.968 57.967 65.424 70.673 63.191 111.559 65.405 59.050 60.264

Jun 28.568 27.897 38.139 27.866 23.35 26.189 26.940 18.406 20.427

Jul 33.925 34.329 51.475 30.261 40.288 59.683 50.120 32.807 21.286

Aug 63.993 63.428 71.495 33.273 51.662 58.893 64.298 42.072 30.108

Sep 72.234 69.681 138.102 44.093 65.712 63.116 73.085 49.068 51.698

Oct 109.060 109.89 134.503 67.271 60.733 71.494 68.866 58.004 48.416

Nov 85.052 85.427 95.287 73.448 109.922 101.976 111.014 90.171 60.990

Dec 234.049 235.674 206.617 75.993 100.882 84.340 99.809 62.285 87.916

Bold numbers represent the lowest avRMSE value by month.

with XGBoost, thismodel achieves a reduction of over 24% in RMSE
values for January, February, and March.

The confidence interval analysis shown in Figure 6 indicates
that the ARIMA model yielded the most consistent performance
in predicting average monthly precipitation for the years between
2011 and 2022. Its estimates are closer to the historical mean (blue
bars), indicating higher accuracy. Additionally, it shows the smallest
confidence interval among the nine models evaluated, suggesting
greater precision, as shown in Figure 6a. This behavior highlights
statistical robustness and lower uncertainty in its predictions, while
the other models display greater variability and deviate more from
the observed values, mainly for the rainy season.

The charts in Figure 7 display the observed and predicted
rainfall values by the models for the month of March, which
recorded the highest historical average for this region between 2011
and 2022. In both charts, it is evident that the ARIMA model
showed the lowest prediction variability, in addition to achieving
the lowest estimation error for the years 2011, 2012, 2017, and 2022.
Meanwhile, the XGBoost model presented the lowest error for the
years 2019 and 2020.

A comparative analysis of the monthly rainfall forecasts
generated between 2011 and 2020 by the models developed in
this study and those produced by multiple linear regression (MLR)
models with one- and 2-month lags (MLR-L1 and MLR-L2),
commonly employed as baseline forecasting tools by a mining
company operating in the study regions (Ferreira et al., 2024), reveals
that, during the rainy season in the SES region, the ARX model
attained RMSE and MAE values comparable to those of the MLR-
L1 and MLR-L2 models, particularly from January through April,
as illustrated in Figures 8a,b. During the dry season, there is also
consistent evidence that the trained models outperformed the MLR
baselines, particularly between May and September.

These findings indicate that, for the analysis between 2011
and 2022, the ARIMA model, which uses only autoregressive
values of monthly precipitation, and the XGBoost model yield
competitive results compared with the other multivariable models
for SES, as these models generalize the monthly precipitation
dynamics. The results also indicate that some multivariable
models, such as ARX, achieved performance comparable to the
baseline tools for predicting monthly rainfall during the rainy
season (see Supplementary Tables S36, S37).

3.2 Precipitation prediction for Açailândia

The results of the TSCV and independent test analyses achieved
with the models applied for monthly precipitation prediction
for the ACA point are shown in Table 2, and in Figures 5c,d,
respectively. Table 2 indicates that the ARIMA model yields
the lowest avRMSE values for 5 months, with values ranging
from 22.722 to 116.020 in the TSCV analysis, whereas XGBoost
is the second-best-performing model and displays the optimal
performance for 3 months, with avRMSE values between 20.264
and 127.358.

The analysis of different TWLs (3, 4, 5, and 6 months)
in the validation fold for March showed that the performance
of the XGBoost model remained statistically consistent across
all configurations. According to the Kruskal–Wallis test, no
significant differences were detected among the different TWLs
(p-value = 0.9995). Supplementary Figure S1b displays the RMSE
distributions associated with each TWL.

The independent test of monthly forecasts at ACA reveals that
the XGBoost model achieves the best performance in 4 months, as
shown in Figure 5c where the RMSE values ranging from 15.289
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FIGURE 5
RMSE and MAE values obtained for the models in the independent tests between 2011 and 2022 for the regions SES, ACA, and PDM. (a) RMSE values in
SES; (b) MAE values in SES; (c) RMSE values in ACA; (d) MAE values in ACA; (e) RMSE values in PDM; and (f) MAE values in PDM. The gray area indicates
the rainy season. The variation of RMSE and MAE in independent test across months and between the rainy and dry seasons is more significant at ACA
and PDM than at SES.

to 104.678 (see Supplementary Table S27). Figure 5d depicts that
the MAE values obtained by the XGBoost vary between 11.114
and 98.097 (see Supplementary Table S34). The CNN-1D model
yields the second-best results in this analysis and performs best in
3 months, whereas the ARIMA yields the best forecasts only in June
and July, as shown in Table 3.

Based on the performance of themodels during the rainy season
months at this location (between December and April), the CNN-
1D model achieved the lowest RMSE value most frequently. The
MAEmetric shows that CNN-1D also reached the lowest error value
for April, while obtained values close to the best for January and
December, as shown in Figure 5d. For the dry season (between May
and November), the XGBoost model outperforms the other models
in 3 months, achieving an RMSE value of 18.840 in August, which is
the second-lowest value for this analysis.

The confidence interval analysis for the predictions generated
by the models for the Açailândia site, as shown in Figure 9, reveals
an interesting pattern when compared to the previously analyzed
region. In this case, as illustrated in Figure 9a, the ARIMA model

presents lower variability in its predictions; however, the results
indicate that both the mean forecast and its confidence interval fail
to encompass the historical monthly average for the period between
February and May. Conversely, most of the multivariate models
present confidence intervals that do include the historical average
for each month, with the XGBoost model standing out by providing
both predictions and confidence intervals closely aligned with the
observed rainfall values, as shown in Figure 9e.

An interesting finding that can be abstracted from the results
presented in Tables 2, 3 is the type of model that achieved the
best performance in each month. For Serra Sul, the ARIMA model
clearly performs best; for Açailândia, the multivariable predictive
models achieve the best performance in most months for both
analyses, which may indicate the contribution that the exogenous
meteorological variables make to the explainability of monthly
precipitation in this region.

Evaluating the rainfall predictions for the month of March,
historically the wettest month in Açailândia between 2011 and 2020,
it can be observed that the XGBoost model produced forecasts
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FIGURE 6
Confidence interval analysis of the models prediction by month in SES region. Each plot displays the historical monthly average precipitation (blue
bars), the model’s predicted monthly average (solid red line), and the confidence interval of the predictions (shaded red area). The models represented
are: (a) ARIMA; (b) ARX; (c) ARMAX; (d) ARIMAX; (e) XGBoost; (f) RNN; (g) LSTM; (h) GRU; and (i) CNN-1D.

closest to the observed precipitation values in 50% of the years
analyzed (2011, 2012, 2016, 2017, and 2018). Additionally, themodel
also yielded predictions close to the observed rainfall for the years
2015 and 2021, as illustrated in Figure 10.

The RMSE and MAE values yielded by the trained models,
alongside the baseline models MLR-L1 and MLR-L2, are presented
in Figures 8c,d, respectively. These results demonstrate that, during
the rainy season in the ACA region from 2011 to 2020, several of
the proposedmodels outperformed the baseline approaches in terms
of predictive accuracy. Notably, the best-performing models for the
months of January, February, March, and December were XGBoost,
ARIMAX, RNN, and ARIMA, respectively. Similarly, during the
dry season, improved predictive performance over the MLR-L1 and
MLR-L2 models was also observed in specific months (June, July,
September, and November) for certain models developed in this
study (see Supplementary Tables S38, S39).

3.3 Precipitation prediction for Ponta da
Madeira

The results of the TSCV and independent tests with
monthly precipitation prediction models trained with the set of
meteorological data from the Ponta da Madeira are presented in
Table 4, and in Figures 5e,f, respectively.

The TSCV results indicate that the XGBoost model achieves
the best performance in forecasting precipitation for 6 months of
the year, particularly during the dry season (between June and
December) in this region. For the rainy season (between January
and May), this same model yields the lowest avRMSE value in

May. Additionally, the ARIMA and CNN-1D models yield good
predictions in rainy season months.

In the case of the PDM region, the evaluation of different
TWLs (3, 4, 5, and 6 months) during the validation phase of
TSCV for March revealed statistically significant differences in
the performance of the CNN-1D model. The Kruskal–Wallis
test confirmed this with a p-value of 0.0004. Among the
configurations tested, the TWL of 5 months yielded the lowest
avRMSE, indicating superior predictive performance. The
validation RMSE values distribution for each TWL for this case
is depicted in Supplementary Figure S1c.

With respect to the results obtained in the independent test, the
XGBoost and ARIMA models stand out in terms of precipitation
forecasting, each equally achieving the best performance in
3 months of the year, particularly during the rainy season in this
region (from Jauary to May). The results in Figure 5e indicate that
XGBoost yielded RMSE values ranging from 12.764 to 167.813
for monthly prediciton, while ARIMA achieves values between
14.120 and 189.699 over themonths (see Supplementary Table S32).
Figure 5f shows the analysis of the models based on MAE
metric, where the ARIMA obtained values between 10.660 and
166.648, while XGBoost yeilded MAE values between 8.915 and
145.382 (see Supplementary Table S35).

Regarding the variability of monthly predictions for eachmodel,
Figure 11 shows that, similar to the other cases, the ARIMA
model achieved the narrowest confidence interval compared to
the models with exogenous variables, as shown in Figure 11a.
However, for some months of the rainy season in Ponta da
Madeira, the average predictions of the ARIMA model resulted
in higher errors compared to models such as XGBoost, which,
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FIGURE 7
Observed and predicted values by the models for the month of March from 2011 to 2022 in the SES region. Each panel displays the observed monthly
accumulated precipitation values in millimeters per year (gray bars), along with lines and markers representing the predictions of each model. (a)
Comparison of the ARIMA model (red line) with the ARX (green line), ARMAX (blue line), ARIMAX (orange line), and XGBoost (purple line) models; (b)
Comparison of the ARIMA model (red line) with the RNN (green line), LSTM (blue line), GRU (orange line), and CNN-1D (purple line) models.

despite having a wider confidence interval, produced mean
predictions that were much closer to the observed values, as
shown in Figure 11e.

When evaluating the predictions of the models against the
observed rainfall values for the month of March in Ponta
da Madeira (PDM), a high degree of variability is observed,
as shown in Figure 12. This can be attributed to the significant
fluctuations in precipitation levels in March throughout the 12-
year period. Comparatively, the CNN-1D model demonstrated the
best performance for this month, accurately predicting rainfall
values close to the observed data for the years 2012, 2013,
and 2015. Additionally, for the years 2011, 2017, and 2021, it
achieved predictions that were very close to those of the best-
performing models.

Regarding the monthly rainfall forecasts generated for the
PDM region, which exhibits a distinct climatic regime compared
to the other two regions previously analyzed, the performance of

the MLR-L1 and MLR-L2 models was compared to that of the
trained models. During the rainy season, the ARMAX, XGBoost,
GRU, and RNN models yielded the best results for the months of
February, March, April, and May, respectively, while in January,
the XGBoost model achieved prediction errors comparable to
those of the MLR-L2 model, as illustrated in Figures 8e,f. In the
dry season, the RMSE and MAE plots indicate that the trained
models produced errors closely aligned with those of the MLR-
L1 and MLR-L2 models, with particular emphasis on December,
when the ARX model demonstrated the best overall performance
(see Supplementary Tables S40, S41).

3.4 Correlation and explainability analyses
of the meteorological variables

The results shown in the above sections highlight the
performance of each model across different regions over
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FIGURE 8
RMSE and MAE values obtained for the MLR-L1, MLR-L2 and trained models in the independent tests between 2011 and 2020 for the regions SES, ACA,
and PDM. (a) RMSE values in SES; (b) MAE values in SES; (c) RMSE values in ACA; (d) MAE values in ACA; (e) RMSE values in PDM; and (f) MAE values in
PDM. The gray area indicates the rainy season. The variation of RMSE and MAE in independent test across months and between the rainy and dry
seasons is more significant at ACA and
PDM than at SES.

time at a monthly scale. However, explaining why there is
spatiotemporal variation in model performance may not be
trivial, as this performance depends on how well the model
can learn and predict the nonlinear dynamics of interactive
meteorological variables.

Figure 13 shows the Spearman correlation analysis of the
meteorological variables related to precipitation for each of the
three selected points for each month. In the SES region, for the first
3 months (JFM), during which ARIMA yields the best predictions,
the correlation levels are low and close to zero (between −0.355
and 0.209), as indicated in Figure 13a. However, for the same
months, in which ARIMA did not achieve the lowest RMSE values,
in ACA the correlation ranged from −0.327 to 0.339, whereas
for PDM, the correlation range was between −0.304 and 0.339,
as shown in Figures Figures13c,d, respectively. Based on a detailed
examination of the correlation levels for these first 3 months,
there are some subtle differences in the pointwise correlations

between some pairs of variables, which can directly impact the
learning process of the models; consequently, only multivariable
techniques are capable of learning the dynamics of these
meteorological variables.

From a more general perspective, it can be observed that there
is no consistent pattern between precipitation and other variables.
Additionally, for some months, there is a noticeably low correlation
between variables, whereas in other months, the correlation is
high, such as for u10 and t2m from April to June. This nonlinear
correlation profile at the monthly scale reflects the nonuniformity of
the models that perform best.

The results of the explainability analysis based on the
SHAP method for the XGBoost model reveal distinct and
robust patterns in the contributions of meteorological and
climatic variables, with significant spatial and seasonal variations.
Figure 13b shows the notable influence of the intermediate
values of the Niño 3 and Niño 1+2 to the rainfall prediction in
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TABLE 2 avRMSE results for the TSCV analysis with the models for monthly precipitation prediction at ACA.

Month ARX ARMAX ARIMAX ARIMA RNN LSTM GRU CNN-1D XGBoost

Jan 100.496 101.229 132.983 80.921 148.445 132.254 145.003 108.213 98.836

Feb 196.097 193.064 260.138 116.020 177.444 131.681 147.286 116.251 104.781

Mar 120.629 119.981 159.601 81.086 181.646 141.757 282.167 146.806 127.358

Apr 86.491 87.371 100.257 95.246 130.390 131.647 136.297 127.434 113.758

May 63.341 67.180 78.616 82.694 87.127 81.431 87.483 65.316 65.728

Jun 34.822 33.592 42.605 26.966 24.644 27.059 23.503 22.524 20.264

Jul 24.592 24.788 36.472 27.233 30.819 45.448 37.026 29.406 20.874

Aug 52.234 51.897 61.294 22.722 41.395 39.459 41.879 39.631 23.256

Sep 29.972 28.630 40.200 22.846 37.191 34.673 35.446 30.625 25.145

Oct 57.785 57.938 66.739 48.462 74.396 58.647 80.310 37.740 47.025

Nov 69.523 68.841 74.423 57.715 100.36 103.297 104.441 70.426 46.696

Dec 85.582 82.659 108.099 66.516 91.273 68.470 84.210 57.609 61.985

Bold numbers represent the lowest avRMSE value by month.

TABLE 3 Best models by month and point according to the independent
test results.

Month SES ACA PDM

Jan ARIMA CNN-1D ARX

Feb ARIMA ARMAX ARX

Mar ARIMA XGBoost CNN-1D

Apr XGBoost CNN-1D LSTM

May ARMAX XGBoost XGBoost

Jun ARIMA ARIMA ARIMA

Jul ARIMA ARIMA ARIMA

Aug XGBoost XGBoost XGBoost

Sep GRU GRU XGBoost

Oct RNN CNN-1D CNN-1D

Nov CNN-1D XGBoost ARIMAX

Dec XGBoost ARIMAX ARIMA

Bold numbers represent the lowest avRMSE value by month.

SES, especially in February. For the ACA region, TSA is more
impactful on predictions in March, as shown in Figure 13d. On
the other hand, the results shown in Figure 13f indicate that

the variables Niño 3 and t2m contribute more with rainfall
prediction in January.

In a general perspective of the SHAP results, the SES station
shows a strong dependence on temperature (t2m), especially in
March and November, while ACA is more sensitive to wind
components (u10 and v10) in January and February. PDM,
in turn, shows greater influence from oceanic indices, such as
Niño 3 and TNA, throughout the year. The summer months
are dominated by local meteorological variables, while in winter,
climatic indices become more relevant. Transition periods show
mixed behaviors, with contributions from both local variables
and climatic indices. Temperature (t2m) emerges as the most
consistent and impactful variable across all locations, while wind
components and oceanic indices show significant variations and
nonlinear responses to climatic anomalies. The results obtained
for the explainability analysis with SHAP for all the months are
provided in the Supplementary Material.

4 Discussion

From a general perspective, the results presented earlier for the
three points in the Amazon region indicated that the evaluated
forecasting models achieved avRMSE and RMSE values close to
100 for the rainy season, which has higher average precipitation
levels and a greater impact on the socioeconomic dynamics of the
region, particularly at the SES and ACA points. Conversely, the
PDM point presented forecasts with a slightly higher error value
for the same season. This phenomenon may be associated with the
influence of other meteorological variables not investigated in this
study on rainfall formation in the northern region of the state of
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FIGURE 9
Confidence interval analysis of the models prediction by month in ACA region. Each plot displays the historical monthly average precipitation (blue
bars), the model’s predicted monthly average (solid blue line), and the confidence interval of the predictions (shaded blue area). The models
represented are: (a) ARIMA; (b) ARX; (c) ARMAX; (d) ARIMAX; (e) XGBoost; (f) RNN; (g) LSTM; (h) GRU; and (i) CNN-1D.

Maranhão, which directly affects precipitation modelling with the
algorithms examined.

ENSO and TAG are the two main teleconnections that reach
tropical South America on the interannual scale (Reboita et al.,
2021). Several studies show that ENSO (Marengo et al., 2012;
Tedeschi and Sampaio, 2022) and TAG (Nobre and Shukla, 1996;
SOUZA et al., 2000) have a negative correlation with tropical South
American precipitation, i.e., the occurrence of these phenomena
impact on the studied region. Furthermore, the strongest impact of
ENSO is in austral summer and autumn, while in TAG is in austral
autumn. The correlation analysis with 1-lag between precipitation
and the indices that represent these phenomena (Figure 13) shows
that the strongest influence occurs in austral autumn, but there
is also influence in austral winter. These analyses show that ML
models that use these indexes as exogenous variables could have
an advantage when forecasting austral autumn and winter. Despite
that, the ARIMA model was better in June and July in all the
points analyzed.

With respect to the investigated models, it is important
to highlight the paradox between prediction accuracy and
interpretability. Among the analyzed models, statistical models
are the easiest to interpret due to their mathematical structure,
which clearly shows the direct relationship between input and
output variables, with particular emphasis on the ARX model,
which is one of the simplest. On the other hand, ML models
are more complex and involve nonlinear relationships that
are not as explicit. This comparison shows that approximately
56% of the simulations yielded their best results with the ML
models, which does not make the relationships between variables

explicit. The ACA and PDM points achieved the best results
with models based on CNN-1D, RNN, GRU, and XGBoost,
making it more difficult to interpret how each meteorological
variable contributes to the information used for rainfall forecasting
at these points.

Another important aspect to consider is the performance
achieved by the trainedmodels compared to the baseline approaches
used for rainfall forecasting across the study regions between 2011
and 2020. The results, particularly during the rainy season, indicate
that several of the proposed models were able to generate monthly
rainfall forecasts with accuracy comparable to, and in some cases
surpassing, that of the MLR-L1 and MLR-L2 baseline models. In the
SES region, for instance, the ARX model achieved RMSE and MAE
values similar to those of the referencemodels in 66.66% of the rainy
season months. During the same season, models such as XGBoost,
ARIMAX,RNN, andARIMAdelivered the best performance in 80%
of themonths. Likewise, in the PDM region, the ARMAX, XGBoost,
GRU, and RNN models achieved top performance in 80% of the
rainy season months.

The spatial generalization of the models is also an interesting
point to evaluate, as the lack ofmeteorological stations in the studied
region makes it difficult to obtain observed data, directly impacting
the accuracy of precipitation forecasting on a larger spatial scale.
For each point and month analyzed, different architectures achieved
the best performance. From a statistical perspective, the generated
models exhibit excellent performance for a coverage area of
approximately 1 km2 around the evaluated points, as the data used
to train the models have a granularity of 0.25 ° × 0.25 °. However,
beyond the limits of the cited regions, the models could experience
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FIGURE 10
Observed and predicted values by the models for the month of March from 2011 to 2022 in the ACA region. Each panel displays the observed monthly
accumulated precipitation values in millimeters per year (gray bars), along with lines and markers representing the predictions of each model. (a)
Comparison of the XGBoost model (red line) with the ARIMA (green line), ARX (blue line), ARMAX (orange line), and ARIMAX (purple line) models; (b)
Comparison of the XGBoost model (red line) with the RNN (green line), LSTM (blue line), GRU (orange line), and CNN-1D (purple line) models.

a decline in performance due to the variability of meteorological
variables.

5 Conclusion

Predicting precipitation in regions with high rainfall is
necessary to minimize material and human losses. However,
meteorological data are not always available for analyses and
forecasting, especially for remote regions such as the study area in
this research.

Our results highlighted several important aspects of
precipitation prediction at different points throughout the
region selected for analysis, mainly concerning the influence
that exogenous variables have on precipitation. On the basis
of the monthly forecasts at three points, in 72.23% of the

cases, the multivariable prediction models achieve the lowest
RMSE values, whereas the ARIMA model yields the best
performance in 27.77% of the cases. These results indicate that
the exogenous variables influence the precipitation predictions in
most months in these regions, as further supported by the results
of correlation analyses, which indicated significant correlations
between the u10, t2m, TSA, and TNA and precipitation in
some months.

The analysis carried out for the dry and rainy seasons revealed
that there was no consistency in the type of prediction model
that yielded the best results. Specifically, in the rainy season, the
results of the independent test show that at the SES point, which
is south of the region selected for analysis, the ARIMA model
performed best in 50% of the studied cases, which can be explained
by the low level of correlation between the meteorological variables
and precipitation in this region, whereas XGBoost performed
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TABLE 4 avRMSE results for the TSCV analysis with the models for monthly precipitation prediction at PDM.

Month ARX ARMAX ARIMAX ARIMA RNN LSTM GRU CNN-1D XGBoost

Jan 179.101 182.33 223.783 113.681 205.263 185.233 211.475 136.613 148.746

Feb 334.393 335.567 443.908 147.035 234.135 213.267 211.105 167.194 211.810

Mar 197.037 192.481 243.688 133.513 231.832 199.622 202.632 171.31 158.075

Apr 124.336 119.198 139.656 175.389 138.418 469.34 135.331 115.057 134.462

May 289.996 289.884 218.616 174.092 226.05 230.221 172.244 168.82 155.235

Jun 56.402 57.119 71.005 82.791 69.692 70.187 74.879 53.319 55.402

Jul 68.689 68.646 72.719 73.040 74.059 72.910 67.375 55.294 44.645

Aug 25.629 24.468 33.194 20.617 23.427 21.991 22.702 13.741 12.790

Sep 25.686 25.488 31.617 21.997 24.964 21.817 22.122 21.140 13.682

Oct 33.227 33.140 16.875 9.277 11.661 10.094 9.971 9.501 9.399

Nov 17.055 16.867 18.728 15.498 23.048 28.134 24.985 16.419 12.217

Dec 88.035 85.238 135.806 77.813 92.341 107.982 94.272 57.765 56.734

Bold numbers represent the lowest avRMSE value by month.

FIGURE 11
Confidence interval analysis of the models prediction by month in PDM region. Each plot displays the historical monthly average precipitation (blue
bars), the model’s predicted monthly average (solid gren line), and the confidence interval of the predictions (shaded green area). The models
represented are: (a) ARIMA; (b) ARX; (c) ARMAX; (d) ARIMAX; (e) XGBoost; (f) RNN; (g) LSTM; (h) GRU; and (i) CNN-1D.

best in April and December, when the u10, t2m, Ninõ 3, and
TNA variables have a greater influence than at other times.
The comparative results with the MLR-L1 and MLR-L2 models
further support this conclusion, as no single model consistently

outperformed the others across all months in the studied regions.
This is particularly evident in the ACA and PDM regions, where
different algorithms achieved the lowest RMSE and MAE values
in 80% of the rainy season months, highlighting the variability
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FIGURE 12
Observed and predicted values by the models for the month of March from 2011 to 2022 in the PDM region. Each panel displays the observed monthly
accumulated precipitation values in millimeters per year (gray bars), along with lines and markers representing the predictions of each model. (a)
Comparison of the CNN-1D model (red line) with the ARIMA (green line), ARX (blue line), ARMAX (orange line), and ARIMAX (purple line) models; (b)
Comparison of the CNN-1D model (red line) with the XGboost (green line), RNN (blue line), LSTM (orange line), and GRU (purple line) models.

in model performance depending on temporal and regional
characteristics.

In contrast, only the multivariable models were optimal at
the ACA and PDM points within the same season. This can be
attributed to the correlation level of the exogenous variables with
precipitation. These findings may indicate that in the rainy season,
the meteorological variables of wind and temperature have a greater
influence on points in the central and northern parts of the selected
region than in other areas. We conclude that the best statistical and
ML models established to predict monthly precipitation at points in
the study region achieved satisfactory results in both tests and can
be used as auxiliary tools for forecasting monthly precipitation in
this region.

The results of the SHAP analysis highlight the complex
interaction between local and global factors in climatic patterns,
reinforcing the importance of considering both spatial and temporal
variation in analyses of this nature. The consistency of the

identified patterns suggests that the conclusions are robust and
potentially relevant for understanding climatic mechanisms in the
studied region. Additionally, the identification of extreme values
in various variables points to the need for further investigation,
both to understand extreme meteorological events and to improve
climatic modeling.

The forecasts obtained with the best models can be integrated
into user-interface technologies designed for researchers and
industry professionals in the Amazon region. By incorporating
these predictive models into decision-support systems, stakeholders
can access accurate monthly rainfall forecasts, enhancing their
ability to plan operations effectively. Furthermore, integrating the
best models with numerical weather prediction systems (e.g.,
the Brazilian Atmospheric Model and the Brazilian Regional
AtmosphericModeling System) can enhance rainfall forecasting and
the detection of potential climate anomalies, supporting proactive
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FIGURE 13
Heatmap of the Spearman correlation coefficients between the meteorological covariables and precipitation by month and SHAP values for XGBoost
explainability. (a) Spearman correlation in SES; (b) SHAP values obtained for SES in February; (c) Spearman correlation in ACA; (d) SHAP values obtained
for ACA in March; (e) Spearman correlation in PDM; and (f) SHAP values obtained for PDM in January. Warmer colors in the heatmap indicate positive
correlations, while cooler colors indicate negative correlations. Overall, u10 shows the strongest positive correlation with precipitation across the three
locations in March and June. In contrast, t2m exhibits the strongest negative correlation in SES and ACA in May, while Niño 3 index is most negatively
correlated in PDM during May and July. Red points SHAP chart indicate high values of the covariates influencing the prediction, while blue points
indicate the influence of low values. Overall, the oceanic indices (Niño 3, TSA, and TNA), u10, v10, and t2m displayed relevant influence in the rainfall
prediction for the three regions.

decision-making in response to extreme weather events in the
western Amazon.

As a proposal for future work, we suggest exploring advanced
deep learning architectures, such as Transformer-based models,
including large language models (LLMs) adapted for time-series

processing, as well as hybrid approaches with the fusion of isolated
models, to enhance monthly precipitation forecasting. Additionally,
integrating feature selection techniques could help identify the
most relevant meteorological variables, potentially reducing
model complexity while maintaining predictive performance.
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These advancements could improve the interpretability and
accuracy of precipitation predictions, enabling more efficient and
computationally viable forecasting solutions.

Furthermore, evaluating the predictive performance of the
models during extreme precipitation events for each month
would provide insights into the models’ reliability in high-
impact scenarios, supporting more robust forecasting strategies.
Additionally, understanding their behavior in extreme conditions
could help refine model selection and improve decision-making for
climate risk management. Likewise, evaluating the performance of
the best model across different seasonal periods (e.g., December-
January-February, January-February-March) would improve the
understanding of the consistency of themodels over varying climatic
patterns, contributing to the development of more adaptable and
generalizable forecasting frameworks.
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