
TYPE Original Research
PUBLISHED 25 April 2025
DOI 10.3389/feart.2025.1577165

OPEN ACCESS

EDITED BY

Katsuichiro Goda,
Western University, Canada

REVIEWED BY

Zarghaam Rizvi,
GeoAnalysis Engineering GmbH, Germany
Halil Akinci,
Artvin Coruh University, Türkiye

*CORRESPONDENCE

Xianghang Bu,
buxh1649@126.com

RECEIVED 15 February 2025
ACCEPTED 24 March 2025
PUBLISHED 25 April 2025

CITATION

Bu X, Fan S, Zhang Z, Zhu K and Ma X (2025)
Interpretability study of earthquake-induced
landslide susceptibility combining
dimensionality reduction and clustering.
Front. Earth Sci. 13:1577165.
doi: 10.3389/feart.2025.1577165

COPYRIGHT

© 2025 Bu, Fan, Zhang, Zhu and Ma. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Interpretability study of
earthquake-induced landslide
susceptibility combining
dimensionality reduction and
clustering

Xianghang Bu1,2*, Songhai Fan1,2, Zongxi Zhang1,2, Ke Zhu1,2 and
Xiaomin Ma1,2

1Electric Power Research Institute of State Grid Sichuan Electric Power Company, Chengdu, China,
2Power Internet of Things Key Laboratory of Sichuan Province, Chengdu, China

An earthquake of magnitude Ms5.8 struck Barkam City, Aba Prefecture, Sichuan
Province, China, on the morning of 10 June 2022. This was followed by
two additional earthquakes of magnitudes Ms6.0 and Ms5.2. The earthquakes
triggered significant geological hazards, impacting BarkamCity and surrounding
areas. Using Random Forest (RF) and Extreme Gradient Boosting (XGBoost)
machine learning models, we assessed landslide susceptibility in Barkam City
and identified key influencing factors. The study applied the SHAP method
to evaluate the importance of various factors, used UMAP for dimensionality
reduction, and employed the HDBSCAN clustering algorithm to classify the
data, thereby enhancing the interpretability of the models. The results show that
XGBoost outperforms RF in terms of accuracy, precision, recall, F1 score, KC,
and MCC. The primary factors influencing landslide occurrence are topographic
features, seismic activity, and precipitation intensity. This research not only
introduces innovative machine learning techniques and interpretability methods
for landslide susceptibility analysis but also provides a scientific foundation
for emergency response and post-disaster planning related to landslide risks
following the earthquake in Barkam City.
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1 Introduction

A magnitude Ms5.8 earthquake with a focal depth of 10 km struck Barkam City,
Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, China, on 10 June
2022 (32.27°N, 101.82°E). The same area was then hit by another earthquake of
magnitude Ms6.0 at a depth of 13 km. A third earthquake with a focal depth of
15 km and a magnitude of Ms5.2 happened 2 h later at 32.24°N, 101.85°E (Yue et al.,
2024). The Barkam Ms6.0 earthquake swarm is the name given to this sequence of
seismic occurrences. A total of 113,950 people were impacted by the earthquakes
and the secondary disasters that followed in and around Barkam City. Six people
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were injured, and an estimated 2.005 billion yuan was lost directly
in economic losses. The incidents resulted in incalculable property
damage and human casualties. Therefore, for emergency rescue
operations and subsequent resettlement planning, it is essential to
quickly and accurately acquire geological disaster distribution after
an earthquake (Xuanmei et al., 2022).

Statistical techniques (Lingjing et al., 2023) and physical models
(Haijun et al., 2022) are frequently used in the assessment of
landslide susceptibility. The former is appropriate for regional
studies since it usually creates evaluation models based on
probabilistic techniques to determine the likelihood of landslide
occurrence. The latter, which is frequently used in case studies,
on the other hand, mainly depends on physics and engineering
geology knowledge to create conceptual models that mimic the
physical processes of landslides. Traditional statistical techniques,
which were labor-intensive and produced less-than-ideal results,
were primarily employed in early regional research. With the
development of artificial intelligence in recent years, machine
learning methods such as neural networks (Phuong et al., 2021;
Wang et al., 2021), logistic regression (Jiang et al., 2023; Li et al., 2019;
Zhang et al., 2022), random forests (Wang et al., 2024; Zhang R. et al.,
2024) and support vector machines (SVM) (Huang et al., 2023;
Huang and Zhao, 2018) have gained popularity as instruments
for determining landslide susceptibility. In order to estimate the
likelihood of landslides occurring in particular areas, landslide
susceptibility evaluation takes into account the relationships
between past landslide disasters and a variety of influencing factors,
including geology, topography, soil properties, and human activities.
Among the many machine learning techniques, RF and XGBoost
have proven to be noticeably better (Xing et al., 2024). By building
multiple decision trees and combining their votes, RF successfully
lowers the risk of overfitting and shows excellent robustness when
working with high-dimensional data (Lin et al., 2024). In the
meantime, XGBoost uses ensemble learning strategies to improve
model performance. In addition to efficiently capturing intricate
nonlinear relationships, it also uses regularization techniques to
simplify the model and increase predictive accuracy (Liu and
Deng, 2024; Zhu et al., 2024). This makes RF and XGBoost
effective tools for assessing landslide susceptibility because they
can learn from big datasets and uncover the complex nonlinear
relationships affecting the occurrence of landslides while reducing
the influence of human subjectivity, leading to more accurate
evaluation results.

Machine learningmodels are frequently viewed as “black boxes”
because of their inability to be interpreted, even though they
perform exceptionally well and are highly accurate (Faming et al.,
2023). To deal with this problem, Lundberg et al. presented a
novel approach to the structural interpretation of models and
the justification of findings in 2017 with the SHAP method
(Lundberg and Lee, 2017). Researchers have started to concentrate
on how easily landslide susceptibility assessments can be interpreted
(Lei et al., 2024; Xiao et al., 2024; Yang et al., 2024; Yu et al., 2024).
The direct interpretation of the internal mechanisms of landslide
susceptibility models is complicated by the high dimensionality
of the data and the inclusion of multiple evaluation factors. The
interpretation of landslide susceptibility research can be greatly
improved by using dimensionality reduction techniques, which

can project high-dimensional data into a lower-dimensional space
and reveal the intricate nonlinear relationships within the data
(Calderon-Guevara et al., 2022). One popular method for reducing
dimensionality is Principal Component Analysis (PCA), which
preserves the maximum variance information in the data by
projecting it onto a small number of principal components using
linear transformations. However, the relationships between complex
nonlinear features may not be sufficiently revealed by PCA because
it assumes linear relationships among features (Sabokbar et al.,
2014; Xu et al., 2024). In this regard, nonlinear dimensionality
reduction techniques such as Uniform Manifold Approximation
and Projection (UMAP) and t-distributed Stochastic Neighbor
Embedding (t-SNE) have attracted growing interest (Kobak and
Linderman, 2021; Marx, 2024). High-dimensional data can be
efficiently mapped into a lower-dimensional space using t-SNE,
which is especially useful for displaying the local structure of
high-dimensional data by enabling similar data points to group
together in the lower-dimensional space. However, the results of t-
SNE can be greatly impacted by the choice of parameters, and it
does not perform well in maintaining global structure (Han et al.,
2022). The interpretability studies of landslide susceptibility, on
the other hand, show that UMAP is more capable of preserving
both local and global structures in the lower-dimensional space
(Weaver et al., 2022).

The implementation of clustering methods in landslide
susceptibility research greatly improves the comprehensibility of
models (Zhao X. et al., 2024). Specifically, HDBSCAN (Hierarchical
Density-Based Spatial Clustering of Applications with Noise), a
sophisticated clustering method, excels at autonomously identifying
areas of varying data density (Stewart and Al-Khassaweneh,
2022). Unlike conventional clustering techniques like K-means,
HDBSCAN is adept at handling data with diverse shapes and
densities, and it can dynamically discover potential clustering
structures (Wang et al., 2023). This attribute makes it a valuable
tool for landslide susceptibility studies, as geological data frequently
display intricate and irregular spatial patterns. HDBSCAN can
effectively segment these data into numerous subsets with similar
traits, enabling researchers to conduct a more in-depth analysis
of the roles and impacts of various evaluation elements within
each cluster. This detailed analysis helps in comprehending the
significance of various factors in landslide occurrence and uncovers
potential influencing mechanisms, thereby enhancing the model’s
interpretability.

This study takes into account the region’s complex natural
and geographical conditions to assess landslide susceptibility.
Thirteen key indicators are selected for the landslide susceptibility
evaluation: elevation, slope, curvature, precipitation, lithology,
land use type, distance to roads, distance to water systems,
distance to fault lines, NDVI (Normalized Difference Vegetation
Index), TWI (Topographic Wetness Index), SPI (Stream Power
Index), and PGA (Peak Ground Acceleration). The landslide
susceptibility of the Barkam region is assessed using Random
Forest and XGBoost machine learning models. By integrating
SHAP, HDBSCAN, and UMAP techniques, this study enhances
the understanding of how various evaluation factors influence
landslide occurrences. This integration not only improves the
interpretability of the landslide susceptibility assessment but also
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FIGURE 1
Geographic overview map of the study area.

strengthens the models’ accuracy and stability, making them
a reliable tool for emergency response and post-earthquake
planning.

2 Study area

Barkam City, located at the intersection of the Qinghai-
Tibet Plateau and the Sichuan Basin, serves as the capital of
the Aba Tibetan and Qiang Autonomous Prefecture in Sichuan
Province, China. The city covers an area of 6,622.88 km2 and is
situated between the geographic coordinates of 101°20′to 102°50′E
and 31°35′to 32°20′N. The complex terrain of Barkam, which
slopes down from the northeast to the southwest, is characteristic
of a plateau mountain landform, featuring a mix of hills and
mountains.Thestudyareabelongs toalpinecanyongeomorphology
and the overall topography is steep with a maximum slope
of 80.59° and an average slope of 28.98°.The region’s unique
geographical setting, combining low latitude and high altitude,
sees elevations ranging from 2,123 m at its lowest point to 5,231 m
at its highest. The lithologic of the study area is dominated by
sandstone, granite, kyanite, basalt, gray rock, etc. In addition,
many sand pebbles, gravel soil and other Q4 loose soil layers
distributed along the banks of the river. The Barkam Ms6.0
earthquake swarm occurred at the junction of the Songgang and
southern Longriba faults. Due to its well-developed secondary
faults and complex tectonic structure, the area experiences frequent
moderate to small earthquakes. As shown in Figure 1, the Songgang
fault zone consists of several secondary faults, running in a
NW-SE direction (Dong et al., 2024).

3 Data and research methodology

3.1 Data

Previous studies have examined soil properties under various
thermal and mechanical conditions, including their evolution under
cyclic loading (Ahmad et al., 2019; Ahmad et al., 2025; Ahmad et al.,
2021). These considerations are significant when evaluating soil
behavior in landslide susceptibility models. The distribution of
landslide sites in Barkam city and the zoning map of peak seismic
acceleration for theBarkamMs6.0magnitude earthquake swarmwere
provided by theGeological Survey of SichuanProvince. In accordance
with the conditions that cause landslides, 13 evaluation factors
were chosen from five aspects of topography and geomorphology,
precipitation, geology, vegetation cover, and human activities. (1)
Topographic and Geomorphologic data, based on the DEMdata with
a spatial resolution of 12.5 m in the study area, were extracted by
Arcgis10.8 to obtain the elevation, slope, curvature, andwater system;
(2) Precipitation data, the average annual precipitation vector data
of the study area were obtained from the National Meteorological
ScienceDataCenter; (3)Geology:Fracture zonedata andstratigraphic
rock data of the study area were obtained from the Resource and
Environment Science and Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/), and the distance to the fracture zone
was obtained by converting coordinates; (4) Vegetation cover data,
the Landsat8 near-infrared and far-infrared bands with a resolution
of 30 m in June 2022 were selected to obtain the NDVI; the vector
data of land use types in the study area were obtained by cropping
the global 30-meter surface cover data (http://www.globeland30.
org/home/background.aspx); (5) Data on human activity: the 2021
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TABLE 1 Statistical tables of data sources.

Category Feature factor Indicator meaning Data source

Topography

Slope/(°) Indicates the degree of slope and
surface inclination

DEM (12.5 m resolution), Geospatial
Data Cloud

Curvature Indicates the local variation in surface
undulation

Topographic Relief/(m) Indicates the variation in elevation
difference

Hydrology

Distance to Rivers/(m) Distance to rivers Based on 1:250,000 basic geographic
information data

Topographic Wetness Index Indicates soil moisture content and
humidity conditions

DEM (12.5 m resolution), Geospatial
Data Cloud

Stream Power Index Indicates the erosion effect of water
flow on slopes

Seismic Peak Ground Acceleration/(gal) Indicates the impact of the maximum
amplitude of seismic acceleration time

history on slopes

Based on data released by the China
Earthquake Networks Center

Human Activities Distance to Roads/(m) Distance to roads Based on 1:250,000 basic geographic
information data

Geological Structure

Distance to Faults/(km) Distance to faults Based on data released by the China
Geological Survey Data Service

Platform

Rock Hardness Indicates the hardness of different rock
types

Based on geological maps and rock
hardness level qualitative classification
tables downloaded from the China
Geological Survey Data Service

Platform

Environmental Geological
Characteristics

Land Type Indicates different land types affecting
slope development

Based on Landsat8 remote sensing
image data, Geospatial Data Cloud

Normalized Difference Vegetation
Index (NDVI)

Indicates vegetation growth and
coverage within a range

Gaofen-2 satellite image was used to extract information about the
study area’s roads and as well as the distance from each road.
Table 1andFigure 2displays thedistributionof landslidehazardpoints
and evaluation factors (6).

Landslide occurrences in Malcolm City were interpreted
using high-resolution Landsat eight satellite imagery from Google
Maps. The interpretation identified 1,142 landslides (Figure 2)
covering a total area of approximately 96.84 km2, representing
1.7% of the total image area. These landslides were categorized
by scale: 891 small-scale, 242 medium-scale, and nine large-
scale, with no very-large landslides identified. The majority were
classified as soil landslides, primarily composed of materials
such as silty clay, gravelly soil, and stony soil. Geographically,
they were predominantly distributed across five townships:
Caodeng (515 landslides), Ribu (160 landslides), Long’erjia
(191 landslides), Jiamuzu (103 landslides), and Kangshan
(104 landslides).

3.2 Methodology

3.2.1 Random forest
Random Forest (RF) is an ensemble learning algorithm that

builds several decision trees and aggregates their predictions to
improve overall predictive accuracy. Training sets are created by
randomly selecting several subsets from the original dataset, and a
decision tree is constructed for each training set using a randomly
selected subset of features. Each decision tree is constructed using
a random feature selection process, which reduces overfitting.
The training set for each decision tree is used until a stopping
criterion is satisfied. When making predictions about new data,
the Random Forest algorithm aggregates the predictions made by
each decision tree using the Bagging ensemble approach. It then
uses voting or averaging to determine the final prediction value
for regression or classification (Zhao Z. et al., 2024). Numerical
modeling techniques, such as lattice element modeling, have been
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FIGURE 2
Evaluation factors and distribution of landslide hazard sites.

widely used for geomechanically failure simulations (Rizvi et al.,
2020), offering an alternative perspective to machine learning-
based susceptibility models.

3.2.2 XGBoost
Based on Gradient Boosting Decision Trees (GBDT), Extreme

Gradient Boosting (XGBoost) is an optimized algorithm. The
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serial algorithms XGBoost and conventional GBDT both use the
Boosting ensemble approach, in which each decision tree is trained
using the residuals between the values that were observed and
the predictions of the preceding tree. Over several iterations, the
algorithm fits the residuals and gets closer to the real values.
Training ends when a predefined value or number of iterations is
reached, and theweighted summation of all decision tree predictions
yields the final prediction for a sample. The main distinction is
in how the loss function is calculated: XGBoost uses second-
order Taylor expansion to make computations easier and adds
regularization terms, like L1 and L2, to the objective function to
mitigate overfitting and control model complexity. (Zhang et al.,
2023). Similar optimization techniques have been employed in
computational fluid dynamics models to improve efficiency and
accuracy in large-scale simulations (Haroon et al., 2017).

3.2.3 UMAP
UMAP is a nonlinear dimensionality reduction algorithm that

employs similarity theory to map high-dimensional data to a
lower dimension while preserving the global and local topological
structures of the data as much as possible. This characteristic allows
it to perform exceptionally well across various datasets (Mcinnes
and Healy, 2018). The landslide susceptibility evaluation indicator
sample dataset exhibits nonlinear high-dimensional features, and
the computational steps for applying UMAP for dimensionality
reduction are as follows:

(1) Let the input landslide susceptibility evaluation indicator
sample dataset be denoted as X = {x1,⋯,xi,⋯,xn}, for each
xi, we utilize the nearest neighbor descent method to obtain
{xi1,⋯,xk}, where k is a hyperparameter, define xi as follows
(Equations 1, 2):

ρi =min{d(xi,xij) ∣ 1 ≤ j ≤ k,d(xi,xij) > 0} (1)

k

∑
j=1

exp(
−max(0,d(xi,xj) − ρi)

σi
) = log2 k (2)

Where ρi is chosen to connect xi with at least one neighbor with
a weight of 1; σi is a length parameter; d () is a metric defined as d:
X×X→ R ≥ 0 ̥.

(2) Next, we define a directed weighted graph G = (V,E,w).
Utilizing its symmetry,we define anundirectedweighted graph
G, where the vertex set V corresponds to the set X, leading
to the directed edge set E = {(xi,xij)|1 ≤ j ≤ k,1 ≤ i ≤ N}. The
weight function is defined as Equations 3, 4:

w(xi,xij) = exp(
−max(0,d(xi,xij) − ρi)

σi
) (3)

Let A be the adjacency matrix of G. The adjacency matrix B of
the undirected weighted graph G is then given by:

B = A+AT −A⊗AT (4)

Where ⊗ denotes the Hadamard product.

(3) UMAP applies attractive and repulsive forces along the edges
and vertices, evolving into an equivalent weighted graph H,
which includes the point set {y}. The attraction and repulsion
at points yi and yj are defined as follows (Equations 5, 6):

GR =
−2ab∥ yi − yj ∥

2(b−1)
2

1+ ∥ yi − yj ∥
2
2

ω(xi,xj)(yi − yj) (5)

RE =
2b(1−ω(xi,xj))(yi − yj)

(ε+ ∥ yi − yj ∥
2
2
)(1+ a∥ yi − yj ∥

2b
2
)

(6)

Where GR represents the attraction force; RE denotes the
repulsion force; ε is a small number added to prevent division by
zero; a and b are hyperparameters.

3.2.4 HDBSCAN
HDBSCAN is an algorithm proposed by Campello et al. that

combines density-based clustering and hierarchical clustering. The
algorithm introduces a measure of mutual reachability distance to
construct a hierarchical structure for different clusters, enabling
clustering of groups with varying densities (Campello et al., 2013).
HDBSCAN can evaluate the membership degree for each sample,
with a range of [0, 1]. A membership degree of 0 indicates that the
sample point is a noise point and does not belong to any cluster;
a membership degree of one indicates that the sample point is a
core point, and the attributes of the cluster core point can represent
the typical characteristics of that cluster. The steps of the algorithm
are as follows:

(1) Spatial Transformation ofData Points:The core distance ck(x) =
d(x,Nk(x)) indicates the distance from the data point x to
its k− th nearest neighbor. The mutual reachability distance
between two points is calculated as Equation 7:

dk(a,b) =max{ck(a),ck(b),d(a,b)} (7)

Where d(a,b) refers to the straight-line distance between points
a and b.

(2) Construction of the Minimum Spanning Tree:The HDBSCAN
algorithm internally uses Prim’s algorithm to treat the sample
points as original points, using the mutual reachability
distances to other points as weights to construct the minimum
spanning tree.

(3) Establishment of Cluster Hierarchical Structure:The algorithm
traverses and reorders the edges of theminimum spanning tree
using mutual reachability distances as weights, categorizing
each edge into a new cluster.

(4) Compression of the Clustering Tree:When compressing and
segmenting the coarse hierarchical structure, the algorithm
compares the number of samples in the newly segmented
clusters with the minimum cluster size, removing the
smaller one.

(5) Extraction of Clusters:The algorithm uses λ = 1/d as a
standard to measure the clustering results and introduces
three quantities: λbirth、 λdeath、 λp, which represent the
formation of a cluster, the splitting of a cluster into two
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TABLE 2 Model accuracy evaluation indicators.

Index Formulas Description

Accuracy TP+TN
TP+FP+TN+FN

Calculating the percentage of samples that were
accurately predicted

Precision TP
TP+FP

Calculating the TP sample percentage in each
predicted positive sample

Recall TP
TP+FN

Calculating the TP sample’s percentage in each true
positive sample

F1 Score 2×Precision×Recall
Precision+Recall

Representing the accuracy and recall harmonic mean,
with a range of values from −1 to 1

KC P0−Pe
1−Pe

P0 =
TP+TN

TP+FN+FP+TN
Pe =
(TP+FN)(TP+FP)+(TN+FN)(FP+TN)

(TP+FN+FP+TN)2

Checking consistency and measuring classification
precision

MCC TP×TN−FP×FN
√(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Describing the correlation coetticient between the
actual classification and the predicted classification,

with a value range of −1 to 1

sub-clusters, and the value when separating from the parent
cluster, respectively. The stability of the clusters is evaluated
using the stability measure Scluster. The calculation of Scluster
is given by Equation 8:

Scluster = ∑
p∈Cchater

(λp − λdeath) (8)

Where Ccluster is the set of clusters.

3.2.5 SHAP
The SHAP algorithm utilizes the concept of Shapley values from

game theory to precisely calculate the contribution of each feature
to the model’s output. It provides an intuitive representation of each
feature’s weight and influence in the model’s predictions (Lundberg
and Lee, 2017).

For a feature i in the feature set S, the Shapley value is computed
using the following formula (Equation 9):

Φi = ∑
S⊆N{i}

|S|!(|N| − |S| − 1)!
|N|!

(v(S∪ i) − v(S)) (9)

Where N represents the set of all features; S is any subset of
features that does not include feature i; |S| denotes the number of
features in set S; v(S) is the contribution of the feature set S to the
model’s prediction output; and v(S∪ {i}) is the contribution of the
feature set S∪ {i} to the model’s prediction output.

3.2.6 Silhouette coefficient
Based on the intrinsic structural features of the clusters, the

silhouette coefficient is frequently used in clustering to assess the
quality of the clustering results. Better clustering performance
is indicated by higher values, which range from −1 to 1.
(Lianjiang et al., 2010). The following is the definition of the
particular formula (Equation 10):

s(i) =
b(i) − a(i)

max a(i),b(i)
(10)

Where a(i) denotes the average distance from the i− th object
to all other objects in the same cluster,and b(i) denotes the average
distance from the i− th object to all objects in the nearest different
cluster. The value s(i) ∈ [−1,1], and the closer this value is to 1, the
more reasonable the clustering classification.

3.2.7 Model accuracy evaluation
3.2.7.1 Accuracy, precision, recall, F1 score, KC and MCC

An essential component of landslide susceptibility assessment
is model validation and performance evaluation. Typically, the
performance of binary classification models is evaluated using a
confusion matrix. This matrix consists of four key parameters:
True Positive (TP), which represents the instances where the model
correctly predicts a landslide; False Negative (FN), representing
instances where the model predicts a non-landslide but the actual
event is a landslide; False Positive (FP), indicating instances where
the model predicts a landslide but the actual event is a non-
landslide; and True Negative (TN), representing instances where
the model correctly predicts a non-landslide (Chen S. et al.,
2024). Based on these parameters, the performance of each model
is evaluated using six statistical indicators: accuracy, precision,
recall, F1 score, Kappa coefficient (KC), and Matthews correlation
coefficient (MCC). Table 2 presents the description of each
indicator.

3.2.7.2 ROC values and AUC curves
The True Positive Rate (TPR) is shown on the vertical axis

of the Receiver Operating Characteristic (ROC) curve, and the
False Positive Rate (FPR) is shown on the horizontal axis. It
displays how well the model performs at various classification
thresholds (Zhang X. et al., 2024). The False Positive Rate refers to
the percentage of negative samples incorrectly predicted as positive,
while the True Positive Rate represents the percentage of positive
samples correctly predicted as positive. The model’s performance
improves as the ROC curve approaches the upper-left corner.
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FIGURE 3
Schematic diagram of the technology route flow.
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FIGURE 4
Correlation analysis of debris flow evaluation factors.

FIGURE 5
Landslide susceptibility grading chart.
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TABLE 3 Statistics of landslide susceptibility class and landslide density for different models.

Model Classification Area/km2 Area
proportion/%

Number of
landslide

Proportion of
landslide/%

Landslide
density/(ind/km2)

XGBoost

Very low 2,148.05 32.43 17 1.43 0.79

Low 1848.78 27.92 73 6.13 3.95

Moderate 1,486.00 22.44 195 16.39 13.12

High 800.64 12.09 326 27.39 40.72

Very high 339.40 5.12 579 48.66 170.59

RF

Very low 2,107.25 31.82 27 2.27 1.28

Low 2,828.27 42.70 206 17.31 7.28

Moderate 1,043.52 15.76 228 19.16 21.85

High 362.12 5.47 197 16.55 54.40

Very high 281.72 4.25 532 44.71 188.84

FIGURE 6
Statistical chart of vulnerability classification.

TABLE 4 Statistics of model performance metrics.

Model RF XGBoost

Accuracy 0.777 0.792

Precision 0.85 0.83

Recall 0.701 0.761

F1 Score 0.769 0.794

KC 0.558 0.585

MCC 0.567 0.587

3.2.8 Research process
To better understand landslide susceptibility and its influencing

factors, this study evaluates landslide susceptibility in the Barkam
region using RF and XGBoost models, along with UMAP for
dimensionality reduction and HDBSCAN clustering. The research
process includes data preparation, model construction, result
analysis, and interpretability analysis.

3.2.8.1 Data preparation
Soil water retention and thermal capacity play a critical role in

landslide behavior, particularly in mixed-grain soils with variable
gravel content (Beck-Broichsitter et al., 2023), affecting their
response to prolonged saturation and seismic events. Thirteen
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FIGURE 7
Model performance metrics.

FIGURE 8
Model AUC value vs ROC curve.

assessment factors from five categories (vegetation cover, geology,
precipitation, terrain, and human activities) were selected to reflect
the conditions. Multicollinearity and correlation analyses were
performed on the data. Using high-resolution imagery and field
data, 1,190 landslide events were identified. Non-landslide regions
were determined via GIS, and 1,190 non-landslide points were
randomly generated to balance the dataset. The final dataset used
80% for training and 20% for testing.

3.2.8.2 Model construction
No normalization or standardization was applied to the features,

as decision-tree-based ensemble models (RF and XGBoost) are
insensitive to feature scaling. The 13 factors were extracted in
ArcGIS, and susceptibility models were built using the Scikit-
learn package.

3.2.8.3 Result analysis
GIS technology was used to map landslide susceptibility levels,

and various evaluation metrics (accuracy, precision, recall, F1 score,
MC, KCC) were computed on the test set. The AUC value was also
calculated for a comprehensive performance assessment.

3.2.8.4 Interpretability analysis
SHAP analysis was integrated with the XGBoost model to assess

factor importance, UMAP was used for dimensionality reduction,
and HDBSCAN clustering was applied. One-to-many training and
prediction techniques were then employed. Figure 3 illustrates the
technical workflow of the study.

4 Landslide susceptibility analysis

4.1 Correlation test

A correlation analysis was conducted on the 13 factors that were
initially chosen in order to identify the most predictive evaluation
factors and enhance the prediction accuracy of the model. A
correlation matrix for the 13 influencing factors was created using
the Origin plotting software’s Correlation Plot plugin, and Figure 4
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FIGURE 9
Importance of landslide evaluation factors.

shows the outcomes. Red indicates positive correlations, and blue
indicates negative correlations. The size of the plot’s color intensity
and the correlation coefficient’s size are directly correlated. All of
the evaluation factors have correlation coefficients below 0.55, which
indicates comparatively weak correlations, as can be seen from the
plot. This implies that there is little interaction between the factors
and that the evaluation factors chosen make sense for the model.

4.2 Landslide susceptibility mapping and
analysis

The landslide susceptibility index for every evaluation unit
in the study area was determined following the stabilization of
the XGBoost and RF-based landslide susceptibility models. The
susceptibility index was separated into five levels using ArcGIS
10.8’s Natural Breaks classification method: very low susceptibility,
low susceptibility, moderate susceptibility, high susceptibility, and
very high susceptibility. It was discovered that the current
landslide areas closely match the extremely high susceptibility
zone, as seen in Figure 5. This demonstrates the predictive power
of the model by successfully identifying areas at high risk
of landslides.

Statistical techniques can also be used to analyze the landslide
susceptibility evaluation results. Together with the corresponding
areas and the number of landslides linked to each susceptibility
level, Table 3 lists the number of evaluation units in each of
the five susceptibility levels. The landslide density within each
susceptibility level was then determined by dividing the proportion
of landslides by the area proportion for each level. Figure 6 presents
the statistical findings.

It is evident from Table 4 and Figure 6 that the XGBoost model
detects a notably higher number of landslides in the high and
extremely high susceptibility zones, with a total of 905 landslides, or
76.05% of all landslides.TheXGBoostmodel shows better predictive
ability in high-risk areas, as evidenced by the 579 landslides found in
the very high susceptibility zone alone, which is significantly more
than the 532 landslides found by the RF model. Even though the
RF model has a slightly higher landslide density than the XGBoost
model, the XGBoost model displays densities of 40.72 ind/km2

and 170.59 ind/km2 in the high and very high susceptibility zones,
respectively, while the RF model has a density of 54.40 ind/km2 and
188.84 ind/km2. This discrepancy implies that the XGBoost model
offers wider coverage of high-risk areas, whereas the predictions of
the RF model are more concentrated within smaller area units. The
RF model detected 27 landslides with a density of 1.28 ind/km2,
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FIGURE 10
Shap global interpretation diagram.

whereas the XGBoost model detected 17 landslides with a density
of 0.79 ind/km2 in the very low susceptibility zone. The XGBoost
model detected 73 landslides with a density of 3.95 ind/km2 in
the low susceptibility zone, whereas the RF model detected 206
landslides with a density of 7.28 ind/km2. It is possible that the RF
model overestimates landslides in the very low and low susceptibility
zones due to the higher landslide density for these areas, which could
be an indication of overprediction or misclassification. On the other
hand, the XGBoost model’s conservative predictions demonstrate
its superior accuracy and generalization capacity. Overall, the more
robust performance of the XGBoost model is demonstrated by its
conservative predictions in the low susceptibility zone, whichmakes
it more appropriate for accurate prediction in high-risk areas while
avoiding over-prediction in low-risk areas. Because of this feature,
the XGBoost model is better suited for a greater variety of real-
world uses.

4.3 Model accuracy verification

As shown in Table 4 and Figure 7, model performance metrics,
including accuracy, precision, recall, F1 score, KC, and MCC, were
calculated along with the values of TP, FN, FP, and TN. Overall,

the XGBoost model outperformed the RF model in landslide
susceptibility evaluation.

The ROC curves for the XGBoost and RF models are
presented in Figure 8. The XGBoost model had an AUC of 0.891,
slightly higher than the RF model’s AUC of 0.878. Based on these
results, the XGBoost model provides the best overall performance.
Therefore, the evaluation results from the XGBoost model are used
for further landslide susceptibility analysis and the interpretability
of the evaluation factors.

4.4 Interpretability analysis

4.4.1 Importance analysis
Effective landslide disaster prevention and mitigation strategies

depend on determining the main causative factors, which can
be caused by several intricate factors. The 13 influencing factors
that were chosen for this study have varied degrees of effect
on the occurrence of landslides. These 13 factors were subjected
to an importance analysis using the SHAP algorithm and the
XGBoost model, as seen in Figure 9. While distance to water
systems, distance to fault lines, and distance to roads have
the least effect on landslide occurrence, the results show that
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FIGURE 11
Dependence plot of the dominant factor with the predicted results of the model.

elevation, PGA and precipitation are the most important factors
influencing landslides.

4.4.2 SHAP analysis
Figure 10 displays the global SHAP explanation plot. Higher

values are displayed in red, while lower values are displayed in
blue. Each point in the plot represents a real sample, and its color
corresponds to the magnitude of the influencing factor value. The
SHAP value, which gauges each factor’s influence and contribution
to the model’s anticipated result, is shown on the horizontal
axis. A positive SHAP value suggests that the influencing factor
significantly reduces the likelihood of landslides. The XGBoost
landslide susceptibility evaluation model identifies elevation, PGA
and precipitation as important triggering factors. The model’s risk
prediction is positively impacted by low elevation and high PGA
values, suggesting that they raise risk.The impact of precipitation on
prediction is more complex, usually making a negative contribution
when precipitation is high. These factors are significant in assessing
the risk of geological disasters, as evidenced by their varied effects.

The single-factor dependence plots for the top three dominant
factors based on the SHAP visualized factor importance ranking
are shown in Figure 11. These plots intuitively reveal how the

different feature values of each influencing factor impact the
landslide susceptibility prediction results, thereby enhancing the
model’s credibility.

From the figure, elevations between 2500 m and 3400 m
positively influence the model’s prediction. However, as elevation
increases further, SHAP values gradually decrease, indicating a
negative impact on the model. PGA values span different ranges,
with SHAP values concentrated within each range. Higher PGA
values lead to a significant increase in SHAP values, suggesting that
higher PGA positively impacts the model’s prediction. For annual
precipitation between 720 mm and 800 mm, precipitation positively
affects the model’s prediction. Beyond this range, SHAP values
generally decrease, indicating that higher precipitation may have a
negative effect.

4.4.3 UMAP and HDBSCAN analysis
In this study, we applied the UMAP and HDBSCAN models in

the Python 3.10 environment. Key parameters, such as n_neighbors
and metric, were tuned for the UMAP model. The n_neighbors
parameter controls the number of nearest neighbors considered
during dimensionality reduction to map the data structure, while
the metric parameter defines the distance metric used to determine
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FIGURE 12
UMAP dimensionality reduction and HDBSCAN clustering analysis results.

the separation between data points. To ensure the reduced data
preserved the original structure, we determined the optimal n_
neighbors value through iterative tuning and chose the Cosine
metric to measure the angle between data points in vector space.
For HDBSCAN clustering, the min_cluster_size parameter directly
influences the density distribution and granularity of clusters. After
several experiments, we identified high-density landslide groups
by selecting optimal clustering parameters based on data density.
The results of the HDBSCAN clustering and UMAP dimensionality
reduction are shown in Figure 12.

After processing with UMAP and HDBSCAN, it is evident that
Barkam City’s landslide points and related factors are grouped into
four clusters. Some points, categorized as noise, lie in low-density
areas and cannot be assigned to any identified cluster.The clustering
is deemed reasonable, as indicated by the cosine metric’s silhouette
coefficient of 0.588.

To further analyze the interactions between different clusters
in landslide susceptibility evaluation, this study used the XGBoost
model to train and predict for each cluster. After training, we
integrated the results of UMAP dimensionality reduction and
HDBSCAN clustering to assess the importance of each evaluation
factor in the XGBoost model.The results are presented in Figure 13.
From the figure, it is evident that elevation, PGA and precipitation
are consistently themost influential features across all clusters.Other
factors, such as NDVI, distance to water systems, and lithology,
show slight variations in their impact across different clusters.
However, the overall ranking of the main evaluation factors remains
consistent.

Specifically, elevation is the most important feature in all
clusters, but its impact varies. In Label1 and Label3, the SHAP

value of elevation is negative, indicating a decrease in landslide
susceptibility. In Label2, the SHAP value is positive, indicating
an increase in susceptibility. PGA consistently has a positive
effect on landslide susceptibility, with positive SHAP values in all
clusters, meaning that higher PGA values increase susceptibility.
Precipitation has a positive effect in Label1 and Label2 but a negative
effect in Label3, although its impact is slightly weaker than that of
elevation and PGA.

5 Discussion

According to an analysis of the interpretability of landslide
assessment indicators, rainfall intensity, seismic activity, and
topographic features are significant determinants of landslide
occurrence.This outcome alignswith the theoretical comprehension
of landslide formation mechanisms found in the literature currently
in publication (Gaofeng et al., 2023; Hui, 2023; Jinsong et al.,
2024). As shown in Figure 11, between 2,500 and 3,400 m above
sea level, the slope typically increases, rainfall intensifies, and soil
erosion worsens, all of which contribute to a higher landslide
risk. However, landslides are less likely above 3,400 meters,
where the soil layer is thin or almost nonexistent, the climate
is colder, rainfall is less frequent, permafrost is more common,
and bedrock is exposed. Severe seismic shaking, which greatly
increases the PGA, also elevates landslide probability, particularly
in the context of the Ms6.0 earthquake swarm in Barkam.
Increased rainfall generally leads to soil saturation, thus raising
the probability of landslides in the Barkam region, where annual
rainfall ranges from 720 to 800 mm. This indicates that rainfall
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FIGURE 13
Importance ranking of the interaction of evaluation factors.

has a positive effect on landslide occurrence. Conversely, excessive
rainfall can reduce landslide risk if soil permeability is low, as
water infiltration becomes difficult and the amount of water
that accumulates in the slope is minimal. In unsaturated soils,
pore water pressure is typically low and negative, having little
impact on slope stability and thereby decreasing landslide risk
(Ning et al., 2018).

Machine learning models, especially RF and XGBoost, are
much more flexible in handling complex datasets and do not
rely on presumptions than traditional statistical methods, which
makes them a significant advantage for landslide susceptibility
assessment (Chen Y. et al., 2024). The “black-box” issue, which
makes it challenging to directly interpret each feature’s function in
the prediction process, still affects these models (Lv et al., 2024).
This study combines SHAP interpretability analysis with UMAP
dimensionality reduction and HDBSCAN clustering techniques
to enhance model interpretability. By using the XGBoost model
for one-to-many training and prediction, this approach not only

provides transparent feature difference analysis but also helps
determine the significance of each assessment factor on landslide
susceptibility in different clusters. The UMAP results show that the
distribution patterns of various evaluation factors vary depending
on the dimension. Reducing the data to two or three dimensions
withUMAPunveils intricate relationships between features, offering
a fresh perspective on landslide susceptibility research. In high-
dimensional space, some factor interactions are not directly
observable. Through HDBSCAN clustering, we identified distinct
spatial heterogeneity in landslide susceptibility rather than a
uniform distribution. Cluster-specific differences in susceptibility
form the basis for early warning systems for landslide disasters.
For example, elevation, PGA, and rainfall are dominant factors
with significant impacts, as shown by the factor importance
ranking in Figure 13. However, these factors contribute negatively
in some clusters and positively in others. By analyzing the roles of
different factors in various clusters, the study reveals the complexity
of landslide occurrence.
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This study has certain limitations even though the results were
satisfactory. First, topography, geology, and climate are examples of
significant landslide susceptibility factors that are covered by the 13
evaluation factors used in this study.However, it is possible that these
factors do not adequately account for all of the intricate dynamic
mechanisms influencing landslides (Song et al., 2024). For example,
the landslide process could be significantly influenced by factors
such as changes in groundwater levels, subtle variations in soil types,
and detailed information on soil creep after earthquakes. If these
factors are excluded, themodel’s depiction of landslide susceptibility
in specific contexts may become biased. Additionally, this study
applied clustering and dimensionality reduction techniques, like
UMAP and HDBSCAN, which enhance the model’s interpretability
and work well with complex, nonlinear data. However, these
techniques may still risk losing critical information as the data’s
dimensionality and complexity increase. Some subtle yet important
features may be overlooked or oversimplified during dimensionality
reduction, especially in high-dimensional data, potentially affecting
how features interact with each other. Future studies could explore
the integration of other dimensionality reduction methods, such
as t-SNE, PCA, or factor analysis, to assess how well they simplify
multi-dimensional data while preserving feature information.
Moreover, incorporating automated feature engineering, advanced
factor selection procedures, or combining more sophisticated data
processing techniques, like deep learning methods or graph neural
networks, could further improve both the model’s performance and
interpretability in complex scenarios.

6 Conclusion

(1) The XGBoost model outperforms the RF model in predicting
high and very high susceptibility areas, identifying a total
of 905 landslides, which accounts for 76.05% of the total
number of landslides. Among these, 579 landslides are
identified in the very high susceptibility area, significantly
higher than the 532 landslides identified by the RF model.
Although the RF model shows higher landslide density
in low and very low susceptibility areas (7.28 ind/km2

in low susceptibility areas and 1.28 ind/km2 in very low
susceptibility areas), the XGBoost model takes a more
conservative approach in these regions, identifying fewer
landslides (3.95 ind/km2 in low susceptibility areas and
0.79 ind/km2 in very low susceptibility areas). The XGBoost
model demonstrates superior performance in accurately
predicting high-risk areas while avoiding over-prediction in
low-risk areas, making it more suitable for a broader range of
practical applications.

(2) Based on the landslide susceptibility evaluation results,
the XGBoost model outperforms the RF model in terms
of performance. Specifically, the XGBoost model achieves
better accuracy, precision, recall, F1 score, KC, and MCC.
Additionally, its ROC curve has an AUC value of 0.891,
slightly higher than the RF model’s AUC of 0.878, indicating
that the XGBoost model has a greater advantage in landslide
susceptibility prediction.

(3) By combining UMAP dimensionality reduction, HDBSCAN
clustering, and SHAP interpretability analysis, this study

explores the key factors (elevation, PGA, precipitation,
and slope) influencing landslide development and their
respective effects on landslide occurrence. This approach
helps to understand the underlying causes of the model’s
decisions, enhancing the fairness of decision-making
and improving the interpretability and reliability of
complex models.
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