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Space-ground integration
system of methane emission
monitoring and quantification:
cases in Dongying, China
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Fang Liu1 and Wei Wang2*
1Technical Test Centre of Sinopec Shengli Oil Field, Dongying, China, 2School of Geosciences and
Info-Physics, Central South University, Changsha, China

Calibrating traditional inventory-based emission estimates with top-down point
source inversion results is of significant importance. To address the challenges
posed by satellite remote sensing in accurately assessing methane point source
emissions and the inefficiency of ground-basedmobilemeasurement due to the
lack of prior information, this paper proposes a novel space-ground integration
systemofmethane emissionmonitoring and quantification. The systemutilizes a
classic matched filter (CMF) algorithm to retrieve greenhouse gas concentration
increments from multi-temporal hyperspectral images, thereby identifying
continuous point sources, which subsequently guides the development of
ground-based emission data collection plans. The EMISSION-PARTITIONmodel
is applied to quantify point source emission intensities. In April 2024, our team
conducted an experiment based on this system in a petrochemical industrial
park in Dongying, China. Satellite observations identified key continuous point
sources with an uncertainty of 8.08%. The point source emission intensities
quantified frommobile measurement ranged from a minimum of 139.36 kg/hto
a maximum of 107.42 kg/h, with uncertainties controlled within 19.1%. This
experiment provides valuable insights for similar greenhouse gas emission
monitoring and quantification tasks.
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1 Introduction

Anthropogenic greenhouse gas emissions are the primary drivers of climate change,
leading to a range of severe environmental issues (Levy et al., 1999). Methane is the second-
largest greenhouse gas after carbon dioxide, with a 20-year global warming potential (GWP)
84 times that of carbon dioxide for the same mass (Commission et al., 2021). Therefore,
methane emission control is a key measure for mitigating the rapid intensification of global
warming in the short term (Erland et al., 2022). Currently, over 150 countries worldwide
have signed the Global Methane Pledge, calling for a one-third reduction in anthropogenic
methane emissions by 2030. In 2023, China also issued the ‘Methane Emission Control
Action Plan,’ explicitly incorporating the control of anthropogenic methane emissions into
its next Five-Year Plan.

Currently, reports on anthropogenic methane emissions primarily rely on the
‘bottom-up’ inventory (Omara et al., 2023). Unlike carbon dioxide emission inventories
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(Xu et al., 2024), compiling methane emission inventories is more
challenging and has greater uncertainty (Han et al., 2024a). The
reason is that, first, the locations of methane emission sources are
often unknown (Jacob et al., 2022; Naus et al., 2023). In recent
years, numerous studies have focused on using satellite remote
sensing to identify methane super-emitters in the oil, gas, and
coal mining industries to address the issue of unknown emission
source locations and magnitudes (Irakulis-Loitxate et al., 2021;
Cusworth et al., 2022; He T.-L. et al., 2024; Sherwin et al., 2024;
Williams et al., 2024; Zhang et al., 2023;Wang et al., 2025a). Second,
the applicability of emission factor data can directly determine the
accuracy of the emission inventory (Kirschke et al., 2013). Within
a specific industry, natural endowments of different basins and
the extraction techniques of different companies can significantly
impact emission factors, making it difficult to apply default or
country-level emission factors to specific regions and enterprises
(Buchwitz et al., 2017a; Zhang et al., 2020; Chen et al., 2022;
Collins et al., 2022; Meyer et al., 2022). To address these issues,
the ‘2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories’ proposed the use of ‘top-down’
greenhouse gas concentration observations to calibrate emission
inventories (Allan et al., 2023). The quality of observational data
plays a critical role in atmospheric retrieval, and the measurement
results obtained from different observation methods and platforms
vary significantly in form and characteristics (Zhang et al., 2022;
Shi et al., 2022; Yi et al., 2024; Shi et al., 2023a; Wang et al.,
2025b). For large-scale detection, satellite remote sensing is the
optimal observation method, as it can conduct low-cost, repeated
observations over specific regions (Hu et al., 2018; He J. et al., 2024).
At present, TROPOMI provides routineXCH4 observation products
with a spatial resolution of approximately 7 km, and, without
considering cloud cover interference, it is capable of performing
daily observations (Zhang et al., 2021; Buchwitz et al., 2017b; Li et al.,
2025). However, due to its relatively coarse spatial resolution, it
can only reveal methane fluxes on scales above 100 km, making it
difficult to conduct more detailed assessments of specific energy
production regions (Wang et al., 2023; Parker et al., 2020). Due to
its relatively coarse spatial resolution (Pei et al., 2022), it can only
revealCH4 fluxes on scales larger than 100 km, and therefore cannot
conduct more detailed assessments of specific energy production
areas. Ground-based mobile measurement can offer more flexibility
and speed in observing emission sources (Yu et al., 2022; Shi et al.,
2023b). Ground-based mobile measurement can observe emission
sources more flexibly and rapidly. Furthermore, the accuracy of
in-situ measurement equipment is higher than that of remote
sensing measurements, and current cavity ring-down spectroscopy
technology can providemethane concentrationmeasurements at the
0.1 ppb level (Huang et al., 2024). However, mobile measurement
lacking prior information is highly inefficient, especially in regions
with variable wind fields and mixed emission sources (Liu et al.,
2024), where unplanned data acquisition tasks often fail to collect
useful data for subsequent emission measurements.

To address the aforementioned issues, this work proposes a
space-ground integration method for identifying and quantifying
methane emissions. First, hyperspectral satellites are used to
conduct multiple repeated observations of methane emission
areas, employing multi-scene averaging method to identify key
methane emission sources within the industrial park. Based on this,

meteorological data guide the mobile measurement tasks, involving
multiple measurements downwind of the key emission sources to
collect reliable and accuratemethane concentration data. Finally, the
methane emission quantification method is applied to the mobile
measurement data to determine the emission rates of the key
sources.The remainder of this paper is organized as follows: Chapter
2 describes the study area, as well as the measurement equipment
and data used in this study. In this chapter, we will also provide a
detailed description of the key algorithms, methods, and processes
employed in each step of the work. In Chapter 3, we present the
results of identifying key emission sources within the industrial park
using the space-ground integration method of methane emission
identification and quantification, along with the emission intensities
quantified from the mobile measurement data.

2 Materials and methods

2.1 Description of study area

This study selected the Dongying Port Petrochemical Industrial
Park in Dongying City, Shandong Province as the study area,
as shown in Figure 1. The energy industry is a priority area for
methane emission control. In recent years, multiple research groups
have focused on super-emitters in the oil and gas sectors in the
Permian Basin (United States), Algeria, and Uzbekistan. In China,
coal mine is a significant source of the methane emission. Some
researchers have conducted quantification experiments on these
super-emitters using satellite and ground-based observations. A
notable limitation of the above studies is their relatively high
detection threshold for emissions. Currently, the widely recognized
detection threshold for point-source methane emissions based on
satellite remote sensing is approximately 400–500 kg/h. However,
recent studies suggest that low-intensity, continuous emission
sources can account for over 50% of total emissions, highlighting
the need for improvements in current detection technologies. The
Shengli Oilfield in Dongying City is China’s second-largest oilfield
by crude oil production. According to statistics, approximately 80%
of the oil geological reserves and 85% of the crude oil production
of Shengli Oilfield are concentrated in Dongying City, Shandong
Province, forming a typical large-scale oil extraction and processing
cluster in China. As the most important petrochemical base in
the region, the Dongying Port Petrochemical Industrial Park has
a primary crude oil processing capacity of 15.8 million tons per
year, with an annual output of about 80 million tons of energy and
chemical products, and an annual industrial output value exceeding
200 billion RMB. The park integrates crude oil extraction, storage
and transportation, refining, and downstream product processing. It
features a wide variety of methane emission sources with a complex
emission structure, encompassing both point and area sources,
making it highly representative. Therefore, conducting methane
emission monitoring in this area has significant practical relevance
and replicability, and can serve as a model for emission verification
and intergration observation methods in typical petrochemical
industrial parks. Due to its advanced extraction technologies, super-
emitterswith emission intensities above 500 kg/h are rarely observed
in this oilfield. Most emissions belong to low-flux sources. Thus, it
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FIGURE 1
Experimental area and data collection objects: (a) location of Shandong Province in China; (b) petroleum refining facilities; (c) location of Dongying
City in Shandong Province; (d) oil extraction facilities.

provides suitable conditions for testing the detection threshold of
this method.

2.2 Space-based emission tracking system
(SETS)

2.2.1 Description of data and procedure
This study utilizes the Gaofen-5 (GF-5) and Ziyuan-1 (ZY-1)

satellites, developed and operated by the China National Space
Administration, which is designed to provide multi-band, high-
resolution Earth observation data. The satellites are equipped with
the Advanced Hyperspectral Imager (AHSI) payload (Tang et al.,
2023), which primarily collects spectral datawith a spatial resolution
of 30 m in the 400–2,500 nm range, covering the visible, infrared,
and near-infrared bands.

This study utilized 35 scenes of satellite imagery data, including
four scenes from GF5A, 14 scenes from GF5B, seven scenes from
ZY1E and 10 scenes from ZY1F. For the GF-5 satellite series, the
Advanced Hyperspectral Imager (AHSI) has a spectral resolution of
approximately 10 nm in the Short-Wave Infrared (SWIR) bands and
5 nm in the Visible-Near Infrared (VNIR) bands. The VNIR bands
consist of 150 spectral channels, while the SWIR bands contain 180
spectral channels, resulting in a total of 330 spectral bands. For the
ZY-1 satellite series, the AHSI sensor has a spectral resolution of

approximately 20 nm in the SWIR bands and 10 nm in the VNIR
bands. The VNIR section consists of 76 spectral channels, and the
SWIR section comprises 90 spectral channels, totaling 166 spectral
bands. Detailed information about the data is provided in Table 1.
The data can be accessed at: https://data.cresda.cn/#/home.

After acquiring the 35 scenes of hyperspectral remote sensing
data, standard preprocessing steps such as radiometric calibration
and geometric correction are applied. Next, land cover masks that
could interfere with the CMF results are extracted, including cloud
masks, water masks, and shadow masks. Radiometric calibration
and masks’ extraction are performed using MATLAB code, while
geometric correction is implemented using Python by invoking the
GDAL library.

In this study, the Normalized Difference Water Index (NDWI)
was used to extract water masks (Qiao et al., 2012). NDWI
is a normalized ratio index based on the green and near-
infrared bands (Qiu et al., 2024), with the formula shown in
Equation 1.

NDWI =
band(Green) − band(NIR)
band(Green) + band(NIR)

(1)

The red, green, and blue channels correspond to spectral
bands of 640 nm, 550 nm, and 460 nm, respectively, while the
NIR channel utilizes the 850 nm band. After calculating the
NDWI values for each pixel, a water segmentation threshold
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TABLE 1 Details of Satellite data retrieval.

Satellite Scenes Time Image ID Position

GF5A 4

20240615 L10000136888 E118.6 N38.2

20240114 L10000084535 E118.7 N38.2

20240227 L10000098863 E118.8 N38.2

20230608 L10000032539 E118.9 N38.2

GF5B 14

20211127 L10000074072 E118.7 N38.2

20240412 L10000498542 E118.7 N38.2

20220223 L10000083491 E118.8 N38.2

20230718 L10000361944 E119.0 N38.2

20231225 L10000441828 E119.0 N38.2

20240214 L10000470880 E119.0 N38.2

20230102 L10000265259 E119.1 N38.2

20231104 L10000414940 E119.1 N38.2

20240405 L10000495229 E119.1 N38.2

20240526 L10000521149 E119.1 N38.2

20220408 L10000107796 E119.0 N38.2

20220103 L10000121281 E119.1 N37.7

20220216 L10000121278 E119.1 N37.7

20231104 L10000414940 E119.1 N38.2

ZY1E 7

20240323 L1A0000871779 E118.70 N37.94

20211219 L10000398101 E118.71 N37.94

20210605 L1A0000288757 E118.72 N37.94

20230622 L1A0000876170 E118.72 N37.94

20230304 L1A0000575865 E118.75 N37.94

20231204 L1A0000871959 E118.77 N37.94

20230914 L1A0000871518 E118.91 N37.94

ZY1F 10

20240628 L1A0000772376 E118.77 N37.94

20220326 L1A0000039608 E118.78 N37.94

20221226 L1A0000318971 E118.80 N37.94

20231121 L1A0000591658 E118.80 N37.94

20240310 L1A0000682321 E118.81 N37.94

20230609 L1A0000456174 E118.82 N37.94

20240115 L1A0000636365 E118.8N37.94

(Continued on the following page)

TABLE 1 (Continued) Details of Satellite data retrieval.

Satellite Scenes Time Image ID Position

20230219 L1A0000365958 E118.84 N37.94

20220130 L1A0000065398 E118.87 N37.94

20220130 L1A0000132009 E118.87 N37.94

TABLE 2 Details of Satellite data retrieval.

Satellite Start 1 End 1 Start 2 End 2

GF5B 1,623 1,741 2,136 2,439

GF5A 1,628 1,738 2,133 2,436

ZY1E 1,628 1,738 2,133 2,436

ZY1F 1,628 1,738 2,133 2,436

was determined (Yang et al., 2024). Pixels with NDWI values
greater than this threshold are classified as water, while those
with NDWI values below the threshold are classified as
non-water.

In this study, shadow masks are extracted based on the
C1C2C3 color model (Besheer and Abdelhafiz, 2015). The
conversion of visible RGB bands to the C1C2C3 space is defined by
Equations 2–4.

C1 = arctan(
R

max (G,B)
) (2)

C2 = arctan(
G

max (R,B)
) (3)

C3 = arctan(
B

max (R,G)
) (4)

Shadow regions in the RGB space exhibit a decrease in pixel
values, with ∆I(R) > ∆I(G) > ∆I(B), where the decrease in the
blue band value is minimal, indicating a relatively large blue
component. This results in a higher C3 component value. Therefore,
the method employs a dual-threshold approach for shadow
detection based on the C3 component and the blue component.
A pixel is classified as shadow if its C3 component exceeds a
certain threshold and its blue component falls below another
threshold.

Cloud masks are extracted using the cloud detection method
proposed by Wang (Wang et al., 2021). This method first calculates
the equivalent apparent reflectance T1,T2,T3,T4 for the AHSI
bands 11–20, 30–60, 192, and 270–272. A pixel is classified
as a cloud pixel if it meets the threshold criteria specified by
Equation 5.

{{{{{
{{{{{
{

T1 ∪T2 > 0.3

T3 > 0.04∪T1 > 0.15
T1

T4
> 7.5∪

T4

T3
< 1

(5)
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FIGURE 2
Devices of ground-based emission collecting system.

FIGURE 3
Data collected by ground-based emission collecting system.

The formulas for calculating the equivalent apparent reflectance
for different bands are provided in Equations 6, 7.

Tn =
p · di f f(FWHM(bandstart(n):bandend(n)))
(FWHM(bandend(n)) − FWHM(bandstart(n)))

(6)

p =
π · L(bandstart(n):bandend(n)) ·D2

Esun(bandstart(n):bandend(n)) · cos (θ)
(7)

L represents radiance; D denotes the average Earth-Sun distance;
Esun is the mean solar spectral irradiance outside the atmosphere
for each band; θ represents the solar zenith angle at the time of

image scanning; FWHM denotes the full width at half maximum of
each band; and the di f f() function is used to compute the difference
between vectors.

Calculate the methane concentration increment using CMF for
each scene of the imagery after extracting the interference masks,
and perform multi-scene averaging. The purpose of averaging is
twofold: first, to reduce the noise impact of the CMF results
from individual scenes. Multi-scene averaging is grounded in the
statistical principle of signal averaging. By computing the pixel-wise
arithmetic mean of satellite images acquired over the same area at
different times, this technique takes advantage of the assumption

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1577961
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


He et al. 10.3389/feart.2025.1577961

FIGURE 4
Concept map of space-ground integration system.

that non-systematic background noise follows a zero-mean Gaussian
distribution. If the background noise across scenes is independent
and identically distributed with constant variance, then averaging
N observations reduces the variance of noise by a factor of 1/N.
This significantly improves the signal-to-noise ratio (SNR) and helps
enhance weak emission signals. Since actual emission sources exhibit
spatial consistency across scenes, their signals remain coherent and
are preserved during averaging. In contrast, incoherent noise is
averaged out, approaching a mean of zero. The second purpose is
to identify persistent emission sources within the industrial park.
Due to the instantaneous nature of single-scene imagery, methane
emission sources identified based on the CMF results of individual
scenes may be non-persistent. The retrieval results of such sources
have limited reference value for emission inventory corrections. In
ground-based data collection efforts, focusing on persistent emission
point sources based on the CMF results can enhance the efficiency
and quality of data collection.

2.2.2 Classic matched filter
The Classic Matched Filter (CMF) is a data-driven statistical

method used to extract spectral background values and
enhance signals (Stocker, 1990). In this study, the CMF model
effectively isolates the XCH4 enhancement signal from noisy
backgrounds (Pei et al., 2023), providing a reliable basis for further
research and analysis.

In this study, two methane absorption spectral windows at
1.66 µm and 2.3 µm are utilized. The specific bands employed are
listed in the Table 2 below.

Since the AHSI sensor acquires data using a column-
by-column scanning mode, the retrieval is performed on a
column basis. According to Beer’s Law, the formula obtained
is given by Equation 8.

ϵ = xm(i, j) − μ(j) − tL×1 · ∆XCH4(i, j) (8)

xm represents the radiance observed by the sensor; μ is the mean
radiance of the column unit, used to approximate the reference
radiance; t = k · μ represents the spectral features to which the
matched filter is sensitive, where k is the absorption coefficient per
unit gas concentration; ∆XCH4 represents the enhancement of the
average methane mixing ratio.

By solving this formula using the least squares method, the
gas concentration increment for each pixel can be obtained,
as shown in Equation 9.

̂∆XCH4 = argmin
∆c
(ϵT∑ ϵ) =

(xm(i, j) − μ(j))
T∑−1t

tT∑−1t
(9)

2.3 Ground-based emission collecting
system (GECS)

2.3.1 Description of data and devices
The ground-based emission collection system (GECS) primarily

consists of a civilian vehicle, a methane concentration analyzer
(PICARRO G2301), a Global Positioning System (GPS), and an
acoustic anemometer (AIRMARWeather Station 200WX), as shown
in Figure 2. The PICARRO G2301 is used to measure CH4 with
a temporal resolution of 1 Hz and a measurement accuracy of
±5 ppb (Crosson, 2008). The acoustic anemometer collects data
on environmental temperature, atmospheric pressure, wind speed,
and wind direction. The GPS records the location of the sampling
points. Additionally, the Picarro inlet is fixed to the top of the
vehicle, with the inlet nozzle oriented in the direction of vehicle
travel. The vehicle is equipped with a portable power source
and an uninterruptible power supply (UPS) to provide stable
electrical support to facilities during operation, ensuring their
normal functionality. All recorded data are visible in real-time
and are used by the researchers to adjust the data collection
plan on-site.
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FIGURE 5
Results of CMF, including case 1, case 2 and case 3.

A detailed explanation of how the ultrasonic anemometer
was set up is necessary. This instrument is equipped with an
internal GPS module, which in theory allows for wind speed
measurements on a moving platform by vector summation of
the platform’s motion and the measured wind. However, field
tests revealed that wind data collected during vehicle movement
were significantly affected by platform-induced perturbations,
resulting in insufficient accuracy for dynamic observations.
To address this issue, we adopted a static wind measurement
strategy downwind of the emission sources. The procedure is
as follows:

a) The vehicle is stopped at the location exhibiting the maximum
methane concentration enhancement;

b) The AIRMAR 200WX is mounted at a height of 1.5 m
above ground level, matching the height of the intake tube
of the PICARRO analyzer mounted on the vehicle roof,
ensuring consistent airflow sampling conditions between the
two instruments;

c) The anemometer is left stationary for 2 min, during
which wind speed and direction were recorded at a 1 Hz
sampling rate;

d) The representative wind speed and direction at each location
are determined by computing the arithmetic mean of the
2-min data, which are then used as wind field inputs for
downwind flux inversion along the corresponding mobile
survey transect;

e) To evaluate measurement uncertainty, the standard
deviation of wind speed and direction is also computed
at each site, providing a quantitative assessment of
the anemometer’s precision under static deployment
conditions.

We utilized the GECS to collect data on 1 April 2024,
around noon. The timing for data collection was chosen based on
preliminary field surveys: at noon, the number of large oil tankers
and other heavy vehicles on internal park roads is minimal, which
effectively reduces the influence of traffic emissions on the ambient
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FIGURE 6
The result of the first strip in Case 1, (a) CMF results of the source, (b) locations of the source, (c) simulated CH4 concentration and actual CH4 samples,
(d) correlation between simulated CH4 concentration and actual CH4 samples.

methane background. During the survey period, the weather was
cloudy with an air temperature of approximately 20°C and a stable
near-surface wind field, conditions that are favorable for back-
trajectory analysis of mobile survey data and for conducting high-
precision flux inversions. Whenever a CH4 emission plume was
observed on the monitoring screen, the vehicle speed was reduced
to 20–30 km/h, conditions permitting, to repeatedly measure the
plume. This speed has been validated by Lowry et al. as the
optimal velocity for capturing Gaussian plumes (Lowry et al., 2020;
Han et al., 2024b). The collected CH4 data points overlaid on
a map are visualized in Figure 3. Anomalies caused by vehicle
emissions surrounding the sampling vehicle were removed after the
measurements.

2.3.2 EMISSION-PARTITION model
The EMISSION-PARTITION model can compute point

source emission intensities rapidly and adaptively with only
prior information on parameter initial value ranges (Shi et al.,

2023b). Its core is the Gaussian dispersion model, as described
by Equations 10–12 (Bovensmann et al., 2010).

C (x,y,z,H) =
q

2πμσyσz
· exp (
−y2

2σ2y
)

·{exp [
−(z−H)2

2σ2z
]

+exp [
−(z+H)2

2σ2z
]}+B (10)

σy = a · (x)b (11)

σz = c · (x)d (12)

A three-dimensional coordinate system is set up based on the
location of the emission point source and wind direction, with the
point source located at the origin. The x− axis is aligned with the
wind direction, the xoy plane is parallel to the ground, and the z− axis
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FIGURE 7
The result of the second strip in Case 1, (a) CMF results of the source, (b) locations of the source, (c) simulated CH4 concentration and actual CH4

samples, (d) correlation between simulated CH4 concentration and actual CH4 samples.

is perpendicular to the xoy plane and points upwards. q represents the
emission intensity,μdenotes thewindspeed,H is theeffectiveemission
height, B is the background methane concentration in the area, and
σy,σz are thehorizontal and vertical diffusionparameters, respectively,
which are functions of the horizontal distance x.Theparameters a and
b are the horizontal diffusion coefficients, while c and d are the vertical
diffusion coefficients.

The core of the EMISSION-PARTITION model involves
solving the unknowns in Equations 10–12 using Particle Swarm
Optimization (PSO) and Interior Point Penalty Function (IPPF)
(Shi et al., 2020).The fitness function is defined as Equation 13. First,
the potential range of the unknown parameters is defined based on
the PSOmodel.Then, using this range as the parameter domain, the
unknown parameters are precisely solved using the Interior Point
Penalty Function, yielding the optimized parameter results.

F =
n

∑
i=1
[
C′(i) −C(i)

C(i)
]
2

(13)

C′(i) represents the simulated concentration of data point calculated
by fitness function, C(i) is the actual concentration value of data
point, and n is the total number of selected concentration sample
points used for retrieval of emission intensity.

2.4 Space-ground integration system

The space-ground integration methane emission monitoring
and quantification system consists of a space-based emission
tracking system (SETS) and a ground-based emission collection
system (GECS), as shown in Figure 4. Due to the current limitations
in satellite image precision for methane plume extraction, the
primary function of the SETS in this system is to continuously
observe the experimental area and acquire multi-temporal
GF-5 hyperspectral remote sensing data. Since single-scene
images are instantaneous, the methane emission sources identified
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FIGURE 8
The result of the third strip in Case 1, (a) CMF results of the source, (b) locations of the source, (c) simulated CH4 concentration and actual CH4

samples, (d) correlation between simulated CH4 concentration and actual CH4 samples.

TABLE 3 Details of ground-based data retrieval.

Cases Q (kg/h) C_0 (ppm) Ws (m/s) Wd (°) a b c d H (m)

1.1 115.81 ± 20.16 2.068 2.81 85.6 0.496 0.741 0.015 0.205 9.1

1.2 116.03 ± 20.20 2.065 2.79 86.7 0.497 0.787 0.072 0.173 8.5

1.3 115.49 ± 18.83 2.034 3.02 85.4 0.474 0.860 0.088 0.280 10.3

2 107.42 ± 13.32 2.012 4.51 130.1 0.011 1.210 0.198 0.396 13.8

3 139.36 ± 26.60 2.047 2.50 130.2 0.447 0.632 0.155 0.704 8.0

from CMF results of individual scenes may be non-persistent
sources. The emission intensity retrieval results from such sources
provide limited reference value for emission inventory corrections.
Therefore, multi-scene averaging is performed to reduce noise in
each CMF result, thereby filtering out persistent point sources. This

process guides the planning of the collection path for the GECS,
improving data acquisition efficiency. The primary function of the
GECS is to collect emission data from persistent methane sources
within the experimental area. Using the GECS, emission data are
precisely collected downwind of the point source to obtain Gaussian
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FIGURE 9
The result of case 2, (a) CMF results of the source, (b) locations of the source, (c) simulated CH4 concentration and actual CH4 samples, (d) correlation
between simulated CH4 concentration and actual CH4 samples.

plume profiles, and the EMISSION-PARTITION model is then
employed to rapidly quantify point source emission intensities. This
system uses continuously repeated observations from space-based
remote sensing data to provide prior knowledge for ground-based
data collection experiments. Additionally, high-precision ground-
level methane concentration data help to overcome the challenges
of extracting methane plumes from CMF results. The space-ground
collaborative observation provides researchers with a new, efficient,
and high-precisionmethod for greenhouse gas emissionmonitoring
and quantification.

3 Results

We performed multi-scene averaging on the matched filter
results from 35 hyperspectral images. Before selecting key methane
emission sources, a series of processing steps must be applied
to the multi-scene average results to achieve better visualization.

First, we manually removed false-positive enhancements from the
preliminary results. Due to the relatively low spatial resolution
of 30 m from the AHSI sensor, linear anomalies with abnormally
high values inevitably appear along water-land boundaries, which
significantly interfere with the final map output and subsequent
observation planning. Additionally, there are several rooftops with
solar panels that caused false-positive enhancements. We manually
delineated the vector boundaries of solar panel areas through visual
inspection and generated corresponding masks. In the future, solar
panels should be extracted during the process of applying masks
for interfering ground objects. Second, we filtered and mapped
the data where the XCH4 increments were greater than 100 ppb.
Methane concentration enhancements in the industrial park ranged
between 0 and 1773.05 ppb, with the estimated lower limit of
emissions around 100 kg/h. Mapping the data within this range
based on the overall distribution helps to better highlight strong
methane emission sources in the area.The final XCH4 enhancement
distributionmap is shown in Figure 5, with high values concentrated
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FIGURE 10
The result of case 3, (a) CMF results of the source, (b) locations of the source, (c) simulated CH4 concentration and actual CH4 samples, (d) correlation
between simulated CH4 concentration and actual CH4 samples.

FIGURE 11
The sources of uncertainty in identifying the location of emission sources.
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TABLE 4 Details of uncertainty analysis.

Case Samples accuracy Wind speed Wind direction Total

1.1 & 1.2 0.10% 16.6% 5.3% 17.42%

1.3 0.10% 15.3% 5.5% 16.3%

2 0.10% 11.5% 4.6% 12.4%

3 0.10% 18.6% 4.2% 19.1%

in areas with oil and gas storage tanks and petroleum refining
facilities. The dark-colored areas indicate significant concentration
enhancements across multiple temporal observations, suggesting
that conducting observations in these areas is more likely to capture
valid emission data. Combining wind direction forecast data and
road network information in the industrial park, the following
three areas were selected as key regions for ground-based data
collection.

Based on the retrieval results from satellite data, a
ground-based emission data collection plan was formulated.
The plan involves conducting surrounding measurements
of suspected emission sources identified in the satellite
retrieval results, with a focus on collecting emission data
from downwind locations of the sources. The EMISSION-
PARTITION method is then used to invert the emission intensity.
In this paper, three sets of emission cases are selected for
retrieval analysis.

As shown in Figure 3, the CH4 concentrations collected by
GECS vary significantly within the industrial park, generally
ranging between 2.05 and 2.25 ppm. Due to the presence of
extensive petroleum production, storage, and refining facilities in
the industrial park, CH4 concentrations are higher in the downwind
direction of these facilities, exceeding the values collected on
regular roadways. Unlike typical urban roads, industrial park roads
have more oil tankers, which can contaminate the collected CH4
concentration data. Such contaminated data must be removed
after data collection. Observations show that the number of oil
tankers is lowest at noon, so we chose this period for data
collection. Experimental results demonstrate that the GECS can
capture the CH4 distribution characteristics downwind of various
facilities.

The first case received emission data from the oil storage
tanks in the eastern part of the industrial park. During the actual
mobile measurement, the wind direction was recorded as easterly
with a wind speed of 2.6 m/s, and three emission plumes were
detected downwind of the emission source. These plumes were
numbered as the first, second, and third plumes, in order of
proximity to the source, corresponding to Figures 6–8. In each
figure, (a) represents the XCH4 enhancement caused by the point
source, (b) shows the spatial relationship between the emission
source and the detected plumes, (c) illustrates the distribution
between the fitted sampling data points and the actual sampling
data points, and (d) shows the correlation between the fitted
and actual sampling data. The concentration values of the three
plumes exhibit a decreasing trend, which aligns with objective
expectations. The sample size for quantifying the emission intensity

from the first plume was 135, with a fitting result of R2 = 0.8890
and RMSE = 0.0408ppm; for the second plume, the sample size
was 219, with R2 = 0.9279 and RMSE = 0.0329ppm; for the third
plume, the sample size was 69, with R2 = 0.9117 and RMSE =
0.0189ppm. The reconstruction results of the point source diffusion
for all three plumes are satisfactory, accurately reflecting the CH4
emission intensity in the oil storage tank area. The retrieval results
of the Gaussian diffusion model parameters are shown in Table 3.
The parameter retrieval results for the three plumes were quite
consistent, indicating that the algorithm is capable of accurately
quantifying CH4 point source emission intensity, demonstrating
reliable performance.

The second case collected emission data from the petroleum
refinery in the central part of the industrial park, where
methane leakage may occur during the refining process.
As shown in Figure 9, during the actual mobile measurement,
the wind direction was recorded as southeast with a wind
speed of 2.1 m/s, and the GECS captured elevated methane
concentrations downwind of the emission source. Seventy-five
data points are extracted from the plume to reconstruct the
Gaussian diffusion model, with fitting results of R2 = 0.9428
and RMSE = 0.0385ppm, demonstrating a strong reconstruction
performance.

The third case receivedmixed emission data from the petroleum
refinery and oil storage tanks in the western part of the industrial
park. As shown in Figure 10, during the actualmobilemeasurement,
the wind direction was southeast with a wind speed of 2.8 m/s. Due
to the distance between the road and the emission source, the plume
had narrowed by the time it descended to the road surface, and the
GECS captured only 54 data points. Despite the limited number
of data points, the EMISSION-PARTITION method successfully
reconstructed the point source model, yielding an R2 of 0.9020 and
an RMSE of 0.0256ppm.

Table 3 presents the retrieved emission intensity, background
concentration, wind speed, wind direction, horizontal and
vertical diffusion coefficients, and source height for the three
cases. The first three cases are sub-cases of Case 1, where three
downwind plumes were used to reconstruct the same emission
source. The retrieved wind speeds and directions for the three
sub-cases are nearly identical. Similarly, for the more abstract
parameters of horizontal and vertical diffusion coefficients, the
retrieval results show a high degree of consistency. The retrieved
source height and background concentration are consistent
with the actual conditions. Among all the cases, the highest
emission intensity is from Case 3, reaching 139.36 kg/h, while the
lowest is from Case 2, at 107.42 kg/h.
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4 Discussion

4.1 Uncertainty calculation of CMF

In the CMF algorithm, the standard deviation (std) of
non-plume background pixels is typically used to describe the
uncertainty of the retrieval increment (Guanter et al., 2021).
However, in this study, unlike CO2 concentration enhancement
pixels, methane concentration enhancement pixels are less likely to
form a plume. As a result, the traditional criterion of determining
background pixels based on whether they belong to a plume
region cannot be applied. The Otsu method, or maximum
inter-class variance method, can classify pixels into foreground
and background based on the grayscale characteristics of the
image. Since variance is a measure of data dispersion, a larger
inter-class variance between the background and foreground
indicates a greater difference between the two parts of the image,
which is highly beneficial for distinguishing enhancement pixels
from non-enhancement pixels. Therefore, this study applied
the Otsu method to threshold the enhancement and non-
enhancement pixels in the CMF results, using non-enhancement
pixels as background pixels. The calculated uncertainty is
17.581 ppb.

In the study area of this paper, various surface types such as
clouds, shadows, andwater bodiesmay lead to incorrect calculations
of methane concentration enhancements. Before performing the
matched filter calculation, we extractedmasks for these three surface
types to ensure that they were excluded from the computation.
Therefore, when analyzing the sources of uncertainty in identifying
the emission source locations, both the spectral uncertainty of the
raw data and the uncertainties in the extraction methods for these
threemasks need to be considered.The calculation formula is shown
in Equation 14.

εt = √ε
2
sp + ε2sh + ε

2
c + ε2w (14)

εt represents the uncertainty in total. εsp denotes the spectral
uncertainty in raw data. εsh,εc,εw represent the uncertainties in
shadow mask, cloud mask and water mask. As shown in Figure 11,
the total uncertainty is 8.08%. Among these, the spectral uncertainty
of the raw data is 2.68% (Liu et al., 2020). The uncertainties of
the three masks were determined by simulating 10,000 calculations
using the Monte Carlo method. Specifically, the uncertainty of the
shadow mask is 1.32%, the cloud mask uncertainty is 0.87%, and
the water body mask uncertainty is 7.46%. Due to the coastal
proximity of the study area and the presence of water bodies within
the industrial park, the uncertainty of the water body mask is the
highest. Water body segmentation has a significant impact on the
matched filter results.

4.2 Uncertainty analysis of
EMISSION-PARTITION model

In the Gaussian diffusion model, factors such as wind speed
and wind direction play a crucial role, and the accuracy of
emission sample collection also affects the retrieval value of point
source emission intensity. The uncertainty in emission intensity
calculated by the EMISSION-PARTITION model is derived from

the uncertainties of sample accuracy, wind speed, and wind
direction, with the calculation formula shown in Equation 15.

εt = √ε2m + ε2w + ε2d (15)

εt represents the uncertainty in the emission intensity quantified
by the model. εm denotes the uncertainty in sample accuracy,
approximately 0.10%, and is calculated based on the standard
gas calibration experiments of PICARRO. εw and εd represent
the uncertainties in wind speed and wind direction, respectively.
These uncertainties are determined based on 2 min of continuous
stationary wind speed and direction measurements from a
meteorological station at the data collection site. The calculated
uncertainties for each case are shown in Table 4. Since the first and
second plumes of Case 1 involve repetitive observations of the same
point source and the wind speed data are nearly identical, these two
cases are discussed together in the uncertainty analysis.

By examiningTables 3, 4 together andcomparingwind speedwith
wind speed uncertainty, it is evident that higher wind speeds result
in lower uncertainty, with the most pronounced difference observed
betweenCases 2 and 3.This is because when the wind speed is low, air
movement becomesmore chaotic, and atmospheric transport exhibits
higher randomness. As the wind speed increases, the correlation
coefficient R2 between the sampled data and the simulated sampling
data also increases accordingly. For example, in this study, Case 2 has
the highest wind speed of 4.51 m/s, and its corresponding R2 is also
the highest among the five fitted cases, at 0.9428. According to Shi’s
research, there is a positive correlation between sample size and the
correlation coefficient between the sampled data and the simulated
sampling data (Shi et al., 2023b), which is particularly evident in the
first and second plumes of Case 1. However, this study found that this
positive correlation is affected by wind speed. When the wind speed
increases, theGaussiandiffusionmodel provides abetter simulationof
the sampled data, resulting in improved simulation results even with
fewer samples, as observed in Case 2.

4.3 Future prospects

Currently, hyperspectral satellites such as the GF-5 series,
PRISMA, and EMIT generally have a detection limit for methane
emissions of around 400–500 kg/h. For low flux emission sources,
the multi-scene averaging approach presented in this study can be
used for detection. However, quantification is nearly impossible.
With the advancement of satellite remote sensing technology, the
addition of higher-performance satellite data will play a crucial role
in enhancing the space-ground integration observation system. In
recent years, the launch of new satellites such as Methanesat and
Carbon mapper will contribute to the direct quantification of low
flux emissions based on satellite remote sensing data.

In the ground-based measurement component, integrating
site-specific data into a integration system will be crucial. For
example, in the oil and gas industry, methane emissions from
tanks originate from the irregular release of high-pressure gas
through breathing valves. The emission intensity is a highly variable
parameter, and it is difficult to estimate the annual emissions from
these facilities based on only a few sampling observations. Similar
issues are not uncommon; many methane emission sources exhibit
significant temporal variability, such as rice paddies, landfills, and
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sewage treatment plants. Ground-based observations can provide
temporally continuous concentration measurements, which help
reveal the temporal characteristics of these emission sources—an
advantage that satellite remote sensing and airborne observations do
not possess (Shi et al., 2021).

5 Conclusion

In this study, we propose a space-ground integration system of
methane emissionmonitoring and quantification, offering a solution
to the problem of limited precision in satellite remote sensing
for methane point source emissions and the inefficiency of data
collection in ground-based mobile measurement tasks.

The system first acquires multi-temporal hyperspectral imaging
data of the target area and uses the classical matched filter method
to retrieve methane emission increments in the region, identifying
continuous emission sources based on multi-scene averaging results.
Then, a ground-based emission collection system is used to perform
circumferential observations around the emission facilities, and the
EMISSION-PARTITION model is employed to accurately retrieve
the methane point source emission intensity. Using this system, we
conducted experiments at the Dongying Port Oil Refining Park,
identifying three key emission areas and efficiently quantifying
methane emissions from oil production, refining, and storage
processes. In the selected cases, the maximum emission intensity
was 139.36 kg/h while the minimumwas 107.42 kg/h. We performed
an uncertainty analysis of the matched filter results, determining
that water bodies are the main source of uncertainty affecting
methane concentration increments, with the uncertainty controlled
within 8.08%.Anuncertainty analysis of theEMISSION-PARTITION
model concluded that wind speed is the primary factor affecting
emissionintensity,withtheretrievaluncertaintyat19.1%.Experiments
demonstrate that the system can effectively combine the advantages
of satellite remote sensing and ground-basedmobilemeasurements to
efficiently collect and quantify methane point source emission data.
In the future, we will use this system to complete moremethane point
source emission intensity quantification tasks, providing robust data
support for the development and revision of emission inventories and
policy-making by environmental agencies.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

HH: Conceptualization, Funding acquisition,Writing – original
draft,Writing – review and editing. DS:Methodology, Visualization,
Writing – original draft, Writing – review and editing. JZ: Formal
Analysis, Writing – original draft, Writing – review and editing.
XY: Supervision, Writing – original draft, Writing – review and
editing. HL: Data curation, Investigation, Project administration,
Writing – original draft, Writing – review and editing. FL: Formal
Analysis, Writing – original draft, Writing – review and editing.
WW: Conceptualization, Investigation, Writing – original draft,
Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was
funded by Basic Science-Center Project of National Natural Science
Foundation of China (Grant no. 72088101), National Natural
Science Foundation of China (Grant no. 42371392) and Beijing
Natural Science Foundation, funding number L211045.

Conflict of interest

Authors HH, DS, JZ, XY, HL, and FL were employed by
Technical Test Centre of Sinopec Shengli Oil Field.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Allan, R. P., Arias, P. A., Berger, S., Canadell, J. G., Cassou, C., Chen, D., et al. (2023).
“Intergovernmental panel on climate change (ipcc). Summary for policymakers,” in
Climate change 2021: the physical science basis. Contribution of working group i to the
sixth assessment report of the intergovernmental panel on climate change (Cambridge
University Press), 3–32.

Besheer, M., and Abdelhafiz, A. (2015). Modified invariant colour model for
shadow detection. Int. J. Remote Sens. 36, 6214–6223. doi:10.1080/01431161.
2015.1112930

Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski,
K., et al. (2010). A remote sensing technique for global monitoring of power plant
co2 emissions from space and related applications. Atmos. Meas. Tech. 3, 781–811.
doi:10.5194/amt-3-781-2010

Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H.,
et al. (2017b). Global satellite observations of column-averaged carbon dioxide and
methane: the ghg-cci xco2 and xch4 crdp3 data set.Remote Sens. Environ. 203, 276–295.
doi:10.1016/j.rse.2016.12.027

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1577961
https://doi.org/10.1080/01431161.2015.1112930
https://doi.org/10.1080/01431161.2015.1112930
https://doi.org/10.5194/amt-3-781-2010
https://doi.org/10.1016/j.rse.2016.12.027
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


He et al. 10.3389/feart.2025.1577961

Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann,
H., et al. (2017a). Satellite-derivedmethane hotspot emission estimates using a fast data-
driven method. Atmos. Chem. Phys. 17, 5751–5774. doi:10.5194/acp-17-5751-2017

Chen, Y. L., Sherwin, E. D., Berman, E. S. F., Jones, B. B., Gordon, M. P., Wetherley,
E. B., et al. (2022). Quantifying regional methane emissions in the New Mexico
permian basinwith a comprehensive aerial survey. Environ. Sci. Technol. 56, 4317–4323.
doi:10.1021/acs.est.1c06458

Collins, W., Orbach, R., Bailey, M., Biraud, S., Coddington, I., DiCarlo, D., et al.
(2022). Monitoring methane emissions from oil and gas operations. Opt. Express 30,
24326–24327. doi:10.1364/oe.464421

Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaff, E., Monforti-Farrario, F.,
et al. (2021). JRC Science for policy report: 2021 Report. GHG emissions of all world
countries. Available online at: https://edgar.jrc.ec.europa.eu/report_2021.

Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric
levels of methane, carbon dioxide, and water vapor. Appl. Phys. B 92, 403–408.
doi:10.1007/s00340-008-3135-y

Cusworth, D. H.,Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., et al.
(2022). Strong methane point sources contribute a disproportionate fraction of total
emissions across multiple basins in the United States, Proc. Natl. Acad. Sci. U. S. A. 119,
e2202338119, doi:10.1073/pnas.2202338119

Erland, B. M., Thorpe, A. K., and Gamon, J. A. (2022). Recent advances toward
transparent methane emissions monitoring: a review. Environ. Sci. Technol. 56,
16567–16581. doi:10.1021/acs.est.2c02136

Guanter, L., Irakulis-Loitxate, I., Gorroño, J., Sánchez-García, E., Cusworth,
D. H., Varon, D. J., et al. (2021). Mapping methane point emissions with the
prisma spaceborne imaging spectrometer. Remote Sens. Environ. 265, 112671.
doi:10.1016/j.rse.2021.112671

Han, G., Huang, Y., Shi, T., Zhang, H., Li, S., Zhang, H., et al. (2024b). Quantifying
co2 emissions of power plants with aerosols and carbon dioxide lidar onboard dq-1.
Remote Sens. Environ. 313, 114368. doi:10.1016/j.rse.2024.114368

Han, G., Pei, Z., Shi, T., Mao, H., Li, S., Mao, F., et al. (2024a). Unveiling
unprecedented methane hotspots in China’s leading coal production hub: a satellite
mapping revelation.Geophys. Res. Lett. 51, e2024GL109065. doi:10.1029/2024gl109065

He, J.,Wang,W., Fu,M., andWang, Y. (2024b). Insights into global visibility patterns:
spatiotemporal distributions revealed by satellite remote sensing. J. Clean. Prod. 468,
143069. doi:10.1016/j.jclepro.2024.143069

He, T.-L., Boyd, R. J., Varon, D. J., and Turner, A. J. (2024a). Increased methane
emissions from oil and gas following the soviet union’s collapse. Proc. Natl. Acad. Sci.
U.S.A. 121, e2314600121. doi:10.1073/pnas.2314600121

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., de Brugh, J. A., Aben, I., et al.
(2018). Toward global mapping of methane with tropomi: first results and intersatellite
comparison to gosat. Geophys. Res. Lett. 45, 3682–3689. doi:10.1002/2018gl077259

Huang, Y., Han, G., Shi, T., Li, S., Mao, H., Nie, Y., et al. (2024). Fi-scape: a
divergence theorem based emission quantification model for air/space-borne imaging
spectrometer derived xch4 observations. IEEE J. Sel. Top. Appl. Earth Observations
Remote Sens., 1–21. doi:10.1109/JSTARS.2024.3490896

Irakulis-Loitxate, I., Guanter, L., Liu, Y.-N., Varon, D. J., Maasakkers, J. D., Zhang, Y.,
et al. (2021). Satellite-based survey of extrememethane emissions in the permian basin.
Sci. Adv. 7, eabf4507. doi:10.1126/sciadv.abf4507

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam,
R., et al. (2022). Quantifying methane emissions from the global scale down to point
sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 22,
9617–9646. doi:10.5194/acp-22-9617-2022

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J.,
et al. (2013).Three decades of globalmethane sources and sinks.Nat. Geosci. 6, 813–823.
doi:10.1038/ngeo1955

Levy, P. E., Grelle, A., Lindroth, A., Mölder, M., Jarvis, P. G., Kruijt, B., et al. (1999).
Regional-scale co2 fluxes over central Sweden by a boundary layer budget method.
Agric. For. Meteorol. 98, 169–180. doi:10.1016/s0168-1923(99)00096-9

Li, H., Liu, B., Gong,W., Ma, Y., Jin, S., Wang,W., et al. (2025). Influence of clouds on
planetary boundary layer height: a comparative study and factors analysis. Atmos. Res.
314, 107784. doi:10.1016/j.atmosres.2024.107784

Liu, B., Ma, X., Guo, J.,Wen, R., Li, H., Jin, S., et al. (2024). Extending the wind profile
beyond the surface layer by combining physical and machine learning approaches.
Atmos. Chem. Phys. 24, 4047–4063. doi:10.5194/acp-24-4047-2024

Liu, Y., Sun, D., Hu, X., Liu, S., Cao, K., Chai, M., et al. (2020). Development of visible
and short-wave infrared hyperspectral imager onboard GF-5 satellite. Geo-spatial Inf.
Sci. 24, 333–344. doi:10.11834/jrs.20209196

Lowry, D., Fisher, R., France, J. L., Coleman, M., Lanoisellé, M., Zazzeri, G., et al.
(2020). Environmental baseline monitoring for shale gas development in the UK:
identification and geochemical characterisation of local source emissions of methane
to atmosphere. Sci. Total Environ. 708, 134600. doi:10.1016/j.scitotenv.2019.134600

Meyer, A. G., Lindenmaier, R., Heerah, S., Benedict, K. B., Kort, E. A., Peischl, J.,
et al. (2022). Using multiscale ethane/methane observations to attribute coal mine

vent emissions in the san juan basin from 2013 to 2021. J. Geophys. Res. Atmos. 127,
e2022JD037092. doi:10.1029/2022jd037092

Naus, S., Maasakkers, J. D., Gautam, R., Omara, M., Stikker, R., Veenstra, A. K., et al.
(2023). Assessing the relative importance of satellite-detected methane superemitters
in quantifying total emissions for oil and gas production areas in Algeria. Environ. Sci.
Technol. 57, 19545–19556. doi:10.1021/acs.est.3c04746

Omara, M., Gautam, R., O’Brien, M., Himmelberger, A., Franco, A.,
Meisenhelder, K., et al. (2023). Developing a spatially explicit global
oil and gas infrastructure database for characterizing methane emission
sources at high resolution. Earth Syst. Sci. Data Discuss., 1–35. doi:10.5194/
essd-15-3761-2023

Parker, R. J., Webb, A., Boesch, H., Somkuti, P., Barrio Guillo, R., Di Noia, A., et al.
(2020). A decade of gosat proxy satellite ch4 observations. Earth Syst. Sci. Data Discuss.
2020, 3383–3412. doi:10.5194/essd-12-3383-2020

Pei, Z., Han, G., Mao, H., Chen, C., Shi, T., Yang, K., et al. (2023). Improving
quantification of methane point source emissions from imaging spectroscopy. Remote
Sens. Environ. 295, 113652. doi:10.1016/j.rse.2023.113652

Pei, Z. P.,Han,G.,Ma,X., Shi, T.Q., andGong,W. (2022). Amethod for estimating the
background column concentration of co2 using the Lagrangian approach. Ieee Trans.
Geoscience Remote Sens. 60, 1–12. doi:10.1109/tgrs.2022.3176134

Qiao, C., Luo, J., Sheng, Y., Shen, Z., Zhu, Z., andMing, D. (2012). An adaptive water
extraction method from remote sensing image based on ndwi. J. Indian Soc. Remote
Sens. 40, 421–433. doi:10.1007/s12524-011-0162-7

Qiu, R., Han, G., Li, X., Xiao, J., Liu, J., Wang, S., et al. (2024). Contrasting
responses of relationship between solar-induced fluorescence and gross primary
production to drought across aridity gradients. Remote Sens. Environ. 302, 113984.
doi:10.1016/j.rse.2023.113984

Sherwin, E. D., Rutherford, J. S., Zhang, Z., Chen, Y., Wetherley, E. B., Yakovlev, P.
V., et al. (2024). Us oil and gas system emissions from nearly one million aerial site
measurements. Nature 627, 328–334. doi:10.1038/s41586-024-07117-5

Shi, T., Han, G., Ma, X., Mao, H., Chen, C., Han, Z., et al. (2023b). Quantifying
factory-scale co2/ch4 emission based on mobile measurements and emission-partition
model: cases in China. Environ. Res. Lett. 18, 034028. doi:10.1088/1748-9326/acbce7

Shi, T., Han, G., Ma, X., Pei, Z., Chen, W., Liu, J., et al. (2023a). Quantifying
strong point sources emissions of co2 using spaceborne lidar: method
development and potential analysis. Energy Convers. Manag. 292, 117346.
doi:10.1016/j.enconman.2023.117346

Shi, T., Han, Z., Han, G., Ma, X., Chen, H., Andersen, T., et al. (2022). Retrieving ch
4-emission rates from coal mine ventilation shafts using uav-based aircore observations
and the genetic algorithm–interior point penalty function (ga-ippf) model. Atmos.
Chem. Phys. 22, 13881–13896. doi:10.5194/acp-22-13881-2022

Shi, T. Q., Han, G., Ma, X., Gong, W., Chen, W. B. A., Liu, J. Q., et al. (2021).
Quantifying co2 uptakes over oceans using lidar: a tentative experiment in bohai bay.
Geophys. Res. Lett. 48. doi:10.1029/2020gl091160

Shi, T. Q., Han, G., Ma, X., Zhang, M., Pei, Z. P., Xu, H., et al. (2020).
An inversion method for estimating strong point carbon dioxide emissions using
a differential absorption lidar. J. Clean. Prod. 271, 122434. doi:10.1016/j.jclepro.
2020.122434

Stocker, A. D. (1990). Multi-dimensional signal processing for electro-optical target
detection, signal and data processing of small targets. Proc. SPIE 1305. Abstract
retrieved from Signal and Data Processing of Small Targets 1990, (1 October 1990).
doi:10.1117/12.2321763

Tang, H. Z., Xiao, C. C., Shang, K., Wu, T. X., and Li, Q. (2023). Radiometric
calibration of gf5-02 advanced hyperspectral imager based on radcalnet baotou site.
Remote Sens. 15, 2233. doi:10.3390/rs15092233

Wang, J. C., Wang, Y., and Sun, L. (2021). Cloud detection in gaofen-
5 visible and shortwave infrared hyperspectral imagery. Acta Opt. Sin. 41, 8.
doi:10.3788/AOS202141.0928003

Wang, W., Li, B., and Chen, B. (2025a). Improved surface NO2 Retrieval:
Double-layer machine learning model construction and spatio-temporal
characterization analysis in China (2018–2023). J. Environ. Manage. 384, 125439.
doi:10.1016/j.jenvman.2025.125439

Wang, W., Wang, N., and Chen, B. (2025b). Retrieving hourly aerosol optical
depth for geostationary satellite FY-4B/AGRI by surface-related dynamic
spectral reflectance ratio method. Adv. Space Res. 75 (3), 2484–2505. doi:10.1016/
j.asr.2024.10.057

Wang, Y., Yuan, Q., Li, T., Yang, Y., Zhou, S., and Zhang, L. (2023). Seamless mapping
of long-term (2010–2020) daily global xco 2 and xch 4 from the greenhouse gases
observing satellite (gosat), orbiting carbon observatory 2 (oco-2), and cams global
greenhouse gas reanalysis (cams-egg4) with a spatiotemporally self-supervised fusion
method. Earth Syst. Sci. Data 15, 3597–3622. doi:10.5194/essd-15-3597-2023

Williams, J. P., Omara, M., Himmelberger, A., Zavala-Araiza, D., MacKay, K.,
Benmergui, J., et al. (2024). Small emission sources disproportionately account for a
large majority of total methane emissions from the us oil and gas sector. EGUsphere
2024, 1–31. doi:10.5194/egusphere-2024-1402

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2025.1577961
https://doi.org/10.5194/acp-17-5751-2017
https://doi.org/10.1021/acs.est.1c06458
https://doi.org/10.1364/oe.464421
https://edgar.jrc.ec.europa.eu/report_2021
https://doi.org/10.1007/s00340-008-3135-y
https://doi.org/10.1073/pnas.2202338119
https://doi.org/10.1021/acs.est.2c02136
https://doi.org/10.1016/j.rse.2021.112671
https://doi.org/10.1016/j.rse.2024.114368
https://doi.org/10.1029/2024gl109065
https://doi.org/10.1016/j.jclepro.2024.143069
https://doi.org/10.1073/pnas.2314600121
https://doi.org/10.1002/2018gl077259
https://doi.org/10.1109/JSTARS.2024.3490896
https://doi.org/10.1126/sciadv.abf4507
https://doi.org/10.5194/acp-22-9617-2022
https://doi.org/10.1038/ngeo1955
https://doi.org/10.1016/s0168-1923(99)00096-9
https://doi.org/10.1016/j.atmosres.2024.107784
https://doi.org/10.5194/acp-24-4047-2024
https://doi.org/10.11834/jrs.20209196
https://doi.org/10.1016/j.scitotenv.2019.134600
https://doi.org/10.1029/2022jd037092
https://doi.org/10.1021/acs.est.3c04746
https://doi.org/10.5194/essd-15-3761-2023
https://doi.org/10.5194/essd-15-3761-2023
https://doi.org/10.5194/essd-12-3383-2020
https://doi.org/10.1016/j.rse.2023.113652
https://doi.org/10.1109/tgrs.2022.3176134
https://doi.org/10.1007/s12524-011-0162-7
https://doi.org/10.1016/j.rse.2023.113984
https://doi.org/10.1038/s41586-024-07117-5
https://doi.org/10.1088/1748-9326/acbce7
https://doi.org/10.1016/j.enconman.2023.117346
https://doi.org/10.5194/acp-22-13881-2022
https://doi.org/10.1029/2020gl091160
https://doi.org/10.1016/j.jclepro.2020.122434
https://doi.org/10.1016/j.jclepro.2020.122434
https://doi.org/10.1117/12.2321763
https://doi.org/10.3390/rs15092233
https://doi.org/10.3788/AOS202141.0928003
https://doi.org/10.1016/j.jenvman.2025.125439
https://doi.org/10.1016/j.asr.2024.10.057
https://doi.org/10.1016/j.asr.2024.10.057
https://doi.org/10.5194/essd-15-3597-2023
https://doi.org/10.5194/egusphere-2024-1402
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


He et al. 10.3389/feart.2025.1577961

Xu, M., Han, G., Pei, Z., Yu, H., Li, S., and Gong, W. (2024). Advanced method
for compiling a high-resolution gridded anthropogenic co2 emission inventory at a
regional scale. Geo-spatial Inf. Sci., 1–14. doi:10.1080/10095020.2024.2425182

Yang, J., Gan, R., Luo, B., Wang, A., Shi, S., and Du, L. (2024). An improved method
for individual tree segmentation in complex urban scenes based on using multispectral
LiDAR by deep learning. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 17,
6561–6576. doi:10.1109/jstars.2024.3373395

Yi, J., Huang, Y., Pei, Z., and Han, G. (2024). Urban area observing system (uaos)
simulation experiment using dq-1 total column concentration observations. EGUsphere
2024, 1–40. doi:10.5194/egusphere-2024-2495

Yu, J. V., Hmiel, B., Lyon, D. R., Warren, J., Cusworth, D. H., Duren, R.
M., et al. (2022). Methane emissions from natural gas gathering pipelines
in the permian basin. Environ. Sci. Technol. Lett. 9, 969–974. doi:10.1021/
acs.estlett.2c00380

Zhang, H., Han, G., Ma, X., Chen, W., Zhang, X., Liu, J., et al. (2023). Robust
algorithm for precise x co2 retrieval using single observation of ipda lidar. Opt. Express
31, 11846–11863. doi:10.1364/oe.482629

Zhang, H. W., Ma, X., Han, G., Xu, H., Shi, T. Q., Zhong, W. Q., et al.
(2021). Study on collaborative emission reduction in green-house and pollutant
gas due to covid-19 lockdown in China. Remote Sens. 13, 3492. doi:10.3390/
rs13173492

Zhang, J., Han, G., Mao, H., Pei, Z., Ma, X., Jia, W., et al. (2022). The spatial and
temporal distribution patterns of xch4 in China: new observations from tropomi.
Atmosphere 13, 177. doi:10.3390/atmos13020177

Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte,
P., et al. (2020). Quantifying methane emissions from the largest oil-producing
basin in the United States from space. Sci. Adv. 6, eaaz5120. doi:10.1126/
sciadv.aaz5120

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1577961
https://doi.org/10.1080/10095020.2024.2425182
https://doi.org/10.1109/jstars.2024.3373395
https://doi.org/10.5194/egusphere-2024-2495
https://doi.org/10.1021/acs.estlett.2c00380
https://doi.org/10.1021/acs.estlett.2c00380
https://doi.org/10.1364/oe.482629
https://doi.org/10.3390/rs13173492
https://doi.org/10.3390/rs13173492
https://doi.org/10.3390/atmos13020177
https://doi.org/10.1126/sciadv.aaz5120
https://doi.org/10.1126/sciadv.aaz5120
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Description of study area
	2.2 Space-based emission tracking system (SETS)
	2.2.1 Description of data and procedure
	2.2.2 Classic matched filter

	2.3 Ground-based emission collecting system (GECS)
	2.3.1 Description of data and devices
	2.3.2 EMISSION-PARTITION model

	2.4 Space-ground integration system

	3 Results
	4 Discussion
	4.1 Uncertainty calculation of CMF
	4.2 Uncertainty analysis of EMISSION-PARTITION model
	4.3 Future prospects

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

