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The Lesser Xing’an-Zhangguangcai Range tectonic belt in northeastern China
is located along the eastern margin of the Central Asian Orogenic Belt
and serves as the key to understanding the tectonic transition between the
Paleo-Asian Ocean and Paleo-Pacific regimes during the Early Mesozoic.
This study presented the zircon U-Pb geochronology, Hf isotope, and
whole-rock geochemistry of Early Jurassic syenogranites from the northern
Zhangguangcailing Range. The LA-ICP-MS zircon dating result indicates a
crystallization age of 194 ± 2 Ma. Integrated with regional data, this study
confirmed that the Early Mesozoic magmatism in the region was concentrated
in the Early Jurassic (180–200 Ma). The granites displayed typical arc-related
features, including (1) high SiO2 (70.59–76.81 wt.%), alkali enrichment (Na2O
+ K2O = 7.65–8.38 wt.%), low Mg and Fe contents, classifying them as
the high-K calc-alkaline metaluminous to weakly peraluminous (A/CNK =
0.99–1.04); (2) strong LREE enrichment with weak Eu anomalies (δEu =
0.44–0.81) and HREE depletion ((La/Yb)N = 3.38–16.17); and (3) enrichment
in LILEs (Rb, K) with the corresponding depletion in HFSEs (Nb, Ta, and
Ti). Harker diagrams showed negative correlations between SiO2 and MgO,
TiO2, CaO, TFeO, P2O5, and Eu, indicating fractional crystallization involving
amphibole, ilmenite, apatite, and feldspar. The zircon εHf(t) values (+2.7 to
+5.0) and the corresponding Meso-to Neoproterozoic crustal model ages
(TDM2 = 915–1067 Ma) suggested that the magma originated from partial
melting of the Meso-Neoproterozoic mafic lower crust at amphibolite facies.
The geochemical and isotopic data collectively identified these rocks as I-
type granite. In a regional tectonic context, their formation was interpreted
to reflect an active continental margin environment driven by the westward
subduction of the Paleo-Pacific Plate during the Early Jurassic, potentially
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influenced by the closure of the Mudanjiang Ocean, a branch of the Paleo-
Pacific.
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1 Introduction

Northeast China has experienced extensive phanerozoic
magmatism, producing large volumes of Paleozoic-Mesozoic
granitoids (Wu et al., 2011; Xu et al., 2013b). Zircon geochronology
demonstrates that regional magmatic activity mainly occurred from
the Late Paleozoic to Early Mesozoic, with subordinate events
occurring during the Neoproterozoic-Early Paleozoic (Ge et al.,
2017; Ge et al., 2018). Mesozoic magmatism occurred in three
distinct stages: Late Triassic-Early Jurassic (205–158 Ma), Late
Jurassic-Early Cretaceous (157–136 Ma), and Late Cretaceous
(135–90 Ma) (Ji et al., 2021; Yang et al., 2022). Late Triassic-
Early Jurassic granitoids, including quartz diorite, granodiorite,
monzogranite, and syenogranite with minor alkali feldspar
granite, generally exhibit medium-to high-K calc-alkaline affinities
(Xu et al., 2009; Xu M. J. et al., 2013; Li et al., 2016; Ge et al.,
2017; Ge et al., 2018; Yin et al., 2021; Zhang et al., 2021).
Geochemical trends have consistently shown decreasing P2O5
with increasing SiO2 (Dong et al., 2017; Zhou et al., 2018;
Duan et al., 2021), and these rocks are metaluminous to weakly
peraluminous (A/CNK <1.1; Liu et al., 2017). Predominantly
composed of I- and A-type granites with limited S-type occurrences
(Ge et al., 2017; Ge et al., 2018), these plutons record the
extended histories of fractional crystallization (Wu et al., 2003a;
Wu et al., 2003b). The spatiotemporal distributions demonstrate
a westward younging trend of Late Paleozoic-Mesozoic granitoids
(Ge et al., 2020a; Ge et al., 2020b), and their Sr-Nd-Hf isotopic
compositions reflect juvenile crustal sources, signifying substantial
Phanerozoic crustal accretion within the Central Asian Orogenic
Belt (Wu et al., 2000; Jahn et al., 2004).

Despite progress in geochronological and geochemical studies,
the petrogenetic mechanisms and tectonic settings of granitoids
in the Lesser Xing’an-Zhangguangcai Range remain contentious
(Wu et al., 2011; Ge et al., 2017; Ge et al., 2018; Ge et al., 2019;
Zhu C. Y. et al., 2017). Three main models have been proposed
to explain magmatism in the Songnen Block: (1) post-subduction
or collisional extension following the closure of the Paleo-Asian
Ocean (Guo et al., 2018; Long et al., 2020a; Long et al., 2020b);
(2) mantle wedge or crustal melting triggered by subduction of
the Paleo-Pacific Plate (Ge et al., 2018; Yu et al., 2013); and
(3) crustal thickening due to the collision between the Songnen
and Jiamusi blocks (Zhu et al., 2017b; Dong et al., 2017; Dong,
2018). However, there is no consensus regarding which tectonic
processes play a dominant role. This study investigated the Early
Jurassic syenogranite from the northern Zhangguangcai Range
through integrated petrological, geochronological, geochemical,
and Lu-Hf isotopic analyses to constrain its petrogenesis and
tectonic setting. The results could contribute to refining our
understanding of the Mesozoic tectonic evolution mechanisms in
Northeast China.

2 Geological background

TheXingmengOrogenic Belt in northernChina is a key segment
of the Central Asian Orogenic Belt, forming a tectonic connection
between the Siberian Plate and North China Plate (Figure 1a).
From the Paleozoic to the Mesozoic era, this region experienced
a series of tectonic events, including collision, subduction, and
metamorphism, among several micro-blocks, such as the Erguna,
Xing’an, Songnen, Jiamusi, Khanka, and Nadanhada terranes,
ultimately shaping a complex tectonic framework (Figure 1b)
(Şengör et al., 1993). This study focused on the Zhangguangcai
Range tectonic belt, which is situated in the eastern portion of the
Xingmeng Orogenic Belt. The Dun-Mi Fault defines the southern
boundary of the block. While early scholars believed that the
region contained an ancient Proterozoic metamorphic crystalline
basement (Jilin Bureau of Geology and Mineral Resources, 1988;
Heilongjiang Bureau of Geology and Mineral Resources, 1993),
recent chronological evidence has indicated that the majority
of these geological units, previously considered Precambrian,
were primarily formed during the Paleozoic and early Mesozoic
periods (Wang F. et al., 2017; Feng et al., 2019; Xu et al.,
2019), with only a small number dating to the Neoproterozoic
(Quan et al., 2013; Wang et al., 2014).

The study area is characterized by the extensive presence of
Paleozoic to Early Mesozoic intrusive rocks (Dong, 2018). During
the Early Jurassic, vigorous magmatic activity, predominantly
felsic in nature, led to the widespread formation of granites,
mainly syenogranites, which exhibit a northeast-trending
distribution (Figure 2). The exposed strata in the region
are primarily represented by the Neoproterozoic Hongguang
Formation, a shallow marine marginal clastic sequence composed
of metamorphosed intermediate to intermediate-basic volcanic
rocks interbedded with phyllite, slate, two-mica schist, and marble.
Additionally, the Quaternary strata are extensively developed along
the Songhua River within the study area.

3 Samples and analytical techniques

3.1 Lithofacies characteristics of samples

The syenogranites in the study area are extensively distributed
and appear as stocks in the field, with exposed plutons primarily
consisting of slightly weathered and altered fine-to medium-
grained syenogranites. Their mineral composition is predominantly
potassium feldspar (50%–55%), plagioclase (20%), quartz (25%),
and a minor amount of biotite (2%–3%) (Figure 3). Potassium
feldspar, mainly microcline and orthoclase, forms subhedral plates,
typically 2–5 mm in size, with some intergrown quartz in graphic
textures and sodic stripes arranged in a dendritic pattern. A
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FIGURE 1
Simplified tectonic map (a) and geological sketch map (b) of the study area (Xu et al., 2019).

few fine plagioclase crystals are embedded within the potassium
feldspar, and local plagioclase alteration is present. Plagioclase
forms subhedral plates 2–4 mm in size, showing sericitization and
weak polysynthetic twinning. Quartz occurs as anhedral grains,
generally 2–4 mm in size, with a randomdistribution, clean surfaces,
and light-wavy extinction. Biotite appears as flakes, randomly
distributed, with flake sizes ranging from 0.2 to 1.3 mm.

3.2 Analytical methods

3.2.1 Zircon U–Pb dating
U-Pb dating analyses were conducted using LA-ICP-MS at

Beijing Createch Testing Technology Co., Ltd., following the
operational procedures described by Hou, 2009. Laser sampling was
performed using a 193 nm laser ablation system, and the ion signal
intensities were measured using an Analytik Jena PQMS Elite ICP-
MS instrument. Helium served as the carrier gas, whereas argon
was utilized as the makeup gas and combined with the carrier
gas through a T-connector before entering the ICP. Each analysis
included a background acquisition phase of approximately 15–20 s
(gas blank) followed by 45 s of data acquisition from the sample.
Data processing, including raw data selection, background and

analyte signal integration, time-drift correction, and quantitative
calibration for U-Pb dating, was conducted offline using LADR_
1.1.07 (Norris and Danyushevsky, 2018).

Zircon GJ-1 was employed as the external standard for U-Pb
dating and analyzed twice for every 5–10 sample analyses. The time-
dependent drifts in the U-Th-Pb isotopic ratios were corrected via
linear interpolation, based on the variation observed in the GJ-1
standards (i.e., 2 GJ-1 zircons + 5–10 samples +2 GJ-1 zircons).
The uncertainty in the preferred values for GJ-1 was propagated to
the final sample results. Common Pb correction was unnecessary
for all analyzed zircon grains because of the low 204Pb signal and
high 206Pb/204Pb ratios. The U, Th, and Pb concentrations were
calibrated using NIST 610. Concordia diagrams and weighted mean
age calculations were generated using IsoPlot 4.15. The zircon
Plešovice analyzed as an unknown sample yielded a weighted mean
206Pb/238U age of 337.4 ± 1.8 Ma (n = 7, 2SD), which could be
consistent with its recommended age of 337.13 ± 0.37 Ma (2SD)
(Sláma et al., 2008).

3.2.2 Whole-rock major and trace element
analysis

Major and trace element analyses were conducted at the
Analysis and Testing laboratory of the Harbin Center for Integrated
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FIGURE 2
Simplified tectonic maps of the study area.

FIGURE 3
Hand specimen (a) and microphotographs (b) of syenogranite in the study area. Abbreviations: Kfs—K feldspar; Pl—plagioclase; Q—quartz; Bt—biotite.

Natural Resources Survey and China Geological Survey. Fresh
rock samples were processed using an agate, contamination-free
grinding system to a fineness of 200 mesh and then divided into two
portions: approximately 15 g sealed in a white polyethylene bottle
for XRF analysis and a 50 mg portion for ICP-MS analysis. Major
elements were determined using X-ray fluorescence spectrometry
(XRF) with an AXIOSMAX spectrometer from Malvern Panalytical
utilizing the instrument’s built-in quantitative analysis software
with an analytical accuracy generally exceeding 5%. Trace elements

were analyzed using a Thermo Fisher XSERIES II ICP-MS
instrument, where the solutions were introduced into the high-
temperature plasma, and element concentrations were automatically
calculated by the mass spectrometer, with an analytical error
typically below 5%.

3.2.3 Lu-Hf isotopes of zircon
Hf isotopemeasurements of zirconmicro-areas were performed

at the Beijing Createch Testing Technology Co., Ltd. using a
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FIGURE 4
Zircon cathodoluminescence diagram of syenogranite in the study area. The red circle is the U-Pb dating position, the green circle is the Lu-Hf isotope
analysis position, and the number represents the analysis point number. The ages and 176Hf/177Hf isotope ratios of the test points are labeled below.

FIGURE 5
Zircon LA-ICP-MS U-Pb concordia diagram from syenogranite in the study area.

laser ablation multi-collector inductively coupled plasma mass
spectrometer. The analysis employed a RESOlution-SE solid-
state laser ablation system coupled with a NEPTUNE Plus
multi-collector plasma mass spectrometer. Internal zircon
structures were observed using cathodoluminescence (CL)

imaging to select precise analytical spots. Laser ablation was
performed for a duration of 27 s, spot diameter of approximately
30 μm, energy density of 6 J/cm2, and frequency of 6 Hz. The
Plešovice zircon standard was used as a calibration reference
to ensure the analytical accuracy. The measured 176Hf/177Hf
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TABLE 2 Major (wt%) and trace (×10−6) elements compositions of syenogranite in the study.

Sample numbers SHD0041 SHD0736 SHD0749 SHD0909 SHD0748 SHD0731 SHD0803

SiO2 70.59 72.59 73.39 73.62 74.62 74.87 76.81

TiO2 0.21 0.14 0.17 0.17 0.06 0.07 0.12

Al2O3 14.72 12.58 12.07 12.11 12.33 11.37 10.92

FeO 0.69 1.68 0.71 0.55 0.52 0.69 0.63

Fe2O3 1.46 0.05 0.56 1.08 0.13 0.28 0.34

MnO 0.05 0.04 0.03 0.06 0.03 0.02 0.03

MgO 0.38 0.23 0.21 0.22 0.06 0.07 0.08

CaO 1.66 0.98 0.90 0.56 0.49 0.28 0.39

Na2O 3.88 3.86 3.49 3.80 4.10 3.10 3.34

K2O 4.34 4.17 4.35 4.24 4.18 5.28 4.31

P2O5 0.10 0.04 0.04 0.06 0.02 0.02 0.02

LOI 0.89 0.03 0.37 1.61 0.12 0.26 0.29

TOTAL 98.96 96.38 96.29 98.07 96.65 96.32 97.28

δ 2.45 2.18 2.02 2.11 2.17 2.20 1.73

A/CNK 1.04 0.99 1.00 1.02 1.01 1.00 1.00

A/NK 1.33 1.16 1.15 1.12 1.09 1.05 1.07

TFeO 2.00 1.72 1.21 1.52 0.64 0.94 0.94

TFeO/(TFeO + MgO) 0.84 0.88 0.85 0.87 0.91 0.93 0.92

Na2O + K2O 8.22 8.03 7.84 8.04 8.28 8.38 7.65

K2O/Na2O 1.12 1.08 1.25 1.12 1.02 1.70 1.29

DI 96 96 98 97 98 98 98

La 31.1 36 37.6 15.2 15.2 20.9 22.5

Ce 56.2 68.5 73.9 74.7 31.3 38.1 36.8

Pr 5 5.98 6.18 3.34 3.4 3.65 4.02

Nd 19.2 24.2 24.4 13.7 13.8 14 15

Sm 2.73 4.23 3.86 3.36 2.67 2.01 2.49

Eu 0.94 0.47 0.78 0.42 0.64 0.31 0.3

Gd 2.83 3.91 3.8 3.31 2.38 2.13 2.44

Tb 0.34 0.55 0.51 0.57 0.34 0.25 0.36

Dy 1.99 3.16 2.97 3.89 2.14 1.58 2.4

Ho 0.41 0.65 0.62 0.83 0.43 0.33 0.54

Er 1.18 1.82 1.83 2.57 1.2 0.89 1.7

Tm 0.22 0.33 0.34 0.5 0.23 0.17 0.34

(Continued on the following page)
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TABLE 2 (Continued) Major (wt%) and trace (×10−6) elements compositions of syenogranite in the study.

Sample numbers SHD0041 SHD0736 SHD0749 SHD0909 SHD0748 SHD0731 SHD0803

Yb 1.38 2.03 2.12 3.23 1.36 1.05 2.16

Lu 0.23 0.32 0.33 0.51 0.22 0.18 0.32

Y 11.1 15.4 15.3 26.5 11.9 8.77 13.6

ΣREE 123.75 152.15 159.24 126.13 75.31 85.55 91.37

LREE 115.17 139.38 146.72 110.72 67.01 78.97 81.11

HREE 8.58 12.77 12.52 15.41 8.3 6.58 10.26

LREE/HREE 13.42 10.91 11.72 7.18 8.07 12.00 7.91

LaN/YbN 16.17 12.72 12.72 3.38 8.02 14.28 7.47

δEu 1.03 0.35 0.62 0.38 0.76 0.45 0.37

Li 8.57 19.4 16.1 14.1 7.05 1.24 4.59

Be 1.9 1.53 1.7 5.02 1.06 0.52 2.13

Sc 1.37 3.15 2.26 2.12 1.2 1.44 1.62

V 13.5 8.06 12.7 8.95 5.61 6.36 5.87

Cr 17.4 20.1 28.8 22.8 14.7 25.4 24.9

Co. 2.92 2.52 2.19 3.05 1.15 1.58 1.46

Ni <2 <2 2.17 4.6 <2 4 <2

Cu 2.86 6.78 2.99 14.4 3.68 4.46 3.17

Zn 46.9 40.5 22.1 37 12.1 16.7 14.1

Ga 17.2 17.2 14.2 17.4 15.7 15.9 14.8

Rb 127 101 114 179 97.6 131 176

Sr 404 127 121 74.9 104 31.7 28.4

Zr 153 173 105 143 45.3 94.8 81.4

Nb 7.72 6.88 8.15 23.3 9.93 4.08 9.46

Mo 0.22 0.68 0.22 0.31 0.31 0.33 0.47

Ba 1213 634 586 342 1029 279 128

Hf 3.69 5.98 6.21 9.85 17.8 2.65 6.27

Ta 0.78 0.71 0.88 2.14 0.84 0.56 1.1

W 9.64 9.4 5.98 8.02 6.76 5.9 6.52

Pb 25 22.2 14.5 18 27.6 19.2 15.9

Bi 0.058 0.076 0.1 0.98 <0.05 0.11 <0.05

Th 9.97 11.2 10.2 28.6 5.11 5.37 20

Ag 0.024 0.027 0.024 0.053 0.026 0.047 0.023

Sn 2 2.2 1.6 1.78 1.4 1.26 1.46

(Continued on the following page)
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TABLE 2 (Continued) Major (wt%) and trace (×10−6) elements compositions of syenogranite in the study.

Sample numbers SHD0041 SHD0736 SHD0749 SHD0909 SHD0748 SHD0731 SHD0803

B 3.06 8.06 4.15 7.99 3.56 3.12 2.89

Hg 0.005 0.004 0.005 0.006 0.004 0.005 0.005

F 275 246 256 163 150 101 185

Cl 67.3 67.3 38.2 57 35.8 42.2 41.6

ratio remained stable at 0.282488 ± 20 (2SD, n = 6), which is
consistent with the values reported by Sláma et al. (2008) within
acceptable error margins.

4 Results

4.1 Zircon U–Pb geochronology

The LA-ICP-MS zircon U-Pb dating results for the syenogranite
samples from the study area are presented in Table 1. Under a
microscope, the selected zircons predominantly appeared as well-
formed, colorless, translucent crystals with short-to long-columnar
habits (Figure 4), exhibiting long axis lengths ranging from 60 to
220 μm and aspect ratios between 1.5:1 and 4:1. Most zircon grains
displayed distinct and consistent oscillatory zoning, characteristic
of magmatic origin, without sharp core-rim boundaries but with
gradually increasing zoning density from core to rim, possibly
reflecting the variations in the crystal growth rates during magma
cooling. A few zircons demonstrated clear core-rim structures, likely
representing inherited cores from earlier geological events that
experienced partial hydrothermal or solid-state recrystallization
during subsequent magmatic activity (Gong et al., 2009). The high
Th/U ratios of 0.35–0.55 further support their magmatic origin
(Rubatto, 2002; Wu and Zheng, 2004).

All 20 zircon analysis points from the syenogranite sample
exhibited good concordance, aligning closely with the U-Pb
concordia line (Figure 5), indicating no significant lead loss or
post-crystallization isotopic disturbance. The weighted average
206Pb/238U age was calculated to be 194 ± 2 Ma (Figure 5),
representing the formation age of the pluton.

4.2 Whole-rock major and trace elements

The whole-rock major and trace element results for the seven
syenogranite samples are summarized in Table 2.Themajor element
compositions exhibited limited variability, with SiO2 ranging from
70.59% to 76.81%, Al2O3 from 10.92% to 14.72%, K2O from 4.17%
to 5.28%, and Na2O from 3.1% to 4.1%. The TiO2, MnO, and
P2O5 contents were all below 1%, and the loss on ignition (LOI)
values ranged from 0.03% to 1.61%, suggesting a minimal influence
of late-stage alteration or fluid activity and preservation of the
original geochemical signatures. The aluminum saturation index
(A/CNK) ranged from 0.99 to 1.04, averaging 1.02, placing the

samples in the metaluminous to weakly peraluminous fields on
the A/NK-A/CNK diagram (Figure 6a). The K2O/SiO2 ratio ranged
from 0.06 to 0.07, averaging 0.06, and the samples plotted within the
high-K calc-alkaline series on the K2O-SiO2 diagram (Figure 6b).
In the TAS and QAP classification diagrams for intrusive rocks
(Figures 6d,e), all the samples fell within the granite field, whereas in
the R1-R2 diagram (Figure 6c), they were located within or near the
syenogranite field. The Rittmann index (σ = (Na2O + K2O)2/(SiO2-
43)) ranged from 1.73 to 2.45, confirming their classification as
calc-alkaline granite.

The total rare earth element (REE) content of the samples was
relatively low, ranging from 75.31 to 159.24 ppm. In the chondrite-
normalized REE diagram (Figure 7), the samples exhibited a right-
leaning distribution pattern with (La/Yb)N values from 3.38 to
16.17, indicating enrichment in light rare earth elements (LREEs)
(67.01–146.72 ppm) and depletion in heavy rare earth elements
(HREEs) (6.58–15.41 ppm), along with a relatively weak negative
europium anomaly (δEu = 0.35–1.03). In the primitive mantle-
normalized trace element diagram (Figure 7), the samples displayed
consistent distribution patterns, showing the enrichment in large ion
lithophile elements (LILEs) such as Rb and K, and the depletion
in high field strength elements (HFSEs) including Nb, Ta, and Ti.
Additionally, the samples exhibited varying degrees of Ba depletion
and significant depletion in Sr and P.

4.3 Hf isotope characteristics

The Lu-Hf isotope results for zircon in Table 3 present minimal
variation in 176Hf/177Hf value (0.282730–0.282797), indicating
the strong isotopic consistency. The analyzed zircons exhibited
relatively low 176Lu/177Hf ratios (0.001164–0.002033), mostly below
or near 0.002, suggestingminimal radiogenic Hf accumulation since
formation and confirming that the measured 176Hf/177Hf ratios
accurately represent the Hf isotopic composition at the time of
zircon crystallization (Amelin et al., 1999). Additionally, the fLu/Hf
values ranged from −0.96 to −0.94, significantly lower than those
of mafic crust (−0.34) and felsic crust (−0.72) (Vervoort et al.,
1996; Amelin et al., 2000), indicating that the two-stage Hf model
age could provide a reliable estimate of the magma source’s initial
separation time or its average crustal residence age (Liu et al., 2014).
The εHf(t) values of sample SHD0042 ranged from +2.7 to +5.0,
with corresponding depleted mantle two-stage model ages (TDM2)
between 915 and 1067 Ma.
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FIGURE 6
A/NK vs. A/CNK diagram (Maniar and Piccoli, 1989) (a), SiO2 vs.K2O diagram (Peccerillo and Taylor,1976) (b), R1-R2 diagram (De La Roche et al., 1980)
(c), TAS diagram (Middlemost, 1994) (d) and QAP diagram (Streckeisen, 1973) (e) of syenogranite in the study area. 1—Alkaline Gabbro; 2—Olivine
Gabbro; 3—Gabbro Syenite; 4—Monzonitic Gabbro; 5—Dioritic Gabbro; 6—Gabbro; 7—Monzonite; 8—Monzonite; 9—Monzodiorite; 10—Diorite;
11—Nepheline Syenite; 12—Syenite; 13—Quartz Syenite; 14—Quartz Monzonite; 15—Tonalite; 16—Alkali Granite; 17—Syenogranite; 18—Monzograiite;
19—Granodiorite; 20—Essexite; 21—Peridotite; 22—Ijolite; a—Gabbroic Diorite; b—Diorite; c—Granodiorite; d—Granite; e—Monzodiorite;
f—Monzosyenite; g—Quartz Monzonite; h—Syenite; i—Foid Monzosyenite; j—Foidolite Syenite.

5 Discussion

5.1 Jurassic magmatism in the
Zhangguangcai Range orogenic belt

The Zhangguangcai Range preserves evidence of intense
Late Paleozoic to Early Mesozoic magmatism, notably marked
by extensive ∼190 Ma granitic plutons comprising granodiorite,
monzogranite, syenogranite, and alkali feldspar granite. These

granitoids exhibit characteristic I-type features (Liu et al.,
2016; Liu et al., 2017; Ge et al., 2017; Ge et al., 2018) and
were interpreted by Wu et al. (2003a), Wu et al. (2003b) as
highly fractionated products of prolonged crystal differentiation.
Petrogenetic models suggest that their magmas originated
either from juvenile crustal melting (Xu M. J. et al., 2013;
Li et al., 2016) or mantle-crust magma mixing (Ren, 2019).
In contrast, mafic magmatism is spatially and temporally
limited, represented by several suites: the Xinxinglinchang
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FIGURE 7
Chondrite⁃normalized REE distribution patterns diagram and primitive mantle⁃normalized trace element patterns diagram of syenogranite in the
study area (Sun and McDonough, 1989).

gabbro (293 Ma; Long et al., 2020a), Hongguang Formation
gabbro-diorite (259 Ma; Wang et al., 2012), Shuguanglinchang
hornblende gabbro (215 Ma) and gabbro (210 Ma; Long et al.,
2020b), and Tangwanghe-Yichun-Mulan gabbro-gabbro-diorite-
amphibolite suite (186–182 Ma; Yu et al., 2012). Early Jurassic
mafic rocks (Yu et al., 2012; Ge et al., 2020a) exhibit zircon
Hf isotopic and geochemical signatures indicative of derivation
from partial melting of the subduction-fluid-metasomatized
depleted mantle. Comparative analyses revealed contrasting mantle
sources: Lesser Xing’an-Zhangguangcai mafic rocks reflect deep-
sea sediment contributions, while their Yanbian counterparts
can be characterized by terrestrial sediment-dominated sources
(Zhao et al., 2018).

The spatiotemporal evolution of intrusive rocks in the Lesser
Xing’an–Zhangguangcai Range provides critical insights into
the tectonic evolution of the region. By integrating regional
zircon U-Pb geochronological datasets, this study confirmed that
Early Mesozoic magmatism peaked during the Early Jurassic
(180–200 Ma) (Supplementary Table S1; Figure 8a). These intrusive
rocks were primarily concentrated between 127° and 130°E
(Figure 8b), forming a prominent north-south-trending magmatic
belt. Importantly, Early Mesozoic intrusive rocks exhibited
distinct spatiotemporal patterns. After accounting for strike-
slip displacement along the Yitong-Yilan Fault (a northern
extension of the Tanlu Fault Zone) and categorizing the data into
north and south of the fault, our study identified a westward-
younging magmatic migration trend (Figure 8b). This finding
reinforces previous models of westward migration of magmatic
activity based on granite data (Ge et al., 2020b) and extends
their applicability by including chronological evidence from
intermediate-mafic intrusions. The syenogranite dated in this
study yielded a zircon LA-ICP-MS U-Pb weighted mean age of
194 ± 2 Ma, with zircon grains showing typical magmatic growth
zoning and Th/U ratios between 0.35 and 0.55. The narrow age
range of 8 Ma among all the analyzed points indicated that the
syenogranite was emplaced in the early Jurassic. Together with
regional data, these results confirmed that extensive magmatism
occurred in the Lesser Xing’an-Zhangguangcai Range during the
Early Jurassic.

5.2 Petrogenesis of the syenogranites

Most sample points on the genetic discriminant diagrams
fell within the I- and S-type granite fields, with only a few
near the boundary separating the A-type from the I-and S-
type granites (Figures 9a,b). Based on the zircon saturation
temperature calculation method of Watson and Harrison (1983),
the syenogranites yielded temperatures between 688°C and
791°C, which were significantly lower than the typical formation
temperatures of A-type granites (>900°C) (Eby, 1992), indicating
that the studied rocks were not A-type granites. Additionally, the
samples showed only a slight negative Eu anomaly, in contrast to
the strongly negative Eu anomaly generally observed in the A-type
granites. Microscopic analysis revealed no alkali-rich minerals,
such as riebeckite or aegirine, and the plagioclase content was
relatively high. Both features were inconsistent with the A-type
granite mineralogy (Chappell, 1999), further confirming that the
syenogranites were not of A-type affinity.

The S-type granite magmas generally originated from
phosphorus-rich sedimentary rocks, where phosphorus cannot
be fully incorporated into minerals during magmatic evolution,
resulting in simultaneous increases in SiO2 and P2O5 contents. In
contrast, the I-type granite magmas were derived from crustal mafic
rocks or mantle materials, with phosphorus being progressively
excluded as the SiO2 content increased and the P2O5 content
decreased. This trend is consistent with the granite characteristics
observed in the study area (Figure 10) (Chappell, 1999; Qiu et al.,
2024). Moreover, the complete absence of aluminum-rich minerals
such as garnet, muscovite, tourmaline, and cordierite, coupled with
the weakly peraluminous nature (A/CNK = 0.99–1.04) and the
positive correlation between Rb and Th, further supported the
interpretation that the syenogranites were not S-type but belonged
to the I-type granite category (Figure 9d) (Qiu et al., 2008).

The rock samples displayed a high SiO2 content (>70%),
elevated K2O/Na2O ratios (>1), enrichment in large ion lithophile
elements (LILE) such as K and Rb, and depletion in high
field strength elements (HFSE), including Nb, Ta, and Ti. These
geochemical features, combinedwith the high differentiation indices
(DI = 96–98), were consistent with the traits of the highly
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fractionated I-type granites (Wang Z. Z. et al., 2017). Furthermore,
the syenogranite sample points plotted on the TFeO/MgO-Zr +
Nb + Ce + Y (Figure 9b) and (Al2O3+CaO)/TFeO + K2O +
Na2O–100×(MgO + TFeO + TiO2)/SiO2 diagrams (Figure 9c) were
situated within the highly fractionated field. Thus, based on their
geochemical and mineralogical characteristics, the syenogranites in
the study area were identified as highly fractionated I-type granites.

5.2.1 Fractional crystallization process
The samples displayed a right-leaning rare earth element

(REE) distribution pattern characterized by relative enrichment
in light rare earth elements (LREEs) and depletion in heavy rare
earth elements (HREEs), accompanied by a weak negative Eu
anomaly. They were enriched in large ion lithophile elements
(LILEs) such as Rb and K and depleted in high field strength
elements (HFSEs) including Nb, Ta, and Ti, with varying
degrees of Ba depletion and notable depletion in Sr and P. The
negative Eu anomaly commonly observed in granites is generally
attributed to fractional crystallization of plagioclase or retention of
plagioclase in the magma source. Sr was concentrated in feldspars
through the isomorphous substitution of Ca and Na, whereas
Ba was preferentially incorporated into K-rich minerals such as
potassium feldspar and biotite during the late stages of magma
evolution, occupying K sites in early crystallized K-bearing phases.
Consequently, plagioclase fractionation led to Eu-Sr depletion, while
the crystallization of potassium feldspar and biotite contributed
to Ba depletion and further enhanced the negative Eu anomaly.
The negative anomalies of P and Ti were primarily linked to the
fractionation of accessory minerals, such as apatite and titanite.
Furthermore, because apatite typically displays a negative Eu
anomaly (Sha andChappell, 1999), its separationmay partially offset
Eu depletion caused by plagioclase fractionation (Qian et al., 2002).

In the Harker diagrams of the samples, increasing SiO2 content
was accompanied by decreasing concentrations of MgO, TiO2,
CaO, TFeO, P2O5, and Eu (Figure 10), reflecting the fractional
crystallization of various mineral phases during magma evolution.
The negative correlations between SiO2 and TiO2, TFeO, and P2O5,
along with the pronounced P and Ti depletion in the primitive
mantle-normalized trace element spider diagram (Figure 7),
suggested the fractional crystallization of titanomagnetite and
apatite. Similarly, the inverse relationships between MgO, CaO, Eu,
and SiO2 indicated that amphibole and plagioclase also underwent
fractional crystallization. Overall, these compositional variations
in the syenogranites were primarily attributed to fractional
crystallization processes.

5.2.2 Characteristics of magma sources
There are three main interpretations of the magma source

of highly fractionated high-K calc-alkaline I-type granites: (1)
fractional crystallization ofmantle-derived basalticmagma (Soesoo,
2000; Li et al., 2007); (2) magma generation through crust-mantle
mixing during underplating of mantle-derived magma in the lower
crust (Wu et al., 2003a; Wu et al., 2003b; Xia et al., 2015); and
(3) partial melting of mafic lower crustal rocks (Chappell and
White, 2001). The Early Jurassic granites investigated in this study
were widely distributed across the eastern Songnen Block, while
the coeval intermediate to mafic rocks were much less extensive,
rendering it unlikely that such large volumes of felsicmagma formed
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FIGURE 8
Zircon U-Pb ages characterization of intrusive rocks in the Lesser Xing’an- Zhangguangcai Range (a, b).

solely through the fractional crystallization ofmantle-derivedmelts.
Furthermore, the absence of contemporaneous mafic enclaves and
the uniform zircon Hf isotopic compositions indicated that the
crust-mantle magma mixing was not the dominant mechanism for
syenogranite formation. Geochemical evidence supports a crustal
origin for syenogranites. Nb/Ta (7.29–11.82, avg. 9.62), Th/Ta
(6.08–18.18, avg. 16.62), and Sm/Nd (0.14–0.24, avg. 0.18) ratios
weremore consistent with crustal values (Nb/Ta = 11,Th/Ta = 11.67,
Sm/Nd= 0.25) (Rudnick andGao, 2003; Sun andMcDonough, 1989;
Taylor andMcLennan, 1985) thanwithmantle values (Nb/Ta = 17.5,
Th/Ta = 2.3, Sm/Nd = 0.33). The rocks also exhibited high SiO2,
Al2O3, and total alkali contents; low MgO levels; the enrichment
in K, Rb, and Th; and the depletion in Ba, Nb, Ta, P, and Ti.
These could align with the characteristics of crust-derived magmas
(Green, 1995; Barth et al., 2000), thereby reinforcing a crustal origin
for syenogranites.

Experimental petrological studies have demonstrated that
magmas generated by the partial melting of basic rocks typically
exhibit lowMgO content, lowMg# values (<40), and depletion of Cr
and Ni (Rapp and Watson, 1995). The geochemical characteristics
of syenogranite samples from this region (MgO = 0.06–0.38 wt.%,
average 0.18; Mg# = 11.69–25.26, average 18.25; Cr = 14.7–28.8
ppm, average 22.01; Ni < 5 ppm) are highly consistent with
this petrogenetic model and overlapped with the major element
composition of melts derived from the amphibolite-facies basic
rocks in the lower crust (Qian and Hermann, 2013), indicating a
source region from partial melting of lower crustal basic rocks. The
rare earth element (REE) patterns show the strong fractionation
between light and heavy REEs ((La/Yb)N = 3.38–16.17), low HREE
contents (Yb = 1.05–3.23 ppm; Y = 8.77–26.5 ppm), and relatively
flat HREE distribution curves ((Gd/Yb)N = 0.85–1.7).These features
are consistent with amphibole as the dominant residual phase, given
the high partition coefficient of Yb in felsic melts (Klein et al.,
1997), which tends to produce flatter HREE patterns than garnet-
bearing systems. This is further supported by the observed Y/Yb
ratios (6.3–8.75, average 7.78), which are significantly lower than
those typical of garnet-residue systems (Y/Yb > 10) and align
more closely with amphibole-controlled systems (≈10) (Rollinson,

1993). Additionally, the samples plotted within the Hf isotopic
composition field of the Phanerozoic igneous rocks in the
Xingmeng Orogenic Belt on the t vs εHf(t) diagram (Figure 11),
with TDM2 model ages ranging from 915 to 1067 Ma, indicating
a Mesoproterozoic to Neoproterozoic lower crustal source. The
consistent Hf isotopic signatures suggest a relatively homogeneous
magma source, reinforcing the interpretation that the syenogranites
in the study area were primarily derived from the partial melting
of amphibolite-facies basic rocks in the juvenile lower crust formed
during the Mesoproterozoic to Neoproterozoic.

5.3 Tectonic background

The identification of Early-Middle Triassic collision-type
granites along the southern margin of the Xing’an-Mongolian
Orogenic Belt provides critical constraints on the timing of the
Paleo-Asian Ocean closure, which is estimated to have occurred
during the Early-Middle Triassic period. The recognition of Late
Triassic bimodal igneous rock assemblages in the Zhangguangcai
Range (Wu et al., 2011; Tang et al., 2018; Xu et al., 2019) further
supports the interpretation that the Paleo-Asian Ocean could be
already closed prior to the Late Triassic period. From the Late
Triassic to Early Jurassic, the Mongol-Okhotsk Oceanic Plate
subducted beneath the Siberian-Erguna Block in a “scissors-like”
closure pattern (Li, 2013; Xu et al., 2019), while the region east
of the Songliao Basin was governed by the westward subduction
system of the Paleo-Pacific Plate (Xu et al., 2013c; Tang et al.,
2018). This tectonic configuration is corroborated by multiple
lines of evidence: (1) the widespread presence of Early Jurassic
high-K calc-alkaline granite belts in the Yanji-Liaoyuan and
Lesser Xing’an-Zhangguangcai Range regions (Zhang et al., 2004;
Xue et al., 2024) and (2) the subduction-related geochemical
characteristics of Early Jurassic calc-alkaline volcanic rocks in
the Jiamusi and Songnen Blocks (Yu et al., 2012; Qin et al., 2016;
Wang F. et al., 2017; Wang et al., 2017 Z. H.).

The Mudanjiang Ocean, a paleo-oceanic tectonic unit between
the Jiamusi and Songnen Blocks (Wu et al., 2011), has been
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FIGURE 9
Identification of genetic types of syenogranite in the study area (Sylvester, 1989; Whalen et al., 1987) (a) K2O + N2O–Ga/Al diagram; (b) TFeO/MgO–Zr
+ Nb + Ce + Y diagram; (c) (Al2O3 + CaO)/TFeO + K2O + Na2O–100∗(MgO + TFeO + TiO2)/SiO2 diagram; (d) Th–Rb diagram.

proposed by previous studies to have existed since at least the
Early Permian (Dong et al., 2017; Du et al., 2022; Jing et al., 2022;
Yu et al., 2023) and could have evolved continuously as a branch
of the Paleo-Pacific Ocean (Sun et al., 2015; Yang et al., 2015;
2019; Yu et al., 2023). The protolith records of OIB-MORB-type
blueschists in the Heilongjiang Complex (Jing et al., 2022) together
with regional arc magmatic rock belts provide robust constraints
on the occurrence of subduction in the Mudanjiang Ocean during
the Early Mesozoic. The key supporting evidence includes: (1)
Middle-Late Permian arc-affinity mafic rock assemblages in the
Luobei-Yilan accretionary complex (Ren, 2017; Dong, 2018) and
(2) Late Triassic to Middle Jurassic forearc sedimentary successions
in the Heilongjiang Complex (Jing et al., 2022), as well as
associated arc magmatic rocks (Dong et al., 2017; Zhu et al.,
2017c; Ge et al., 2018; Sun et al., 2018). Additional support can
be obtained from the metamorphic evolution data, including the
clockwise P-T path of the Heilongjiang Complex (Han, 2018) and
metamorphic ages of OIB-MORB-type rocks from metamorphosed
sedimentary units in the Luobei region (209–185 Ma) (Jing et al.,
2022), which collectively indicate subduction processes during the
Early Mesozoic.

The syenogranites in the study area are classified as I-type
granites with a high K calc-alkaline affinity and are typically
formed in convergent plate margin tectonic settings (Wilson, 1989).
These rocks are enriched in light rare earth elements (LREEs)
and large ion lithophile elements (LILEs), such as Rb and K, and

depleted in heavy rare earth elements (HREEs) and high field
strength elements (HFSEs), such as Nb, Ta, and Ti, which exhibit
geochemical signatures characteristic of igneous rocks generated
in subduction zone environments (McCulloch and Gamble, 1991).
In the tectonic discrimination diagrams based on trace elements,
all granite samples were within the arc-related magmatic rock field
(Figure 12), suggesting a volcanic arc tectonic setting. Considering
the regional tectonic background, the Early Jurassic (194 Ma)
syenogranite in the northern Zhangguangcai Range formed in
an active continental margin setting, which could be closely
associated with the westward subduction of the Paleo-Pacific Plate
and potentially influenced by the overlapping subduction and
closure of the Mudanjiang Ocean, a branch of the Paleo-Pacific.
First, the Early Mesozoic magmatic belt in the Lesser Xing’an-
Zhangguangcai Range was oriented nearly north-south, parallel to
theHeilongjiangComplex, and temporally concentrated in the Early
Jurassic (200–180 Ma), displaying geochemical traits indicative of
subduction fluid-modified magma sources: (1) medium-to high-K
calc-alkaline rocks enriched in LREEs and LILEs but depleted in
HREEs and HFSEs, consistent with continental arc environments
(Zhao et al., 2018; Ge et al., 2020a; Ge et al., 2020b; Xiao et al.,
2023); and (2) mafic rocks (gabbro-amphibolites) showing relatively
homogeneous Hf isotopic compositions (εHf = +2.7 to +12.0),
suggesting the derivation from partial melting of a depleted mantle
wedge metasomatized by slab-derived melts (Yu et al., 2012).
The tectonic and geophysical evidence further corroborated the
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FIGURE 10
Harker variation diagrams for the samples.

subduction setting: (1) the metamorphic age of the Heilongjiang
Complex (202–172 Ma) coincided with the formation age of
the studied granites, indicating synchronous subduction-related
metamorphism and magmatism (Wu et al., 2008; Zhou et al., 2009;
Ge et al., 2016; Dong, 2018); (2) geophysical imaging revealed
a high-conductivity wedge-shaped anomaly beneath the Songnen
Block, interpreted as a relic subducted slab (Liang et al., 2017);
and (3) structural evidence, including regional-scale sinistral ductile
shear zones and tectonic fabric analysis, suggested an Early Jurassic
oblique compression regime (Shao et al., 2013). Additionally, the
analysis of the spatial and temporal distribution of granitic rocks
in the Lesser Xing’an–Zhangguangcai Range (Figure 8b) revealed a
westward younging trend in EarlyMesozoicmagmatism, potentially

linked to progressive flattening of the Paleo-Pacific subduction angle
during this period.

6 Conclusion

1. The zircon U-Pb age of the syenogranite in the study area
was 194 ± 2 Ma (n = 17, MSWD = 1.15), indicating its
emplacement during the Early Jurassic. Combined with the
regional chronological data analysis, this suggested that large-
scale magmatic activity occurred in the Lesser Xing’an -
Zhangguangcai Range during the Early Jurassic.
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FIGURE 11
The diagrams between Hf isotopic compositions and the U-Pb age of zircons for the syenogranite in the study area. (a) 176Hf/177Hf-t diagram
(Wu F. et al., 2007); (b) εHf(t)-t diagram (Yang et al., 2006).

FIGURE 12
Tectonic discrimination diagrams for the syenogranite in the study area (Harris et al., 1986; Pearce, 1996). (a) Rb-(Y + Nb) diagram; (b) Rb-(Yb + Ta)
diagram; (c) Ta-Yb diagram; (d) Rb/30-Hf-Ta×3 diagram.

2. The syenogranite in the northern section of the Zhangguangcai
Range was characterized as quasi-aluminous to weakly
peraluminous with a high-potassium calc-alkaline affinity,
having undergone significant crystallization differentiation
during magma evolution, and was classified as a highly
differentiated I-type granite.

3. Based on the analysis of geochemical characteristics and zircon
Hf isotopic signatures, the magma of the syenogranite within

the study area was primarily derived from the partial melting
of juvenile amphibolite-facies basic lower crust formed during
the Mesoproterozoic to Neoproterozoic.

4. Based on the regional geology, isotopic geochronology, and
petrogeochemical characteristics, the syenogranite intrusions
within the study area were formed in an active continental
margin environment, closely associated with the westward
subduction of the Paleo-Pacific Ocean during the Early
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Jurassic, which may have also been influenced by the
superimposed subduction-closure process of the Mudanjiang
Ocean, a branch of the Paleo-Pacific Ocean.
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